[06 BENG - 2102]

II/IV B.Tech. DEGREE EXAMINATION.

First Semester

Electrical and Electronics Engineering

ELECTROMAGNETIC FIELDS

(Effective from the admitted batch of 2015-2016)

Time: Three hours Maximum: 70 marks

Answer question No. 1 is compulsory and Answer any FOUR from remaining.

All questions carry equal marks.

- (a) Define vector product of two vectors.
 - (b) State Ampere's circuital law.
 - (c) What is magnetic dipole moment?
 - (d) What is displacement current?
 - (e) Write the point form of Ohm's law.
 - (f) Define propagation constant.
 - (g) Define Polarization and state different types of polarizations.
- (a) State and prove divergence theorem.
 - (b) What are the major sources of electromagnetic fields?

- 3. (a) Derive the expressions for magnetic field intensity and magnetic flux density due to circular.
 - (b) Derive an expression for the electric field due to a straight and infinite uniformly charged wire of length 'L' meters and with a charge density of +λc/mat a Point 'P' which lies along the perpendicular bisector of wire.
- 4. (a) Derive an expression for force between two current carrying conductors.
 - (b) An iron ring with a cross sectional area of 3 cm square and mean circumference of 15 cm is wound with 250 turns wire carrying a current of 0.3A. The relative permeability of ring is 1500. Calculate the flux established in the ring.
- (a) What is magnetization? Explain the classification of magnetic materials with examples.
 - (b) Calculate magnetic field intensity at the centre of square loop of side 5 m carrying 10 A of current.
 - 6. (a) Write short notes on faradays law of electromagnetic induction.
 - (b) The magnetic field intensity in free space is given as $H = H_0 \sin \theta$ at 't' A/m. Where $\theta = \omega t \beta z$ and β is a constant quantity. Determine the displacement current density.

- (a) Discuss about the plane waves in lossless dielectrics.
 - (b) Solve the depth of penetration of plane wave in copper at a power frequency of 60Hz and at a microwave frequency of 1010 Hz. Given $\sigma = 3.8 \times 10^7$ mho/m.
- 8. (a) Show Maxwell's equation for static fields.

 Explain how they are modified for time varying electric and magnetic fields
 - (b) Electric flux density in a charge free region is given by D = 10x â_x + 5y â_y + Kz â_z C/m2, find the constant K.

