UNIT-I

Basic Structure of Computers. Basic Organization of Computers, Historical Perspective, Bus
Structures, Data Representation: Data types, Complements, Fixed Point Representation. Floating,
Point Representation. Other Binary Codes, Error Detection Codes.

Computer Arithmetic: Addition and Subtraction, Multiplication Algorithms, Division
Algorithms.

1.Basic Organization of Computers:

1.1. Computer types
A computer can be defined as a fast electronic cal culating machine that accepts the (data) digitized

input information process it as per the list of internaly stored instructions and produces the
resulting information.

List of instructions are called programs & internal storage is called computer memory.
The different types of computers are

1. Personal computers: - Thisis the most common type found in homes, schools, Business
offices etc., It is the most common type of desk top computers with processing and
storage units along with various input and output devices.

2. Note book computers: - These are compact and portable versions of PC

3. Work stations: - These have high resolution input/output (1/0) graphics capability, but
with same dimensions as that of desktop computer. These are used in engineering
applications of interactive design work.

4. Enterprise systems. - These are used for business data processing in medium to large
corporations that require much more computing power and storage capacity than work
stations. Internet associated with servers have become a dominant worldwide source of
all types of information.

5. Super computers: - These are used for large scale numerical calculations requiredin

the applications like weather forecasting etc.,

Functional unit
A computer consists of five functionally independent main parts input, memory, arithmetic
logic unit (ALU), output and control unit.

Input device accepts the coded information as source program i.e. high level language. This is
either stored in the memory or immediately used by the processor to perform the desired
operations. The program stored in the memory determines the processing steps. Basically the
computer converts one source programto an object program. i.e. into machine language.

Input ALU
Memory
(%qut Processor
Control Unit

Fig. Functional unitsof computer

Finally the results are sent to the outside world through output device. All of these actions are
coordinated by the control unit.

Input unit: -

The source program/high level language program/coded information/simply data is fed to a
computer through input devices keyboard is a most common type. Whenever akey is pressed,

one corresponding word or number is trandlated into its equivaent binary code over a cable &

fed either to memory or processor.

Joysticks, trackballs, mouse, scanners etc are other input devices.

Memory unit: -

Its function into store programs and data. It is basically to two types
1. Primary memory
2. Secondary memory

1. Primary memory: - Isthe one exclusively associated with the processor and operates at
the electronics speeds programs must be stored in this memory while they are being executed.
The memory contains a large number of semiconductors storage cells. Each capable of storing
one bit of information. These are processed in agroup of fixed site called word.

To provide easy access to aword in memory, adistinct address is associated with each word
location. Addr esses ar e numbers that identify memory location.
Number of bits in each word is called word length of the computer. Programs must reside in

the memory during execution. Instructions and data can be written into the memory or read out
under the control of processor.

Memory in which any location can be reached in a short and fixed amount of time after
specifying its address is called random-access memory (RAM).

The time required to access one word in called memory access time. Memory which is only
readable by the user and contents of which can’t be altered is called read only memory (ROM)
it contains operating system.

Caches are the small fast RAM units, which are coupled with the processor and are after
contained on the same IC chip to achieve high performance. Although primary storage is
essential it tendsto be expensive.

2 Secondary memory: - Is used where large amounts of data & programs have to be stored,
particularly information that is accessed infrequently.
Examples: - Magnetic disks & tapes, optical disks (ie CD-ROM’s), floppies etc.,

Arithmetic logic unit (ALU):-

Most of the computer operators are executed in ALU of the processor like addition,
subtraction, division, multiplication, etc. the operands are brought into the ALU from memory
and stored in high speed storage elements called register. Then according to the instructions
the operation is performed in the required sequence.

The control and the ALU are may times faster than other devices connected to a computer
system. This enables a single processor to control a number of external devices such as key
boards, displays, magnetic and optical disks, sensors and other mechanical controllers.

Output unit:-

These actually are the counterparts of input unit. Its basic function isto send the processed results
to the outside world.
Examples:- Printer, speakers, monitor etc.

Control unit:-

It effectively is the nerve center that sends signals to other units and senses their states. The
actual timing signals that govern the transfer of data between input unit, processor, memory and
output unit are generated by the control unit.

1.2. Basic operational concepts
To perform a given task an appropriate program consisting of alist of instructionsis stored in the

memory. Individua instructions are brought from the memory into the processor, which executes
the specified operations. Data to be stored are also stored inthe memory.
Examples: - Add LOCA, Ro

This instruction adds the operand at memory location LOCA, to operand in register Ro & places

the sum into register. Thisinstruction requires the performance of several steps,

6. First theinstruction isfetched from the memory into the processor.
7. Theoperand at LOCA isfetched and added to the contents of Ro
8. Finally the resulting sum is stored in the register Ro

The preceding add instruction combines a memory access operation with an ALU
Operations. In some other type of computer s, these two types of operations are performed
by separate instructions for performance reasons.

Load LOCA, R1 Add R1, RO
Transfers between the memory and the processor are started by sending the address of the
memory location to be accessed to the memory unit and issuing the appropriate control signals.
The data are then transferras or from the memory.

MEMORY
MAR RMDR
R1
CONTROL
PC
ALU
IR

n- GPRs

Fig b : Connections between the processor and the memory

The fig shows how memory & the processor can be connected. In addition to the ALU & the
control circuitry, the processor contains a number of registers used for several different
pUrposes.

The instruction register (IR):- Holds the instructions that is currently being executed. Its
output is available for the control circuits which generates the timing signals that control the
various processing elements in one execution of instruction.

The program counter PC:-

This is another specialized register that keeps track of execution of a program. It
contains the memory address of the next instruction to be fetched and executed.

Besides IR and PC, there are n-general purpose registers RO through Rp.1.
The other two registers which facilitate communication with memory are: -
1. MAR - (Memory Address Register):- It holds the address of the location to be
accessed.
2. MDR - (Memory Data Register):- It contains the data to be written into or read out
of the address location.

Operating stepsare

1. Programsreside in the memory & usually get these through the I/P unit.

2. Execution of the program starts when the PC is set to point at the first instruction of
the program.

3. Contents of PC aretransferred to MAR and a Read Control Signal is sent to the memory.

4. After the time required to access the memory elapses, the address word is read out of
the memory and loaded into the MDR.

5. Now contents of MDR are transferred to the IR & now the instruction is ready to be
decoded and executed.

6. If the instruction involves an operation by the ALU, it is necessary to obtain the required

operands.

7. An operand in the memory is fetched by sending its address to MAR & Initiating a
read cycle.

8. When the operand has been read from the memory to the MDR, it is transferred from
MDR to the ALU.

9. After one or two such repeated cycles, the ALU can perform the desired operation.
10. If the result of this operation is to be stored in the memory, theresult is sent to MDR.
11. Address of location where the result is stored is sent to MAR & awrite cycleisinitiated.

12. The contents of PC are incremented so that PC points to the next instruction that is to
be executed.
Normal execution of a program may be preempted (temporarily interrupted) if some devices
require urgent servicing, to do this one device raises an Interrupt signal.

An interrupt is a request signal from an 1/0 device for service by the processor. The processor
provides the requested service by executing an appropriate interrupt service routine.

The Diversion may change the internal stage of the processor its state must be saved in the
memory location before interruption. When the interrupt-routine service is

completed the state of the processor is restored so that the interrupted program may continue.

2. GENERATION OF COMPUTERS:

Development of technologies used to fabricate the processors, memories and 1/0 units of the
computers has been divided into various generations as given below:

e First generation

e Second generation

e Third generation

e Fourth generation

e Beyond the fourth generation

First generation:

1946 to 1955: Computers of this generation used Vacuum Tubes. The computes were built using
stored program concept. Ex: ENIAC, EDSAC, IBM 701.

Computers of this age typically used about ten thousand vacuum tubes. They were bulky in size
had slow operating speed, short life time and limited programming facilities.

Second generation:

1955 to 1965: Computers of this generation used the germanium transistors as the active switching
electronic device. Ex: IBM 7000, B5000, IBM 1401. Comparatively smaller in size About ten times
faster operating speed as compared to first generation vacuum tube based computers. Consumed
less power, had fairly good reliability. Availability of large memory was an added advantage.

Third generation:

1965 to 1975: The computers of this generation used the Integrated Circuits as the active electronic
components. Ex: IBM system 360, PDP minicomputer etc. They were still smaller in size. They
had powerful CPUs with the capacity of executing 1 million instructions per second (MIPS). Used

to consume very less power consumption.

Fourth generation:

1976 to 1990: The computers of this generation used the LSl chips like microprocessor as their
active electronic element. HCL horizen 111, and WIPRO*S Uniplus+ HCL s Busybee PC etc.

They used high speed microprocessor as CPU. They were more user friendly and highly reliable
systems. They had large storage capacity disk memories.

Beyond Fourth Generation:

1990 onwards: Specialized and dedicated VLS| chips are used to control specific functions of
these computers. Modern Desktop PC*s, Laptops or Notebook Computers

3. BUSSTRUCTURES:

The simplest and most common way of interconnecting various parts of the computer. To achieve
areasonable speed of operation, a computer must be organized so that al its units can handle one
full word of data at a given time.A group of lines that serve as a connecting port for several
devicesis called a bus.

In addition to the lines that carry the data, the bus must have lines for address and control
purpose. Simplest way to interconnect is to use the single bus asshown

Group of lines that serve as connecting path for several devicesis called a bus (one bit per line).
Individual parts must communicate over a communication line or path for exchanging data,
address and control information as shown in the diagram below. Printer example — processor to
printer. A common approach is to use the concept of buffer registersto hold the content during the
transfer.

Since the bus can be used for only one transfer at atime, only two units can actively use the bus

INPUT MEMORY PROCESSOR OUTPUT

{50/ |

at any given time. Bus control lines are used to arbitrate multiple requests for use of one bus.

Single bus structureis

» Low cost
> Very flexible for attaching peripheral devices

Multiple bus structure certainly increases, the performance but also increases the cost

significantly.

All the interconnected devices are not of same speed & time, leads to a bit of a problem. Thisis
solved by using cache registers (ie buffer registers). These buffers are electronic registers of small
capacity when compared to the main memory but of comparable speed.

The instructions from the processor at once are loaded into these buffers and then the
complete transfer of data at afast rate will take place.

4. Data Representation: Data types:

e Bit: The most basic unit of information in a digital computer is called a bit, which is a
contraction of binary digit.

e Byte In 1964, the designers of the IBM System/360 main frame computer established a
convention of using groups of 8 bits as the basic unit of addressable computer storage.
They called this collection of 8 bits a byte.

e Word: Computer words consist of two or more adjacent bytes that are sometimes addressed
and almost always are manipulated collectively. The word size represents the data size that
is handled most efficiently by a particular architecture. Words can be 16 bits, 32 bits, 64
bits.

e Nibbles: Eight-bit bytes can be divided into two 4-bit halves call nibbles.

Number Systems:

e Radix (or Base): The genera idea behind positional numbering systems is that a numeric
value is represented through increasing powers of aradix (or base).

System Radix Allowable Digits

Decimd 10 0123456789
Binary 2 0,1
Octal 8 012345,6,7

IHexadecima16 0,1,23456,7,809A,B,C,

PIPOENONIVN<C

FPoweaers of 2 Deacimal | 4-Bit Binary Hexadecimal
2% wmi= 0.25 Q Q000
2-1 wjiw 08 1 OO
20 1 2 0010
21 < 3 0011
== -4 A 0100
29=- 8 5 o101
2% - 16 s o110
29 - 32 s o111
29 - G4 a 1000
27 - 128 o 1001
20 « 256 10 1010
29 w 612 11 1011
2V = 1,024 12 1100
218 32,768 13 1101
2 65,5368 14 1110
15 1111

TMoO!

TABLE 2.1 Some Number to Remember
e EXAMPLE 2.1 Three numbers represented as powers of aradix.

2435110 =2*10°+4* 10'+3* 10°+5* 101+ 1* 102
2123 =2* 3 +1* 31+ 2% 30=23

e There are two important groups of number base conversions:
1. Conversion of decimal numbers to base-r numbers
2. Conversion of base-r numbers to decimal numbers

e EXAMPLE 2.3 Convert 10449 to base 3 using the division-remainder method.

104410 = 102123

3[104
3| 34
311
33
311

0

PODNEFEDN

e EXAMPLE 2.4 Convert 14710 to binary 14710

= 100100112

2147
2|73
2|36
2[18
2|9
24

OFrLPOOrEF

212 0
211 1
0

e A binary number with N bits can represent unsigned integer from 0 to 2" — 1.

e Overflow: the result of an arithmetic operation is outside the range of allowable precision
for the give number of bits.

Converting Fractions:
e EXAMPLE 2.6 Convert 0.43041 to base5.

0.430410 = 0.20345
e EXAMPLE 2.7 Convert 0.3437510 to binary with 4 bits to the right of the binary point.

Reading from top to bottom, 0.3437510 = 0.0101> to four binary places. We simply discard
(or truncate) our answer when the desired accuracy has been achieved.

0.3437510 = 0.01012

0.34375
X 2
0.68750 X2
1.37500 X2
0.75000 X2
1.50000

e EXAMPLE 2.8 Convert 31214 to base 3
First, convert to decimal 31214 = 21710 Then

convert to base 3 21710 =220013
We have 31214 = 220013

Converting between Power -of-Two Radices:
e EXAMPLE 2.9 Convert 1100100111015 to octal and hexadecimal.

110010011 101,= 62353 Separate into groups of 3 for octal conversion

11001001 1101,=C9D1s Separate into groups of 4 for octal conversion

5. Signed | nteger Repr esentation:

e By convention, a “1” in the high-order bit indicate a negative number.
Signed M agnitude:

e A signed-magnitude number has asign as its left-most bit (also referred to as the high-order
bit or the most significant bit) while the remaining bits represent the magnitude (or absolute
value) of the numeric value.

e N bitscan represent —(2"1 - 1) to 2"1-1

e EXAMPLE 2.10 Add 01001111, to 00100011, using signed-magnitudearithmetic.

01001111 (79) + 001000112 (35) = 01110010, (114)
There is no overflow in this example

e EXAMPLE 2.11 Add 01001111> to 01100011, using signed-magnitude arithmetic.
e Anoverflow condition and the carry is discarded, resulting in an incor rect sum.

We obtain the erroneous result of
01001111> (79) + 011000112 (99) = 01100102 (50)

e EXAMPLE 2.12 Subtract 01001111, from 01100011, using signed-magnitude arithmetic.
We find 0110000112 (99) - 01001111> (79) = 000101002 (20)

in signed-magnitude representation.

e EXAMPLE2.14

e EXAMPLE2.15

e The signed magnitude has two representations for zero, 10000000 and 00000000
(and mathematically speaking, the simple shouldn’t happen!).

Complement’s:

e One’s Complement
o Thissort of bit-flipping is very simple to implement in computer hardware.
0 EXAMPLE 2.16 Express 2310 and -910 in 8-bit binary one’s complement form.

2310 = + (000101115) = 00010111,
-910 = - (00001001,) = 11110110,

0o EXAMPLE217
o EXAMPLE2.18
e The primary disadvantage of one’s complement is that we still have two

representations for zer o: 00000000 and 11111111

Two’s Complement
0 Find the one’s complement and add 1.

0 EXAMPLE 2.19 Express 2310, -2310, and -910 in 8-bit binary two’s complement form.
2310 = + (00010111,) = 00010111>
-2310 =- (00010111,) = 111010002 + 1 = 11101001>
-910 = - (000010012) = 11110110, + 1 = 11110111>

0 EXAMPLE 2.20 Add 910 to -2310 using two’s complement arithmetic.

000010015 (910) + 11101001 (-2310) = 11110010, (-1410)

00001001 <= Carries
00001001; (9
+11101001» +(-23)
11110010; (-14)

o EXAMPLE 2.21 Find the sum of 2310 and -910 in binary using two’s complement
arithmetic.

000101115 (2310) + 111101115 (-910) = 000011102 (1410)

11110111 <= Carries
00010111, (23)
+11110111> +(- 9)
00001110, (14)

o A Simple Rule for Detecting an Overflow Condition: If the carry in the sign bit
equals the carry out of the bit, no overflow has occurred. If the carry into the sign bit is
different from the carry out of the sign bit, over (and thus an error) has occurred.

0 EXAMPLE 2.22 Find the sum of 12610 and 810 in binary using two’s complement
arithmetic.

01111110, (12610) + 000010002 (810) = 10000110 (-12210)

01111000 <= Carries
01111110, (126)
+ 00001000, +(__ 8
10000110, (-122)

A oneis carried into the leftmost bit, but a zero is carried out. Because these carries
are not equal, an overflow has occurred.

0 N bits can represent —(2"1) to 2™ -1. With signed-magnitude number, for example, 4
bits allow us to represent the value -7 through +7. However using two’s complement,
we can represent the value -8 through +7.

e Integer Multiplication and Division
0 For each digit in the multiplier, the multiplicand is “shifted” one bit to the left. When
the multiplier is 1, the “shifted” multiplicand is added to a running sum of partial
products.
0 EXAMPLE Find the product of 00000110 (610) and 000010115 (1110).

00000110 (6)

x 00001011 (11)

|V|dU|tIp|I0a Partial Products
n

00000110 + 00000000 (1; add multiplicand and shift left)
00001100 + 00000110 (1; add multiplicand and shift left)
00011000 + 00010010 (0; Don’t add, just shift multiplicand left)
00110000 + 00010010 él; add multiplicand and shift left)

= 01000010 (Product; 6 X 11 = 66)

o When the divisor is much smaller than the dividend, we get a condition known as
divide underflow, which the computer sees as the equivalent of division by zero.

o Computer makes a distinction between integer division and floating-point division.
= Withinteger division, the answer comes in two parts. aquotient and a

remainder.

* Floating-point division resultsin a number that is expressed as a binary fraction.
= Foating-point calculations are carried out in dedicated circuits cal floating- point
units, or FPU.

Unsigned numbersvs Signed numbers:

e If the 4-bit binary value 1101 is unsigned, then it represents the decimal value 13, but as a
signed two’s complement number, it represents -3.

e C programming language has int and unsigned int as possible types for integer variables.

e |f we are using 4-bit unsigned binary numbers and we add 1 to 1111, we get 0000 (“return
to zero”).

e |f weadd 1 tothelargest positive 4-bit two’s complement number 0111 (+7), we get 1000 (-
8).

Computers, Arithmetic, and Booth’s Algorithm:

e Consider the following standard pencil and paper method for multiplying two’s complement
numbers (-5 X -4):

1011 (-5)
x 1100 (-4)
+ 0000 (O0in multiplier means simple shift)
+ 0000 (Oinmultiplier means simple shift)
+1011 (1 in multiplier means add multiplicand and shift)
+1011 (1 in multiplier means add multiplicand and shift)
10000100 (-4 X -5 =-124)

Note that: “Regular” multiplication clearly yields the incorrect result.

e Research into finding better arithmetic algorithms has continued apace for over 50 years.
One of the many interesting products of this work is Booth’s algorithm.

e In most cases, Booth’s algorithm carries out multiplication faster and more accurately than
naive pencil-and-paper methods.

e The general idea of Booth’s algorithm is to increase the speed of a multiplication when
there are consecutive zeros or ones in the multiplier.

e Consider the following standard multiplication example (3 X 6):

0011 (3)
x 0110 (6)
+ 0000 (Oin multiplier means simple shift)
+ 0011 (1 inmultiplier means add multiplicand and shift)
+0011 (1inmultiplier means add multiplicand and shift)
+ 0000 (Oin multiplier means simple shift)

0010010 (3 X 6 = 18)

e In Booth’s algorithm, if the multiplicand and multiplier are n-bit two’s complement
numbers, the result is a 2n-bit two’s complement value. Therefore, when we perform our
intermediate steps, we must extend our n-bit numbers to 2n-bit numbers. For example, the
4-bit number 1000 (-8) extended to 8 bits would be 11111000.

e Booth’s algorithm is interested in pairs of bits in the multiplier and proceed according to the
following rules:
o If the current multiplier bit is 1 and the preceding bit was, we are at the beginning of
astring of ones, so subtract (10 pair) the multiplicand form the product.
o If the current multiplier bit is O and the preceding bit was 1, we are at the end of a
string of ones, so we add (01 pair) the multiplicand to the product.
o Ifitisa00 pair, or all pair, do no arithmetic operation (we are in the middle of a
string of zeros or a string of ones). Simply shift. The power of the agorithm isin

this step: we can now treat a string of ones as a string of zeros and do nothing more
than shift.

0011 (3)
x 0110 (6)
+ 00000000 (00 = simple shift; assume amythical 0 as the previous bit)
+11111101 (10 = subtract = add 1111 1101, extend sign)
+ 00000000 (11 simple shift)
+ 00000011 (01 =add)
01000010010(3 X 6 = 18; 010 ignore extended sign bit that go beyond 2n)

Note that: 010 Ignore extended sign bit that go beyond 2n.

e EXAMPLE 2.23 (-3 X 5) Negative 3 in 4-bit two’s complement is 1101. Extended to 8 bits,
itis11111101. Its complement is 00000011. When we see the rightmost 1 in the multiplier,
it isthe beginning of a string of 1s, so wetreat it asif it were the string 10:

1101 (-3; for subtracting, we will add -3’s complement, or 00000011)
x 0101 (5)
+ 00000011 (10 = subtract 1101 = add 0000 0011)
+11111101 (01 =add 1111 1101 to product: note sign extension)
+ 00000011 (10 =subtract 1101 = add 0000 0011)
+ 11111101 (01 = add 1111 1101 to product)
100111110001 (-3 X 5 =-15; using the 8 rightmost bits, 11110001 or -15)

Note that: Ignore extended sign bit that go beyond 2n.

Carry Versus Overflow

EXAMPLE 2.24 Let’s look at the larger example of 53 X 126:
00110101 (53; for subtracting, we will add the complement of 53 or 11001011)

x 01111110 (126)

+0000000000000000 (00 = simple shift)

+111111111001011

+00000000000000(11 = simple shift)
+0000000000000 (11 = simple shift)

+000000000000

+00000000000

+0000000000

+000110101

(11 = simple shift)
(11 = simple shift)

(11 = simple shift)

(10 = subtract = add 11001011, sign extension)

(01 = add 00110101, sign extension)

10001101000010110 (53 X 126 = 6678; using the 16 rightmost bits)

Note that: Ignore extended sign bit that go beyond 2n.

Booth’s algorithm not only allows multiplication to be performed faster in most cases, but it

also has the added bonus in that it works correctly on signed numbers.

TABLE 2.2 Examples of Carry and Overflow in Signed Numbers

For unsigned numbers, a carry (out of the leftmost bit) indicates the total number of bits
was not large enough to hold the resulting value, and overflow has occurred.

For signed numbers, if the carry in to the sign bit and the carry (out of the sign bit)
differ, then overflow has occurred.

Expression Result Carry? Overflow? gz;rjf,t)
0100 + 0010 0110 No No Yes
0100 + 0110 1010 No Yes No
1100 + 1110 1010 Yes No Yes
1100 + 1010 0110 Yes Yes No

Binary Multiplication and Division Using Shifting:

e We can do binary multiplication and division by 2 very easily using an arithmetic shift
operation

e A left arithmetic shift inserts a O in for the rightmost bit and shifts everything else left one
bit; in effect, it multiplies by 2

e A right arithmetic shift shifts everything one bit to the right, but copies the sign bit; it
dividesby 2

e EXAMPLE 2.25: Multiply the value 11 (expressed using 8-bit signed two’s complement
representation) by 2.

We start with the binary value for 11:
00001011 (+11)

We shift left one place, resulting in:
00010110 (+22)

The sign bit has not changed, so the valueisvalid.

To multiply 11 by 4, we simply perform aleft shift twice.
e EXAMPLE 2.28: Divide the value 12 (expressed using 8-bit signed two’s complement
representation) by 2.
We start with the binary value for 12
00001100 (+12)
We shift left one place, resulting in:
00000110 (+6)

(Remember, we carry the sign bit to the left as we shift.) To

divide 12 by 4, weright shift twice.

6. Floating-Point Representation:

e |In scientific notion, numbers are expressed in two parts: a fractional part call a mantissa,
and an exponential part that indicates the power of ten to which the mantissa should be
raised to obtain the value we need.

A Simple Modd :

e In digital computers, floating-point number consist of three parts: a sign bit, an exponent
part (representing the exponent on a power of 2), and a fractional part called a significand
(which isafancy word for a mantissa).

1bit 5hits 8 bits Sign bit

L] | |
Exponent Significand

FIGURE 2.1 Simple Model Floating-Point Representation

e Unbiased Exponent

[0 00101 [10001000 | 17, =0.10001, * 2°

= * ol7
[0 [Zo001 [ooooooo | ooocow =01 2

e Biased Exponent: We select 16 because it is midway between 0 and 31 (our exponent

has 5 bits, thus allowing for 2° or 32 values). Any number larger than 16 in the exponent
field will represent a positive value. Value less than 16 will indicate negative values.

[0 [10101 | 10001000 | 1710 =0.10001 * 2°

[0 [01111 [10000000 | The biased exponentis16+5=21

e EXAMPLE231
0.2510 =0.12 * 2l

e A normalized form is used for storing a floating-point number in memory. A
normalized form is a floating-point representation where the leftmost bit of the
significand will alwaysbeal.

Example: Internal representation of (10.25)10

(10.25)10 =(1010.01)> (Un-normalized form)
=(1010.01)> x 2°
=(101.001), x 2*

=(.101001), x 2* (Normalized form)
=(.0101001) 2 x 2° (Un-normalized form)

= (.00101001) 2 x 2

Internal representation of (10.25)10 is 0 10100 10100100

Floating-Point Arithmetic

e EXAMPLE 2.32: Add the following binary numbers as represented in a normalized
14-bit format, using the ssmple model with a bias of 16.

| 0 [10010 [11001000 |

+

1 0 [10000 | 10011010 |

11.001000

+ 0.10011010

1110111010

Renormalizing we retain the larger exponent and tr uncate the low-order bit.

10110010 | 11101110 |

e EXAMPLE 2.33 Multiply:

. [0]10010 [11001000] =0.11001000 X 2*

[0]10000 |10011010] =0.10011010X 2°

fLi001000
x 10011010

00000000

11001000

00000000

11001000

11001000

000000

00000000

11001000

1131100001010 M

Renormalizing 0.0111100001010000 * 22 = 0.111100001010000 * 2 we retain the larger exponent and
truncate the low-order bit.

|0]10001 |[11110000 |

Floating-Point Errors:
e We intuitively understand that we are working in the system of real number. We know that this system is
infinite.
e Computers are finite systems, with finite storage. The more bits we use, the better the approximation.
However, there is always some element of error, no matter how many bits we use.

Thel EEE-754 Floating-Point Standard:

e The IEEE-754 single precision floating point standard uses bias of 127 over its 8-bit
exponent. An exponent of 255 indicates a special value.

e The double precision standard has a bias of 1023 over its 11-bit exponent. The “special” exponent value for
adouble precision number is 2047, instead of the 255 used by the single precision standard.

Sign bit Exponen: Significand Comment
x 0..0 0..0 Zero
x® 0..0 not all zeros | Denormalized number
0 1..1 0..0 Plus infinity (+inf)
1 1..1 0..0 Minus infinity (-inf)
x 1..1 not all zeros | NotaNumber (NaN)

Specia bit patterns in IEEE-754

Ranqge, Precision, and Accuracy:

e The range of a numeric integer format is the difference between the largest and smallest values that is can
express.

e The precision of anumber indicates how much information we have about avalue
e Accuracy refersto how closely a numeric representation approximates atrue val ue.

Additional Problemswith Floating-Point Numbers:

e Because of truncated bits, you cannot always assume that a particular floating point operation is
commutative or distributive.

This means that we cannot assume: (a+b)+c=a+ (b +
c)

or
a*(b+c)=ab+ac

20

7.0ther Binary Codes:

Other binary codes for decima numbers and a phanumeric characters are sometimes used. Digital computers also
employ other binary code for special applications.

Gray Code:

Digital systems can process data in discrete form only. Many physical systems
supply continuous output data. The data must be converted into digital form
before they can be used by a digital computer. Continuous, or analog, infor-
mation is converted into digital form by means of an analog-to-digital con-
verter. The reflected binary or Gray code, shown in Table 3-5, is sometimes used
for the converted digital data. The advantage of the Gray code over straight
binary numbers is that the Gray code changes by only one bit as it sequences
from one number to the next. In other words, the change from any number
to the next in sequence is recognized by a change of only one bit from 0 to 1
or from 1 to 0. A typical application of the Gray code occurs when the analog
data are represented by the continuous change of a shaft position. The shaft
is partitioned into segments with each segment assigned a number. If adjacent
segments are made to correspond to adjacent Gray code numbers, ambiguity
is reduced when the shaft position is in the line that separates any two

segments.
Gray code counters are sometimes used to provide the timing sequences

21

TABLE 3-5 4-Bit Gray Code

Binary Decimal Binary Decimal
code equivalent code equivalent

(000 0 1100 B
(001 1 1nm 9
(011 2 1111 10
(010 3 1110 11
0110 4 1010 12
0111 5 1011 13
i 6 1001 14
0100 ¢ i 1000 15

that control the operations in a digital system. A Gray code counter is a counter
whose flip-flops go through a sequence of states as specified in Table 3-5. Gray
code counters remove the ambiguity during the change from one state of the
counter to the next because only one bit can change during the state transition.

Other Decimal Codes:

22

Binary codes for decimal digits require a minimum of four bits. Numerous
different codes can be formulated by arranging four or maore bits in 10 distinct
possible combinations. A few possibilities are shown in Table 3-6.

TABLE 3-6 Four Different Binary Codes for the Decimal Digit

Decimal EBCD Excess-3
digit 8421 2421 Excess-3 gray
0 0000 Q000 011 0010
1 0001 0001 LY 0110
2 0010 0010 011 0111
3 0011 0011 0110 0101
4 Q100 Q100 0111 0100
5 0101 1011 1000 1100
& 0110 1100 1001 1101
7 0111 1101 1010 1111
g 1000 1110 1011 1110
9 1001 1111 1100 1010
1010 01im 0000 LLEL
Unused 1011 0110 0001 0001
bit 1100 0111 Q010 011
coimbi- 1101 1000 1101 100M)
nations 1110 1001 1110 1001
1111 1010 1111 1011

Other Alphanumeric codes:

EBCDIC:

e In 1964, BCD was extended to an 8-bit code, Extended Binary-Coded Decima Interchange Code
(EBCDIC).

e EBCDIC was one of the first widely-used computer codes that supported upper and lowercase aphabetic
characters, in addition to special characters, such as punctuation and control characters.
e EBCDIC and BCD arestill in use by IBM mainframes today. See Page 77 TABLE 2.6

ASCII

e ASCIIl: American Standard Code for Information Interchange

e |In 1967, aderivative of this aphabet became the official standard that we now call ASCII.
Unicode

Both EBCDIC and ASCII were built around the Latin alphabet.

In 1991, anew international information exchange code called Unicode.

Unicode is a 16-bit aphabet that is downward compatible with ASCII and Latin-1 character set.

Because the base coding of Unicode is 16 bits, it has the capacity to encode the majority of characters used

23

in every language of the world.
Unicode is currently the default character set of the Java programming language.

Character L aroliace Number of | Hexadecimal
Types =0 Characters Values
; 0000
Alphabets l&aytrli?ficGﬁ?:k' 8192 to
: : 1FFF
Dingbats, 2000
Symbols | Mathematical, 4096 to
etc. 2FFF
Chinese,
Japanese, 3000
CJIK and Korean 4096 to
phonetic 3EEFE

symbols and
punctuation.

Unified Chinese, 4000
Han Japanese, and 40,960 to
Korean DFFF

EQQO0
Han Expansion 4096 to
EFFF

Usa: FO0O
Defined 4095 to
FFFE

TABLE 2.8 Unicode Codespace

The Unicode codespace is divided into six parts. Thefirst part isfor Western alphabet codes, including
English, Greek, and Russian.

The lowest-numbered Unicode characters comprise the ASCII code.

The highest provide for user-defined codes.

8. Error Detection and Correction:

No communications channel or storage medium can be completely error-free.

Cyclic Redundancy Check:

Cyclic redundancy check (CRC) is a type of checksum used primarily in data communications that
determines whether an error has occurred within alarge block or stream of information bytes.
Arithmetic Modulo 2The rules are asfollows:

0+0=0

0+1=1

1+0=1

1+1=0
EXAMPLE 2.35 Find the sum of 1011, and 110, modulo 2.
1011, + 1102 = 1101, (mod 2)

EXAMPLE 2.36 Find the quotient and remainder when 1001011 isdivided by 1011>.
24

Quotient 1010, and Remainder 101,

e Calculating and Using CRC
0 Suppose we want to transmit the information string: 1001011>.
0 Thereceiver and sender decide to use the (arbitrary) polynomial pattern, 1011.
0 Theinformation string is shifted left by one position less than the number of positionsin the divisor. | =
10010110002
0 The remainder is found through modulo 2 division (at right) and added to the information string:
10010110002 + 1002 = 1001011100>.
o If no bits arelost or corrupted, dividing the received information string by the agreed upon pattern will
give aremainder of zero.
0 Weseethisissointhe calculation at theright.
0 Real applications use longer polynomialsto cover larger information strings.
e A remainder other than zer o indicates that an error has occurred in the transmission.
e This method work best when alarge prime polynomial isused.
e There are four standard polynomials used widely for this purpose:
0 CRC-CCITT (ITU-T): X+ X2+ X5+1
OCRC-12: X2+ X1+ X3+ X2+ X +1
0 CRC-16 (ANSI): X+ X¥®+ X2+ 1
0 CRC'32 X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X6+X4+X
+1
e CRC-32 has been proven that CRCs using these polynomials can detect over 99.8%
of al single-bit errors.

Hamming Codes:

e Data communications channels are simultaneously more error-prone and more tolerant of errors than disk
systems.
e Hamming code use parity bits, also called check bits or redundant bits.
e Thefinal word, called a code word is an n-bit unit containing m data bits and r check bits.
n=m+r
e The Hamming distance between two code words is the number of bits in which two code words differ.
10001001
10110001
>k Hamming distance of these two code wordsis3
e The minimum Hamming distance, D(min), for a code is the smallest Hamming distance between all pairs of
words in the code.
e Hamming codes can detect (D(min) - 1) errors and correct [(D(min) — 1) / 2] errors.
e EXAMPLE 2.37
e EXAMPLE 2.38 00000
01011
10110
11101
D(min) = 3. Thus, this code can detect up to two errors and correct one single bit error.

e We are focused on single bit error. An error could occur in any of the n bits, so each code word can be
associated with n erroneous words at a Hamming distance of 1.
e Therefore, we have n + 1 bit patterns for each code word: one valid code word, and n erroneous words.
With n-bit code words, we have 2" possible code words consisting of 2™ data bits (wherem =n +r).
Thisgives ustheinequality: (n+1) * 2" <=2"

25

Because m = n + r, we can rewrite the inequality as:

(m+r+1)*2M<=2"""or

(M+r+1)<=2'

EXAMPLE 2.39 Using the Hamming code just described and even parity, encode the 8-bit ASCII character
K. (The high-order bit will be zero.) Induce a single-bit error and then indicate how to locate the error.

m = 8, we have (8 + r + 1) <= 2" then We chooser = 4 Parity bitat 1, 2, 4, 8
Char K 7510 = 010010112
5=1+4 9=1+8
6=2+4 10=2+8

7=1+2+4 11=1+2+8
8=8 12=4+8

NWN PR
oo
AR NPR
+
N

We have the following code word as a resullt:
0 1 0 011010 110
12 11 10 987654 3 21

Parity bl = b3 + b5 + b7 + b9+ b1l =1+1+1+0+1=0
Parity b2 = b3 + b6 + b7 + b10+ b1l =1+0+1+0+1=1
Parity b4 = b5 + b6 + b7 + b12 =1+0+1+0=0
Parity b8 = b9 + b10 + b1l + b12 =0+0+1+0=1

Let’s introduce an error in bit position b9, resulting in the code word:

0 1 0O 111010 110

12 11 10 987654 321

Parity bl = b3 + b5 + b7 + b9+ b1l =1+1+1+1+1=]1 (Error, should be 0) Parity b2 = b3 + b6 +
b7 + b10+ b1l =1+0+1+0+1=1 (OK)

Parity b4 = b5 + b6 + b7 + b12 =1+0+1+0=0Q (OK)

Parity b8 = b9 + b10 + b1l + b12 =1+0+1+0=0 (Error, should be 1)

We found that parity bits 1 and 8 produced an error, and 1 + 8 = 9, which in exactly where the error occurred.

Reed-Soloman:

If we expect errors to occur in blocks, it stands to reason that we should use an error- correcting code that
operates at ablock level, as opposed to a Hamming code, which operates at the bit level.

A Reed-Soloman (RS) code can be thought of as a CRC that operates over entire characters instead of only a
few bits.

RS codes, like CRCs, are systematic: The parity bytes are append to a block of information bytes.

RS (n, k) code are defined using the following parameters:

0 s= Thenumber of bitsin a character (or “symbol”).

0 k= Thenumber of s-bit characters comprising the data block.

0 n=Thenumber of bitsin the codeword.

RS (n, k) can correct (n-k)/2 errorsin the k information bytes.

Reed-Soloman error-correction algorithms lend themselves well to implementation in computer har dware.

26

COMPUTER ARITHMETIC

| ntroduction:

Data is manipulated by using the arithmetic instructions in digital computers. Data is
manipulated to produce results necessary to give solution for the computation problems.
The Addition, subtraction, multiplication and division are the four basic arithmetic
operations. If we want then we can derive other operations by using these four operations.

To execute arithmetic operations there is a separate section called arithmetic processing
unit in central processing unit. The arithmetic instructions are performed generally on
binary or decimal data. Fixed-point numbers are used to represent integers or fractions.
We can have signed or unsigned negative numbers. Fixed-point addition is the smplest
arithmetic operation.

If we want to solve a problem then we use a sequence of well-defined steps. These steps
are collectively called algorithm. To solve various problems we give algorithms.

In order to solve the computational problems, arithmetic instructions are used in digital
computers that manipulate data. These instructions perform arithmetic calculations.

And these instructions perform a great activity in processing data in a digital computer. As
we dready stated that with the four basic arithmetic operations addition, subtraction,
multiplication and division, it is possible to derive other arithmetic operations and solve
scientific problems by means of numerical analysis methods.

A processor has an arithmetic processor(as a sub part of it) that executes arithmetic
operations. The data type, assumed to reside in processor, registers during the execution of
an arithmetic instruction. Negative numbers may be in a signed magnitude or signed
complement representation. There are three ways of representing negative fixed point -
binary numbers signed magnitude, signed 1’s complement or signed 2’s complement. Most
computers use the signed magnitude representation for the mantissa.

Addition and Subtraction :

Addition and Subtraction with Signed -Magnitude Data

We designate the magnitude of the two numbers by A and B. Where the signed numbers are
added or subtracted, we find that there are eight different conditions to consider, depending
on the sign of the numbers and the operation performed. These conditions are listed in the
first column of Table 4.1. The other columns in the table show the actua operation to be
performed with the magnitude of the numbers. The last column is needed to present a
negative zero. In other words, when two equal humbers are subtracted, the result should be
+0 not -0.

The agorithms for addition and subtraction are derived from the table and can be stated as
follows (the words parentheses should be used for the subtraction algorithm)

27

Addition and Subtraction of Signed-Magnitude Numbers

Computer Arithmetic 2 Addition and Subtraction

SIGNED MAGNITUDEADDITION AND SUBTRACTION

Addition: A +B; A: Augend; B: Addend

Sulftraction: 4 - B, ATMnuend, &= S4RLk

Operation Magnitude | When A>B When A<B When A=B
(+A) +(+B) +A +B)

(+A) + (- B) +(A -B) -(B-A) +(A -B)
(-A)+(+B) -(A-B) +(B-A) +(A -B)
(-A)+(-B) -(A+B)

(+A)- (+B) +A-B) -(B-A) +(A -B)
(+A) - (-B) +(A +B)

(-A) - (+B) -(A+B)

(-A)- (-B) -(A-B) +(B-A) +A -B)

Hardwarelmplementation Bg B Register

AVE] [Complementdr M (M ode

Control)

|.__
El_éutloJL ﬁﬂsallel ABder
Carry
| [

S
As 0| ARegiger j—10ad3um
Computer Arithmetic 3 Addition and Subtraction
SIGNED 2°S COMPLEMENT ADDITION AND SUBTRACTION
Hardware
| B Register |
|
Complementer and
! i
[AC |
Algorithm
Subtract Add
! !
Minuend in AC
Subtrahend in B
|
AC <« AC + B’+ 1 AC « AC +B
END END

28

Algorithm:

_ The flowchart is shown in Figure 7.1. The two signs A, and B, are compared by an
exclusive-OR gate.

If the output of the gateis 0 the signsareidentical; If it is 1, the signs are different.

_For an add operation, identical signs dictate that the magnitudes be added. For a subtract
operation, different signs dictate that the magnitudes be added.

_ The magnitudes are added with a microoperation EA A+ B, where EA is a register that
combines E and A. The carry in E after the addition constitutes an overflow if it is equal to 1.
The value of E istransferred into the add-overflow flip-flop AVF.

_ Thetwo magnitudes are subtracted if the signs are different for an add operation or identical
for a subtract operation. The magnitudes are subtracted by adding A to the 2's complemented B.
No overflow can occur if the numbers are subtracted so AVFis cleared to O.

_ 1linEindicatesthat A >= B and the number in A is the correct result. If this numbsis zero,
the sign A must be made positive to avoid a negative zero.

_ OinEindicates that A < B. For this case it is necessary to take the 2's complement of the
valuein A. The operation can be done with one microoperation A A'+1. -

_ However, we assume that the A register has circuits for microoperations complement and
increment, so the 2's complement is obtained from these two microoperations.

_ In other paths of the flowchart, the sign of the result is the same as the sign of A. so no
changein A isrequired. However, when A < B, the sign of the result is the complement of the
original sign of A. It isthen necessary to complement A, to obtain the correct sign.

_ Thefina result is found in register A and its sign in As. The value in AVF provides an
overflow indication. The fina value of E isimmaterial.

_ Figure 7.2 shows a block diagram of the hardware for implementing the addition and
subtraction operations.

It consists of registers A and B and sign flip-flops As and Bs. Subtraction is done by adding A
to the 2's.complement of B.

_ The output carry is transferred to flip-flop E , where it can be checked to determine the
relative magnitudes of two numbers.

_ Theadd-overflow flip-flop AVF holds the overflow bit when A and B are added.

_ The A register provides other microoperations that may be needed when we specify the
sequence of stepsin the algorithm.

29

Seelstvpa ¥ Opwration tded aperation

| T n

o .'-h::ncu.ﬂ oA = 3 Avupend in A ;
(Subtitrahend in & Addend in 8
— -l e LN U L JALLVL SE
J ,——‘-—" 0
] ’
—<_ﬂ>—
A, # B, 1. = &,
l’”fi';‘1 s B A l
b
[AVE - p l
¥ R
o ENDT =
((result ix i A and 4,)
Pigure 10.2 Flowchart for nddd sand subtrace operations.

Multiplication Algorithm:

In the beginning, the multiplicand isin B and the multiplier in Q. Their corresponding signs are
in Bs and Qs respectively. We compare the signs of both A and Q and set to corresponding sign
of the product since a double-length product will be stored in registers A and Q. Registers A and
E are cleared and the sequence counter SC is set to the number of bits of the multiplier. Since an
operand must be stored with its sign, one bit of the word will be occupied by the sign and the
magnitude will consist of n-1 bits.

Now, the low order bit of the multiplier in Qnistested. If it is 1, the multiplicand (B) is added to
present partial product (A), O otherwise. Register EAQ is then shifted once to the right to form
the new partial product. The sequence counter is decremented by 1 and its new value checked. If
it is not equal to zero, the process is repeated and a new partial product is formed. When SC =0

we stops the process.

30

Mlultiplicand

[Msoa] - = = [™|
- Acchd Shift and Add
B I Control LogEic
{ Shift Right
[Fm{Aas - [Ael——w[Gua] - - - [©u]
Molnnliti pliea
- B () I
O D000 11Ol 1011 Initial vValuses
Ch 1011 1101 1011 Badd }_ First
O o101 1110 1011 Shift Crol e
) Secornd
O o010 1111 1011 Shiftc }— Cveole
O 1101 1111 1011 Aadd }_ Third
C 0110 1111 1011 Shiftc Cycle
1 o001 11171 1011 FiV'e lwl }_ Fouritlh
O 1O00 1111 1011 Shiftc Cyole
Multiply operation
Multiplicand in B ‘|
Multiplier in O
A Q& B
QN.—QuO B-‘
A e QK20
SC=—n-1
shr EAQ FA®€— A +B]
SC -E—SC-1 b e
= 0 s = KEND
S D 1 (products is in AQ)

Figure: Flowchart for multiply operation.

Booth’s algorithm :

_ Booth algorithm gives a procedure for multiplying binary integers in signed- 2’s
complement representation.

It operates on the fact that strings of 0’s in the multiplier require no addition but just

31

shifting, and a string of 1’s in the multiplier from bit weight 2K to weight 2M can be
treated as 2K+1 oM.

_ For example, the binary number 001110 (+14) has a str1 1’s from 23 to 21 (k=3,

m=1). The number can be represented as 2K*1 _ oM = 24 =16 — 2 = 14. Therefore,
the multiplication M X 14, where M is the multiplicand and 14 the multi plier, can be done

asM X 24-mx 2L,
_ Thusthe product can be obtained by shifting the binary multiplicand M four timesto
the left and subtracting M shifted |eft once.

Hardware for Booth Algorithm

Sizn bils are not separated
froan the rest ol the
registors

[IS roeyinter] Seguence COUNTRERC]
— (SC

= pename ropistaors AR and
Q as ACEBR and QR
respaectively

Comnplesnentes amnd
purullcl ucukr

= Q. desipgnates the least
significant bit of the
multiplicey in register QR

o Ty

> Flip-1Ttop On+1 is appendoed
o QR o facilitate o double I AC rouictar Ld QR repister e *':{]

bit inspoection ol the
mulciplice

A ~=— 0, Q10
M =— Multiplicand

Q ~=— Multiplier
Count =— ¢

A= A-M A=A +M

Arithmetic shift
Right: A, Q, Q-1 -t
Count -=— Count-1

-

_Asin al multiplication schemes, booth algorithm requires examination of the multiplier bits and
shifting of partial product.

Prior to the shifting, the multiplicand may be added to the partial product, subtracted from the
partial, or left unchanged according to the following rules:

32

1. The multiplicand is subtracted from the partial product upon encountering the first least
significant 1 in a string of 1’s in the multiplier.

2. The multiplicand is added to the partial product upon encountering the first 0 in a string of 0’s
in themultiplier.

3. The partial product does not change when multiplier bit is identical to the previous
multiplier bit.

_ The algorithm works for positive or negative multipliers in 2’s complement
representation.

_ This is because a negative multiplier ends with a string of 1’s and the last operation
will be a subtraction of the appropriate weight.

_ Thetwo bits of the multiplier in Qn and Qn+1 are inspected.

_ If the two bits are equal to 10, it means that the first 1 in a string of 1 's has been
encountered. This requires a subtraction of the multiplicand from the partial product in AC.

_ If the two bits are equal to 01, it means that the first 0 in a string of O's has been
encountered. This requires the addition of the multiplicand to the partial productin AC.

_ When the two bits are equal, the partial product does not change.

Division Algorithms:

Division of two fixed-point binary numbers in signed magnitude representation is
performed with paper and pencil by a process of successive compare, shift and subtract
operations. Binary division is much simpler than decimal division because here the
guotient digits are either 0 or 1 and there is no need to estimate how many times the
dividend or partial remainder fits into the divisor. The division process is described in
Figure

000010101 Quotient

Divisor 1101)100010010 Dividend
~1101
10000
~1101
1110
~1101
1 Remainder

The devisor is compared with the five most significant bits of the dividend. Since the 5-bit
number is smaller than B, we again repeat the same process. Now the 6-bit number is
greater than B, so we place a 1 for the quotient bit in the sixth position above the
dividend. Now we shift the divisor once to the right and subtract it from the dividend. The
difference isknown as a partial remainder because the division could have stopped here to

obtain a quotient of 1 and aremainder equal to the partial
33

remainder. Comparing a partial remainder with the divisor continues the process. If the
partial remainder is greater than or equal to the divisor, the quotient bit is equal to

1. The divisor is then shifted right and subtracted from the partial remainder. If the partial
remainder is smaller than the divisor, the quotient bit is 0 and no subtraction is needed.
The divisor is shifted once to the right in any case. Obviously the result gives both a
guotient and aremainder.

Hardware Implementation for Signed-Magnitude Data

In hardware implementation for signed-magnitude data in a digital computer, it is
convenient to change the process dlightly. Instead of shifting the divisor to the right, two
dividends, or partial remainders, are shifted to the left, thus leaving the two numbers in
the required relative position. Subtraction is achieved by adding A to the 2's complement
of B. End carry gives the information about the rel ative magnitudes.

The hardware required is identical to that of multiplication. Register EAQ is now shifted
to the left with O inserted into Qn and the previous value of E is lost. The example is
given in Figure 4.10 to clear the proposed division process. The divisor is stored in the B
register and the double-length dividend is stored in registers A and Q. The dividend is
shifted to the left and the divisor is subtracted by adding its 2's complement value. E

n- Nt Lue
A

E““ {ITﬁik1h‘ ’Ll Sl l"‘- ~IM?! DiviSa™

gnitt, acd
J5ub] SN ON cWwb Yroct
Cea ndrol \03\0

—1¢—

\'\\\ it "U\‘*'Y ‘(--hin

Cuedlent
=e (ln‘vti_

- |
. vy D om— \‘__ - -

L snfpn s -*’\m] (EaEeaIEled

¥ Oiy dend

L.

Hardware Implementation for Signed-Magnitude Data

34

Algorithm:

Compuier Arfhimeio 13

FLOWCHART OF DIVIDE OPERATION

Dividend in AGQ

MHA=E) b B

END
R1!&1.|-|!t-!-|!|~1"|'l:In =]
emainderin R)

Example of Binary Division with Digital Hardware

Diviser B = 10001 B+ 1=0011
=t oy e New— [ty
3 " Q SC
Dividend 01110 00000 5
shl EAQ 0 11100 00000
odd § +) 01111
£= | oionn
Sl Q= | | 0101} 00001 4
shl £AQ 0 10110 00010
Add § + Qi
E=| | 00101
5¢iQ = | | 00101 00011 J
shl £AQ 0 01010 00110
Add § + 1 01111
E=Q lecved -0 0 11001 00110
Add 8 10001 2
Restome ramander | 01010
shl EAQ 0 10100 01100
Add g + 1 0111}
E=1 | 00011
SetQ@, = | x 00011 0110 |
ShiEAQ 0 00110 11010
Add § +1 g1
E=0leavel =0 0 1010} 11010
Add 8 10001
Rovors remoinder ' 0 11010 0
Neglecr £
Rominender i A 0o 10
Quotent in Q 11010

35

Floating Point Arithmetic Oper ations:

In many high-level programming languages we have a facility for specifying floating-point
numbers. The most common way is by a real declaration statement. High level programming
languages must have a provision for handling floating-point arithmetic operations. The
operations are generaly built in the internal hardware. If no hardware is available, the compiler
must be designed with a package of floating-point software subroutine. Although the hardware
method is more expensive, it is much more efficient than the software method. Therefore,
floating- point hardware isincluded in most computers and is omitted only in very small ones.

Basic Considerations:

There are two part of a floating-point number in a computer - a mantissa m and an exponent e.
The two parts represent a number generated from multiplying m times a radix r raised to the
value of e. Thus

mx r€

The mantissa may be afraction or an integer. The position of the radix point and the value of the
radix r are not included in the registers. For example, assume a fraction representation and a
radix

10. The decimal number 537.25 is represented in aregister with m=53725and e=3 and is
interpreted to represent the floating-point number

53725 x 103

A floating-point number is said to be normalized if the most significant digit of the mantissain
nonzero. So the mantissa contains the maximum possible number of significant digits. We
cannot normalize a zero because it does not have a nonzero digit. It is represented in floating-
point by all 0’s in the mantissa and exponent.

Floating-point representation increases the range of numbers for a given register. Consider a
computer with 48-bit words. Since one bit must be reserved for the sign, the range of fixed-point

integer numbers will be + (247 — 1), which is approximately + 1014. The 48 bits can be used to
represent a floating-point number with 36 bits for the mantissa and 12 bits for the exponent.
Assuming fraction representation for the mantissa and taking the two sign bits into
consideration, the range of numbers that can be represented is

+ (1 2°35) x 22047

This number is derived from a fraction that contains 35 1’s, an exponent of 11 bits (excluding its
sign), and because 211 1 = 2047. The largest number that can be accommodated is
approximately 10615, The mantissa that can accommodated is 35 bits (excluding the sign) and if
considered as an integer it can store a number as large as (235 -1). Thisis approximately equal

to 1019, which is equivalent to adecimal number of 10 digits.
36

Computers with shorter word lengths use two or more words to represent a floating-point
number. An 8-bit microcomputer uses four words to represent one floating-point number. One
word of 8 bits are reserved for the exponent and the 24 bits of the other three words are used in
the mantissa.

Arithmetic operations with floating-point numbers are more complicated than with fixed-point
numbers. Their execution also takes longer time and requires more complex hardware. Adding
or subtracting two numbers requires first an alignment of the radix point since the exponent parts
must be made equal before adding or subtracting the mantissas. We do this alignment by shifting
one mantissa while its exponent is adjusted until it becomes equal to the other exponent.
Consider the sum of the following floating-point numbers:

5372400 x 102

+.1580000 x 10°1

Floating-point multiplication and division need not do an alignment of the mantissas.
Multiplying the two mantissas and adding the exponents can form the product. Dividing the
mantissas and subtracting the exponents perform division.

The operations done with the mantissas are the same as in fixed-point numbers, so the two can
share the same registers and circuits. The operations performed with the exponents are compared
and incremented (for aligning the mantissas), added and subtracted (for multiplication) and
division), and decremented (to normalize the result). We can represent the exponent in any one
of the three representations - signed-magnitude, signed 2’s complement or signed 1’s
complement.

Biased exponents have the advantage that they contain only positive numbers. Now it becomes
simpler to compare their relative magnitude without bothering about their signs. Another
advantage is that the smallest possible biased exponent contains all zeros. The floating-point
representation of zero is then azero mantissa and the smallest possible exponent.

Register Configuration

The register configuration for floating-point operations is shown in figure 4.13. As a rule, the
same registers and adder used for fixed-point arithmetic are used for processing the mantissas.
The difference liesin the way the exponents are handled.

The register organization for floating-point operations is shown in Fig. 4.13. Three registers are
there, BR, AC, and QR. Each register is subdivided into two parts. The mantissa part has the
same uppercase letter symbols as in fixed-point representation. The exponent part may use
corresponding lower-case letter symbol.

37

Computer Arithmetic 14 Floating Point Arithmetic
FLOATING POINT ARITHMETIC OPERATIONS

F=mxre

where m: Mantissa

e Dading

Registersfor Floating Point Arithmetic

|Bs| B | | b BR

Parallel Adder

Parallel Adder

| a | ac
o] Q | | q | or
ArAIA
s|1

Figure 4.13: Registers for Floating Point arithmetic operations

Assuming that each floating-point number has a mantissa in signed-magnitude representation and a
biased exponent. Thus the AC has a mantissa whose sign isin As, and a magnitude that isin A. The
diagram shows the most significant bit of A, labeled by A1. The bit in his position must be a 1 to
normalize the number. Note that the symbol AC represents the entire register, that is, the
concatenation of As, A and a

In the similar way, register BR is subdivided into Bs, B, and b and QR into Qs, Q and q. A paralel -
adder adds the two mantissas and loads the sum into A and the carry into E. A separate parallel adder
can be used for the exponents. The exponents do not have a district sign bit because they are biased
but are represented as a biased positive quantity. It is assumed that the floating- point number are so
large that the chance of an exponent overflow is very remote and so the exponent overflow will be
neglected. The exponents are also connected to a magnitude comparator that provides three binary
outputs to indicate their relative magnitude.

The number in the mantissa will be taken as a fraction, so they binary point is assumed to reside to
the left of the magnitude part. Integer representation for floating point causes certain scaling
problems during multiplication and division. To avoid these problems, we adopt a fraction
representation.

The numbers in the registers should initially be normalized. After each arithmetic operation, the
result will be normalized. Thus all floating-point operands are always normalized.

38

Addition and Subtraction of Floating Point Numbers:

During addition or subtraction, the two floating-point operands are kept in AC and BR.
The sum or difference is formed in the AC. The agorithm can be divided into four
consecutive parts:

1. Check for zeros.

2. Align the mantissas.

3. Add or subtract the mantissas
4. Normalizethe result

A floating-point number cannot be normalized, if it is 0. If this number is used for computation,
the result may also be zero. Instead of checking for zeros during the normalization process we
check for zeros at the beginning and terminate the process if necessary. The alignment of the
mantissas must be carried out prior to their operation. After the mantissas are added or
subtracted, the result may be un-normalized. The normalization procedure ensures that the result
isnormalized beforeit istransferred to memory.

If the magnitudes were subtracted, there may be zero or may have an underflow in the result. If
the mantissa is equal to zero the entire floating-point number in the AC is cleared to zero.
Otherwise, the mantissa must have at least one bit that is equal to 1. The mantissa has an
underflow if the most significant bit in position Al, is 0. In that case, the mantissa is shifted | eft
and the exponent decremented. The bit in A1 is checked again and the process is repeated until
Al=1 When Al =1, the mantissais normalized and the operation is compl eted.

Floating Point Addition / Subtraction
@ Shit signitcand nght by

1. Compara the exponenta of the two numbers, Shilt the dw | Ex-E|
smaller number ta the rght untilits exponsnt would malch
1he larger sxponent

Agd signifeands whaen signs

- b of Xand Yare dentcad
2. Add; Sublractthe significands according 1o the Sign biis. | S ubtract when difierent
: X« Y becomes X+ (=Y

3. Normalze the sum, eithar shifting right and incrgmanting
Ihe axponan or shifting 81 and dac ramenting the éxpanant
T Normalization shilts dght by 1 if
1hare & a carry. or ahifts left by
e number of 10ading 2eros in
ihe casa of sublraction

4. Round 1he significand to the appropriate number of bis, and
renormalizg rounding ganarmiigs A cry

.

-
Ovarflow or FL,C-?_:, eptibn) Aoundng eidher fruncates

e traction, or adds a 1 10 least
no I sgnificant fracton bi
C Dona)

39

Acd or subtract

s ————

Align
Check MANTISSas
for :
zeros
| ‘
t |
=0 :
{
Mantissa
additson
.- -+ B or
[EA‘_"'.B'l [et 2 Jwbtmnon

shr A
A, —E

ga=~a+l

D,

Algorithm for Floating Point Addition and Subtraction

40

?;ompure_rAmnm_otic 16 Floaring Pofnquhmor/q'

FLOATING POINT MULTIPLICATION

BR « Multiplicand
QR « Multiplier

=0 _<BR
+0
=0 <R
»0
[Ac—0] ryar:
Ae-a+hb !
a « a - blas

Multiply mantissa
(finxed point
multiplication)
shiAQ 0 ®
Be A=
1
END
(Productis in AC)

FLOATING POINT DIVISION

« Divisor
AC « Dividend

=0

BR

- #0
=<2
#0

[Grc0] TS As s
4 Qe0
dli)vige SCent
L EAc ArB+1
1 1]
E
v
A>=B A<B
A<« A+B | | A< AB |
shrA
a+< a+1

a¢e a+b’+1
a « atbias
«~—a

|

Divide Magnitude of mantissa
as in fixed point numbers

41

COMPUTER ORGANIZATION —UNIT-2

UNIT I
Register Transfer Language and Micro-operations. Register Transfer language. Register
Transfer Bus and Memory Transfers, Arithmetic Micro operations, Logic Micro Operations,
Shift Micro Operations, Arithmetic Logic Shift Unit.
Basc Computer Organization and Design: Instruction Codes, Computer Register,
Computer Instructions, Instruction Cycle, Memory — Reference Instructions. Input —Output

and Interrupt, Complete Computer Description.

1. Register Transfer Language:

—>Digital systems are composed of modules that are constructed from digital components,
such asregisters, decoders, arithmetic elements, and control logic

—>The modules are interconnected with common data and control paths to form a digital
computer system.

- The operations executed on data stored in registers are called micro-operations.

—>A micro-operation is an elementary operation performed on the information stored in one
or more registers. Examples are shift, count, clear, and load.

—-> Some of the digital components from before are registers that implement micro-operations.

2>The internal hardware organization of a digital computer is best defined by
specifying:
e The set of registersit contains and their functions.
e The sequence of micro operations performed on the binary information stored in the
registers.
e The control that initiates the sequence of micro operations.

->Use symbols, rather than words, to specify the sequence of micro-operations.

Register transfer language:

—>The symbolic notation used to describe the micro-operation transfers among registers is
called aregister transfer language. The term "register transfer” implies the availability of
hardware logic circuits that can perform a stated micro-operation and transfer the result of the
operation to the same or another register. The word "language' is borrowed from
programmers, who apply this term to programming languages.

—>A programming language is a procedure for writing symbols to specify a given

computational process.

COMPUTER ORGANIZATION —UNIT-2

—A register transfer language is a system for expressing in symbolic form the micro-
operation sequences among the registers of a digital module. It is a convenient tool for
describing the internal organization of digital computers in concise and precise manner. It can
also be usad to facilitate the design process of digital systems.

—>Define symbols for various types of micro-operations and describe associated hardware that

can implement the micro-operations

2. Register Transfer:

Registers:

—>A register is a group of flip-flops with each flip-flop capable of storing one bit of
information.

—>Designate computer registers by capital letters to denote its function. The register that
holds an address for the memory unit is called Memory address register MAR.. The
program counter register is called PC. Instruction register IR is the instruction register and
R1 is a processor register. The individual flip-flops in an n-bit register are numbered in
sequence from 0 to n-1, starting from 0O in the right most position and increasing the numbers

towards the left.

Figure 4-1 Block diagram of register.

Rl 7 6 § 4 3 2 10
(a) Register R (b) Showing individual bits
15 0 15 g8 7 0
7 pc(Hy | Pcw)
{c) Numbering of bits (d) Divided into two parts

Figure: showstherepresentation of registersin block diagram form.

- The most common way to represent a register is by a rectangular box with the name of the

register inside, asin figure (a). The individual bits can be distinguished as in figure (b). The

COMPUTER ORGANIZATION —UNIT-2

numbering of bits in a 16-bit register can be marked on top of the box as shown in figure (c).
A 16-hit register is partitioned into two partsin figure (d).

—>Bits 0 through 7 are assigned the symbol L (for low byte) and bits 8 through 15 are
assigned the symbol H (for high bit). The name of the 16-bit register is PC. The symbol PC
(0-7) or PC (L) refersto the low order byte and PC (8-15) or PC (H) to high order byte.

Register transfer:

~>Register Transfer is defined as copying the content of one register to another.

-> Information transfer from one register to another is designated in symbolic form by means
of areplacement operator. The statement by

R2 — R1

- This statement implies that the hardware is available
e The outputs of the source must have a path to the inputs of the destination.
e Thedestination register has a parallel load capability.

—>If the transfer isto occur only under a predetermined control condition, designate it by
If (P=1) then (R2 — R1) (or)
P: R2 < R1,
—>Where P is a control signal generated in the control section. It is sometimes convenient to
separate the control variables from the register transfer operation by specifying a control
function.
—>A control function is a Boolean variable that is equal to 1 or 0. The control function is
included in the statement as follows:

P. R2<¢ R1
The control condition is terminated with a colon. It symbolizes the requirement that the
transfer operation be executed by the hardware only if P = 1.
—>Every statement written in a register transfer notation implies a hardware construction for

implementing the transfer.

—>Figure 4-2 shows the block diagram that depicts the transfer from R1 to R2. The n
outputs of register R1 are connected to the n inputs of register R2. Register R2 has a load
input activated by the control variable P. It is assumed that the control variable is

synchronized with the same clock as the one applied to the register.

3

COMPUTER ORGANIZATION —UNIT-2

—> It isassumed that all transfers occur during a clock edge transition.

—> All micro-operations written on asingle line are to be executed at the same time
T: R2 — R1,R1 «— R2

Figure 4-2 Transfer from R1 to R2 when P = 1.
Control P Load
civeuit o R2 <J—Clock
n
R1

(a) Block diagram

t

Clock

Load

L f1

{

+ 1

/

Transfer occurs here

FL_T 1
\

(b) Timing diagram

The basic symbolsfor register transfer are shown in table

COMPUTER ORGANIZATION —UNIT-2

Parentheses ()

Arrow «

Colon
Comma |,

Denotes a part of a register

Denotes transfer of information

Denotes termination of control function
Separates two micro-operations

Symbols Description Examples
Capital letters | Denotes a register MAR, R2
& numerals

R2(0-7), R2(L)

R2 « R1
P:
A<B, B«A

Table: Basic Symbolsfor Register Transfers.

3. Busand Memory Transfers:

- Rather than connecting wires between all registers, a common bus is used.

—A bus structure consists of a set of common lines, one for each bit of a register. Control

signals determine which register is selected by the bus during each transfer. Multiplexers can

be used to construct a common bus. Multiplexers select the source register whose binary

information is then placed on the bus. The select lines are connected to the selection inputs of

the multiplexers and choose the bits of one register.

—>The construction of a bus system for four registersis shown in Figure 4-3.

—~>Each register has four bits, numbered O through 3. The bus consists of four 4 X 1
multiplexers each having four data inputs, O through 3, and two selection inputs, S1 and SO.
—>MUX 0 multiplexes the four O bits of the registers, MUX 1 multiplexes the four 1 bits of

the registers, and similarly for the other two bits.

COMPUTER ORGANIZATION —UNIT-2

Bus lines

—>The two selection lines S; and S are connected to selection inputs of all four multiplexers.
The selection lines choose the four bits of one register and transfer them into the four-line

common bus.

“>When $S =00, the O data inputs of all four multiplexers are selected and applied to the
outputs that from the bus. This causes the bus lines to receive the content of register A since
the outputs of this register are connected to the 0 data inputs of the multiplexers. Similarly,
register B is selected if $1S =01, and so on.

COMPUTER ORGANIZATION —UNIT-2

Figure 43 Bus system for four regisers

-
= & |ne
commn
§ ™ hus
S r
4yl 1 xl > 4xl ad Y
Lo L] s [woa]
3110 3110 3210 1210
INERIE
Dy Cy By A DG B A Dy Cy By Ay
Dy Dy Dy GGG B B, B A4 A4
12110 11210 12110 12110
Regster D Register C Register B Register A

> Table: shows the register that is selected by the bus for each of the four possible binary

values of the selection lines.

COMPUTER ORGANIZATION —UNIT-2

TABLE 4-2 Funcruon Table for Bus of Fig. 4-3

S, Sa Register selected
0 0 A

0 1 B

1 0 C

1 1 D

—>In general, a bus system will multiplex k registers of n bits each to produce an n- line
common bus.

—>This requires n multiplexers — one for each bit. The size of each multiplexer must be k x 1.
The number of select lines required is log k.

-> To transfer information from the bus to a register, the bus lines are connected to the inputs
of all destination registers and the corresponding load control line must be activated.

—>Rather than listing each step as

BUS «— C, R1 «— BUS, use R1— C, since the busisimplied.

Three State Bus Buffers:

—>Instead of using multiplexers, three-state gates can be used to construct the bus system.
—>A three-state gate is a digital circuit that exhibits three states. Two of the states are signals
equivalent to logic 1 and 0. The third state is a high-impedance state — this behaves like an

open circuit, which means the output is disconnected and does not have logic significance.

- The graphic symbol of athree-state buffer gateis shown in figure.4-4.

Figure 4-4 Graphic symbols for three-state buffer.

Qutput Y=AifC=|
High-impedance if C =0

Normal input A

Control input C

- The three-state buffer gate has a normal input and a control input which determines the

output state.

COMPUTER ORGANIZATION —UNIT-2

—>With control 1, the output equals the normal input

—>With control 0O, the gate goes to a high-impedance state

—>This enables alarge number of three-state gate outputs to be connected with wiresto form a

common bus line without endangering loading effects.

- Decoders are used to ensure that no more than one control input is active at any given time.

—> The construction of a bus system with three-state buffers is demonstrated in Figure 4-5.

Bus line for bit 0

>

Select

Enable ——

Ay
By
Co
Dy
0 b—
S
x4 |
5, 2X
decoder
E
3

>

Figure 4-5 Bus line with three state-buffers.

—>The outputs of four buffers are connected together to form a signal bus line. The control

inputs to the buffers determine which of the four normal inputs will communicate with the bus

line. No more than one buffer may be in the active state a any given time. The connected

9

COMPUTER ORGANIZATION —UNIT-2

buffers must be controlled so that only one three state buffer has access to the bus line while
all other buffers are maintained in a high-impedance state.

- One way to ensure that no more than one control input is active at any giventimeisto use a
decoder, as shown in the diagram. When the enable input of the decoder is O, al of its four
outputs are 0, and the bus line is in a high impedance state because all four buffers are
disabled. When the enable input is active, one of the three state buffers will be active,
depending on the binary value in the select inputs of the decoder.

—>To construct a common bus for four registers of n bits each using three-state buffers, we
need n circuits with four buffers in each. Only one decoder is necessary to select between the

four registers.

Memory Transfer:

—>The transfer of information from a memory word to the outside environment is called a
read operation.The transfer of new information to be stored into the memory is called a
write operation.

—>Designate a memory word by the letter M. It is necessary to specify the address of M when
writing memory transfer operations.

—>Consider a memory unit that receives the address from a register, caled the address
register.

- The data are transferred to another register, called the data register.

—>Designate the address register by AR and the dataregister by DR.

Read Operation:

—>Theread operation can be stated as.

Read: DR «— M[AR].

This causes a transfer of information into DR from the memory word M selected by the
addressin AR.

Write Operation:
—>The write operation transfers the content of a data register to a memory word M selected
by the address. Assume that the input data are in register R1 and the addressisin AR.

Thewrite operation can be stated as:

10

COMPUTER ORGANIZATION —UNIT-2

Write: M [AR] < R1.

—>This causes a transfer of information from R1 into the memory word M selected by the
addressin AR.

4. Arithmetic Micro Operation:
Micro-operation:
—>A micro operation is an elementary operation performed with data stored in register. They

are classified into:

e Register transfer micro-operations transfer binary information from one register to

another.

e Arithmetic micro-operations perform arithmetic operation on numeric data stored in
registers.

e Logic micro-operations perform bit manipulation operations on numeric data stored

inregisters.
e Shift micro-operations perform shift operations on data stored in registers.
Register transfer micro-operations:
—>This type of micro-operation does not change the information content when the binary

information moves from the source register to the destination register.

—>Registers are designated by capital |etters, sometimes followed by numbers (e.g., A, R13,

IR). Often the names indicate function:
MAR memory addressregister

PC program counter

IR instruction register

11

COMPUTER ORGANIZATION —UNIT-2

—>Information transfer from one register to another is described in symbolic form by
replacement operator. The statement “R2 €< R1” denotesa transfer of the content of the R1

into resister R2.

Control Function:

-> Often actions need to only occur if a certain condition is true. In digital systems, this is
often done via a control signal, called a control function.

Example: P: R2€ R1li.e. if (P=1) then (R2 € R1)

->Which means “if P = 1, then load the contents of register Rl into register R2”.
If two or more operations are to occur smultaneously, they are separated with commas.
Example: P: R3€R5 MAR € IR

Arithmetic micro-operations:

—>Basic arithmetic micro-operations are addition, subtraction, increment, decrement and
Shift.

—>The additional arithmetic micro-operations are Add with carry, Subtract with borrow
and Transfer/L oad.

—~>Example of addition: R3 < R1 +R2.

-t sates that the contents of register R1 are added the contents of register R2 and the sum
transferred to register R3. Usually it isimplemented using hardware full adders.

->Subtraction is most often implemented through complementation and addition
Example of subtraction: R3 «— R1 + R2-+ 1 (drikethrough denotes bar on top — 1’s
complement of R2)
* Adding 1 to the 1’s complement produces the 2’s complement.
* Adding the contents of R1 to the 2’s complement of R2 is equivalent to subtracting R1-
R2.
R30O0OR1+R2+1 or (R1-R2)

—>The increment and decrement micro-operations are implemented with a combinational
circuit or with abinary Up and Down Counter.
—>Multiply and divide are not included as micro-operations.

- A micro-operation is one that can be executed by one clock pulse.

12

COMPUTER ORGANIZATION - UNIT-2
—>Multiply (divide) is implemented by a sequence of add and shift micro-operations (subtract

and shift).

- Summary of typical arithmetic micro-operations:

TABLE 4-3 Arithmetic Microoperations

Symbolic

designation Description
R3 « Rl + R2 Contents of R1 plus R2 transferred to R3
R3«Rl1-R Contents of R1 minus K2 transferred to R3
R2 « R2 Complement the contents of R2 (I's complement)
R2 « R2 +1 2's complement the contents of R2 (negate)
R3« R1+RZ +1 Rl plus the 2's complement of R2 (subtraction)
Rl « R1+1 Increment the contents of R1 by one
Kl = R1 =1 Decrement the contents of R1 by one

Binary Adder (Ripple Carry Adder):
—>To implement the add micro-operation with hardware, we need the resisters that hold the
data and the digital component that performs the arithmetic addition. The digital circuit that

generates the arithmetic sum of two binary numbers of any lengths is called Binary adder.

—>The binary adder is constructed with the full-adder circuit connected in cascade, with the

output carry from one full-adder connected to the input carry of the next full-adder.

13

COMPUTER ORGANIZATION —UNIT-2

B A B2 A Bl A B0 A

A] FA W2 RA €L R e CO
v

4 8 52 Y S0

Figure 4-6 4-bit binary adder.

—>Figure 4-6 shows the interconnections of four full-adders (FA) to provide a 4-bit binary
adder. The augend bits of A and the addend bits of B are designated by subscript numbers
from right to left, with subscript O denoting the low-order bit. The carries are connected in a
chain through the full-adders. The input carry to the binary adder is Co and the output carry is
Ca. The S outputs of the full-adders generate the required sum bits.

—>An n-bit binary adder requires n full-adders. The output carry from each full-adder is

connected to the input carry of the next-high-order-full-adder. Inputs A and B come from two
registers R1 and R2.

14

COMPUTER ORGANIZATION —UNIT-2

Example:

A+B (A=1011)and (B = 0011)

Subscripti 3 2 I 0

A
+

B 0
Sum 1
Output Carry 0

1

=T B 1 L=

g By ey [-
by 2 By by
I--h

Binary Adder-Subtractor:

- The subtraction A — B can be done by taking the 2's complement of B and adding to A. It
means if we use the inverters to make 1’s complement of B (connecting each Bi to an
inverter) and then add 1 to the least significant bit (by setting carry Co to 1) of binary adder,
then we can make a binary subtractor.

—>The addition and subtraction operations can be combined into one common circuit by

including an exclusive-OR gate with each full adder.
—>A 4-bit adder-subtractor circuit is shown in Figure 4-7. The mode input M controls the

operation. When M=0 the circuit is an adder and when M=1 the circuit becomes a

subtractor. Each exclusive-OR gate receives input M and one of the inputs of B.

—->When M =0, we have B ®0= B. The full-adders receive the value of B, the input carry is 0,

and circuit performs A plus B.

->When M=1, we have B @1 = B! and Co=1. The B inputs are all complemented and a1 is

added through the input carry. The circuit performs the operation A plus the 2’s complement

15

COMPUTER ORGANIZATION —UNIT-2

of B. For unsigned numbers, thisgives A - B if A > B or the2's complement of (B - A) if A <
B. For signed numbers, the result is A — B provided that there is no overflow.

Eﬂ -Iﬁl::.!_ E[__." AE B1 JlI!1‘1 Bﬂ ‘ﬂ‘ﬂ
+—3S
) “'~ y
¥ L X
C:] GE C1
FA W¥— FA Ww—— FA W—— FA @—IC,
G-‘-‘l 53 Sg S1 Sﬂ
Figure4-7 4-bit adder-subtractor.
Example:
M A 8 Sum 4 \)
0 0111+0110 1101 0 T7+6=13 /ﬁ
0 1000+ 1001 0001 | 85+9=16+1
1 1100-1000 0100 @A 12-8=4 @S o §lewn
l 0101-1010 101 | @ 5=10=~5 (in 2's complement)
1 0000-0001 1111 O 0-1=~1(in2's complemenf)

|
e
=

Binary Incrementor:
—>Increment micro-operation adds one to a number in a register. For example, if a 4-bit

register has abinary value 0110, it will go to 0111 after it is incremented.

16

COMPUTER ORGANIZATION —UNIT-2

—>The diagram of a 4-bit combinational circuit incrementer is shown in Figure 4-8. One of
the inputs to the least significant half-adder (HA) is connected to logic-1 and the other input
is connected to the least significant bit of the number to be incremented. The output carry
from one-half adder is connected to one of the inputs of the next-higher-order half adder. The
circuit receives the four bits from Ao through Azadds one to it, and generates the incremented
output in So through Sz. The output carry Cs will be 1 only after incrementing binary 1111.
Thisisalso causes outputs S through Ssto gotoO.

A3 A2 Al AD 1
x Y x y x Y x y
HA HA HA HA
C s C s C s cC s
C4 S3 S2 51 S0

Figure 4-8 4-bit binary incrementer.

Arithmetic Circuit:

—->We can implement 7 arithmetic micro-operations (add, add with carry, subtract, subtract
with borrow, increment, decrement and transfer) with one circuit.

—>The diagram of a 4-bit arithmetic circuit is shown in Figure 4-9. It has four full adder
circuits that congtitute the 4-bit adder and four multiplexers for choosing different operations.
There are two 4-hit inputs A and B and a 4-bit output D. The four inputs from A go directly to
the X inputs of the binary adder. Each of the four inputs from B is connected to the data
inputs of the multiplexers. The multiplexer’s data inputs also receive the complement of B.

The other two data inputs are connected to logic-0 and logic-1.

17

COMPUTER ORGANIZATION —UNIT-2

- The four multiplexers are controlled by two selection inputs, S; and So. The input carry Cin
goes to the carry input of the FA in the least significant position. The other carries a

connected from one stage to the next.

Cin
5
So
Ag X, Ce
5
So Fa Dg
En o 4 x1
1 DC . Mux Yo o
2
3
Ay ! X C
5
So FA D,
Bl >0 L M L
2
3
AE x: Cz
5
S FA |—D,
B, —¢ o 4 1 C
I_DC ; MUX i 2
2
3
Ay X3 C!
5
S FA [— D,
B3 0 41 C
DC i X 3 -
. i 2
3
ﬂ 1 Cﬂ'ﬂl

Figure 4-9 4-bit arithmetic circuit.
- The output of the binary adder is calculated from the following arithmetic sum:

18

COMPUTER ORGANIZATION —UNIT-2

D = A+Y+ Cin

Where

—A is the 4-bit binary number at the X inputs and Y is the 4-bit binary number at the Y
inputs of the binary adder.

—>Cin isthe input carry, which can be equal to O or 1.

—>By controlling the value of Y with the two selection inputs S1 and Sy and making Cin equal
toOor 1, it ispossible to generate the eight arithmetic micro-operations listed in Table 4-4.

TABLE 4-4 Arithmetic Circuit Function Table

Select
[nput Output

i % G Y D=A+Y+C(, Microoperation
0 0 0 B D=A+8 Add
0 0 1 B D=A+B+1 Add with carry
0 1 0 B D=A+B Subtract with borrow
0 1 1 B D=A+B+1 Subtract
1 0 0 0 D=A Transfer A
1 0 1 0 D=A+1 Increment A
1 1 0 1 D=A4-1 Decrement A
1 1 1 1 D=A Transfer A

—“>When $S = 00, the value of B is applied to the Y inputs of the adder. If Cin = 0, the output
D =A+ B. If Cin = 1, output D =A+ B + |. Both cases perform the add micro-operation with
or without adding theinput carry.

“>When $1S = 01, the complement of B is applied to the Y inputs of the adder. If Cin = 1,
then D =A + B + 1. This produces a plus the 2’s complement of B, which is equivalent to a
subtraction of a - B. When Cin = 0, then D = A + B. This is equivalent to a subtract with
borrow, that is, A - B - 1.

19

COMPUTER ORGANIZATION —UNIT-2

“>When $S = 10, the inputs from B are neglected, and instead, all O's are inserted into the Y
inputs. The output becomesD = A + 0+ Cin. ThisgivesD = AwhenCin=0andD =A +1
when Cin = 1. In the first case we have a direct transfer from input A to output D. In the

second case, the value of A isincremented by 1.

>When $:1S = 11, all I’s are inserted into the Y inputs of the adder to produce the
decrement operation D = A - 1 when Ci, = 0. This is because a number with all 1'sis equal
to the 2's complement of 1 (the 2's complement of binary 0001 is 1111). Adding a number A
to the 2's complement of 1 produces F =A + 2'scomplement of 1 = A - 1. When Ci, = 1, then
D =A-1+1=A, which causesadirect transfer from input A to output D.

5. Logic Micro-operations:
—~>Logic micro operations specify binary operations for strings of bits stored in registers.
These operations consider each bit of register separately and treat them as binary variables.

For example:

—>The Exclusive-OR of R1 and R2 is symbolized by P: R1 «— R1 & R2
—> 1t specifies a logic micro-operation to be executed on the individual bits of the registers

provided that the control variable P = 1.
Example: R1 = 1010 and R2 = 1100

1010 Content of R1
1100 Content of R2
0110 Content of R1 after P=1

-> Special symbols used for logical micro-operations:
e OR:v
e AND: A

e XOR:®

—>The + sign has two different meanings: logical OR and summation
e When + isin a micro-operation, then summation
e When + isinacontrol function, then OR

- Example: P+ Q: R1 < R2 +R3,R4 «+— R5V R6

20

COMPUTER ORGANIZATION —UNIT-2

List of Logic Micro-operations:

—>There are 16 different logic operations that can be performed with two binary variables.
They can be determined from all possible truth tables obtained with two binary variables as
shown in Table 4-5.

—>In thistable, each of the 16 columns FO through F15 represents a truth table of one possible
Boolean function for the two variables x and y. Note that the functions are determined from
the 16 binary combinations that can be assigned to F.

TABLE 4.5 Truth Tables for 16 Functions of Two Variables

x ¥ Fk F. i F, K Fs F /s K F Fm .Fu Fiu Fy Fa Fis
oo(fo 000 00 O0OO0OT1T1 1 1 1 1 11
019 ¢ 001 1211000 01 1 1 1
10l0 0 11 0 0 11 0 O0C 1 1 0 0 1 1
11l 1+ 01 0! 0D O1 O 1 O 1 0 1

21

COMPUTER ORGANIZATION —UNIT-2

x|0011 | Boolean Micro-
y[0101 | Function Operations

0000 FO =0 Fe0 Clear
0001 F1 =xy FeAnB AND
0010 F2 =xy' FeAnB

0011 F3 =x FeA Transfer A
0100 F4 =x'y FeAAB

0101 F5 =y F«B Transfer B
0110 F6 =xDy F«ABB Exclusive-OR
0111 Fl =x+y F<AvB OR
1000 F8 =(x+y) | F« (AvB) NOR
1001 F9 =(x@y)' | F«(A®B) |Exclusive-NOR
1010 F10=y' F«B Complement B
1011 Fil=x+y | F&<AvB

1100 F12=x' FeA Complement A

1101 F13=x"+y F«AvB
1110 F14 = (xy)' Fe(AnB) NAND
1111 F156=1 F«all1s Settoall 1's

TABLE 4-6 Sixteen Logic Micro-operations.

—>The 16 Boolean functions of two variables x and y are expressed in algebraic form in the
first column of Table 4-6. The 16 logic micro-operations are derived from these functions by
replacing variable x by the binary content of register A and variable y by the binary content of
register B.

Hardware I mplementation:

—->The hardware implementation of logic micro-operations requires that logic gates be
inserted for each bit or pair of bits in the registersto perform the required logic function.

—>All 16 micro-operations can be derived from using four logic gates.

—>Figure 4-10 shows one stage of a circuit that generates the four basic logic micro-
operations. It consists of four gates and a multiplexer. Each of the four logic operations is

generated through a gate that performs the required logic. The outputs of the gates are applied

22

COMPUTER ORGANIZATION —UNIT-2

to the data inputs of the multiplexer. The two selection inputs S; and So choose one of the data
inputs of the multiplexer and direct its value to the output. The diagram shows one typical
stage with subscript i. For alogic circuit with n bits, the diagram must be repeated n times for
i=0,1,2,..n-1

- The selection variables are applied to all stages. The function tablein fig 4-10(b) lists the
logic micro-operations obtained for each combination of the selection variables.

Figure 4-10 Omne stage of logic circuit.

4|
MUX

— Ei o 0| E=AnB | AND

0 1| E=AvE | OR
E=A@ B | XOR
1 | | E=A Complement

??ﬁWTr

(b) Function table
{a) Logic diagram
Some Applications:
—>Logic micro-operations can be used to manipulate individual bits or portions of aword in a
register. Consider the datain aregister A. In another register B, is bit datathat will be used to

modify the contents of A.

Selective-set A—A+B
selective-complement A«—AESB
Selective-clear A A=B
Mask (Delete) Ae—AB
Clear A—AGRB
Insert Ae—{(ABY+C
Compare A«—ADB

23

COMPUTER ORGANIZATION —UNIT-2

- The selective-set operation sets to 1 the bits in register A where there are corresponding 1’s
inregister B.
1010 A before
1100B (logic operand)
1110 A after
A€AVB

If abit inregister B is set to 1, that same position in register A gets set to 1, otherwise that bit
inregister A keeps its previous value.

—->The sdlective-complement operation complements bits in register A where there are

corresponding 1’s in register B.

1010 A before
1100 B (logic operand)
0110 A after

AECAdB

If a bit in B is set to 1, that same position in A gets complemented from its original value,

otherwise it is unchanged.

—>The selective-clear operation clears to O the bits in register A only where there are
corresponding 1’s in register B

1010 A before

1100 B (logic operand)

0010 A after

A€ AAB

If a bit in register B is set to 1 that same position in register A gets set to 0 otherwise it is
unchanged.

—>The mask operation is similar to the selective-clear operation, except that the bits of
register A are cleared only where there are corresponding 0’s in register B.

1010 A before

24

COMPUTER ORGANIZATION —UNIT-2

1100 B (logic operand)
1000 A after

A€CAAB

If a bit in register B is set to 0, that same position in register A gets set to 0, otherwise it is
unchanged.

—>Theinsert operation inserts a new value into a group of bits. This is done by first masking
the bits to be replaced and then ORing them with the bits to be inserted

Example » Suppose you wanted to introduce 1010 into the low order four bits of A:

1101 1000 1011 0001 A (Original)

1101 1000 1011 1010 A (Desired)

1101 1000 1011 0001 A (Original)
1111 1111 1111 0000 B (Mask)

1101 1000 1011 0000 A (Intermediate)
0000 0000 0000 1010 Added bits

1101 1000 1011 1010 A (Desired)

The mask operation is an AND micro-operation and the insert operation is an OR micro-

operation.

—>The clear operation compares the bits in A and B and produces an all 0’s result if the two
numbers are equal.

1010 A

1010B

0000 A €« A B
This operation is achieved by exclusive-OR micro-operation.
6. Shift Micro-operations:
-> Shift micro-operations are used for serial transfer of data and are used in conjunction with
arithmetic and logic operations. The register contents can be shifted to the left or to the right.
- There are three types of shift operations:

25

COMPUTER ORGANIZATION —UNIT-2

e Logical shift: Logical shifts transfers O through the serial input, with all the bits
involved in the shifting.
e Circular shift: A circular shift circulates the bits of the register around the two ends

with no loss of information.

e Arithmetic shift: Arithmetic shifts multiplies (or divides) a signed number by 2.

TABLE 4-7 Shift Microoperations

Symbolic designation Description
R «shl R Shift-left register R
R «—shr R Shift-right register R
R «dl R Circular shift-left register R
R «—cr R Circular shift-right register R
R+ashl R Arithmetic shift-left R
R «ashr R Arithmetic shift-right R

Right Shift Operation

= o9
S =
= B
b
r
.
w
¥
r

Left shift operation

1. Logical shift: A logical shift is one that transfers O through the serial input. In a Register
Transfer Language (RTL), the following notation is used.

e ghl for alogical shift left

e shr for alogical shift right

For example, R1<&shl R1

26

COMPUTER ORGANIZATION —UNIT-2

R2& shr R2

Logical shift right (shr)

(Example) Logical shift-left
10100011 > 01000110

(Example) Logical shift-right
10100011 > 01010001

2. Circular Shift (rotate operation): A Circular-shift circulates the bits of the resister around
the two ends without the loss of information.

InaRTL, the following notation is used:

e cilfor acircular shift left.

e cir for acircular shift right.

27

COMPUTER ORGANIZATION —UNIT-2

For example,
cir R2€ R2
cil R3€ R3
Right circular shift operation
» > - » > > > >
Left circular shift operation:
4 % * 4 4 — | 4

{(Example) Circular shift-letft
10100011 is shifted to 01000111
(Example) Circular shift-right
10100011 is shifted to 11010001

3. Arithmetic shift: An arithmetic shift is meant for signed binary numbers (integer). An
arithmetic left shift multiplies a signed number by 2 and an arithmetic right shift divides a
signed number by 2. Arithmetic shifts must leave the sign bit unchanged because the sign of
the number remains the same when it is multiplied or divided by 2. The left most bit in a
resister holds a sign bit and remaining hold the number. Negative numbers are in 2's
complement form.

In a Resister Transfer Language, the following notation is used:

ashl for an arithmetic shift left.
ashr for an arithmetic shift right.

For example,

28

COMPUTER ORGANIZATION —UNIT-2

ashr R2 € R2
ashl R3€ R3

Arithmetic shift right: Arithmetic shift-right leaves the sign bit unchanged and shift the

number (including a sign bit) to the right. Thus Rn_lremai ns same; Rn_zreceives input from Rn_

1ands;oon.
|: Ra -1 Rp 2 — K, RII—‘
Sign
bt

Figure 4-11 Arithmeric shift right.

= AArvrithmetic Shifi Righit
— Exarmmnple 1
Q100 (4 —
OO10O (2)
— Example 2
1O10 (-G) —
1101 (=3)

Arithmetic shift-left: Arithmetic shift-left inserts a O into Roand shifts all other bits to left.

Initial bit of Rn_lis lost and replaced by the bit from Rn_z.
Overflow case during arithmetic shift-left: If a bit in Rn_lchanges in value after the shift,
sign reversal occurs in the result. This happens if the multiplication by 2 causes an overflow.

Thus, left arithmetic shift operation must be checked for the overflow: an overflow occurs
after an arithmetic shift-left if before shift Rn_lqé Rn_z.

- Beforethe shift, if theleft most two bits differ, the shift will result in an Overflow.

29

COMPUTER ORGANIZATION —UNIT-2

Before the shift f ine lefimast
J\D— V[twobits diflr, the shiftwil
/ result in an Qveriow

—>An overflow flip-flop V can be used to detect an arithmetic shift-left overflow.

Vs = Rn-l @ Rn-z

->1f V=0, there is no overflow but if V=1, overflow is detected.

* Arithmetic Shift Left ;

— Example 3
— Example 1

0100 (4) >

0010 (2) >

0100 (4) 1000 (overflow)
— Example 2 — Example 4

1110 (-2) > 1010 (-6) =

1100 (-4) 0100 (overflow)

Hardware I mplementation of shift micro-operations.

—>A bi-directional shift unit with parallel load could be used to implement this.
—>Two clock pulses are necessary with this configuration: one to load the value and another to

shift.
—>1In a processor unit with many registersit is more efficient to implement the shift operation

with a combinational circuit

30

COMPUTER ORGANIZATION —UNIT-2

—>The content of aregister to be shifted is first placed onto a common bus and the output is
connected to the combinational shifter, the shifted number is then loaded back into the
register.

—>A combinational circuit shifter can be constructed with multiplexers as shown in Figure 4-
12. The 4-bit shifter has four data inputs, Ao through As, and four data outputs, Ho through Hs.
There are two serial inputs, one for shift left (1) and the other for shift right (Ir). When the
selection input S = 0, the input data are shifted right (down in the diagram). When S = 1, the
input data are shifted left (up in the diagram).

The function table in Figure 4-12 shows which input goes to each output after the shift. A

shifter with n data inputs and outputs requires n multiplexers. The two serial inputs can be

controlled by another multiplexer to provide the three possible types of shifts.

31

COMPUTER ORGANIZATION - UNIT-2

Select
: () for shaft right {down)
Senal : -
inpu 1) | for shift left (up)
T— S
0 MUX —Ho
1
4 ——— §
I
— S
0 MUX _'Hg
1
§
0 MX —Hs
|
Serial
input (1)

32

Function table
Select Qutput
S Hy H H B
0 l! Ao Al .'\:
| A A & |

Figute 4-12 4-bit combinational circuit shifter,

COMPUTER ORGANIZATION —UNIT-2

7. Arithmetic Logic Shift Unit:

One Stage of Arithmetic Logic Shift Unit

"ﬁ"'.-l

A

.__-

One stage

of Anthmetic
Circuit

&

One stage
of Logc

Circuit

shr

— 1 Select
0 4x] - Fi
1 MUX
)
— 3
shi

il

Figure 4-13.0ne stage of arithmetic logic shift unit.

—>This is a common operational unit called arithmetic logic unit (ALU). To perform a

micro-operation, the contents of specified registers are placed in the inputs of the common

ALU. The ALU performs the operation and transfer result to destination resister.

—A particular micro-operation is selected with inputs s; and s. A 4x1 MUX at the output

chooses between an arithmetic output in D; and logic output E;. Other two inputs to the MUX

33

COMPUTER ORGANIZATION —UNIT-2

receive inputs Ai.1 for right-shift operation and Ai+1 for left-shift operation. The diagram
shows just onetypical stage. The circuit must be repeated n times for an n-bit ALU.

—>This circuit provides 8 arithmetic operations, 4 logic operations and 2 shift operations. Each
operation is selected with five variables Sz, S, S1, So and Cin. The input carry Cin is used for

arithmetic operations only.

TABLE 4-8 Function Table for Arithmertic Logic Shift Unit

Operation select

S5 & 8§ S5 G Operation Function

0o 0 0 0 0 F=A4 Transfer A

0o 0 0 0 1 F=A+1 Increment A

0o 0 0 1 0 F=A+8B Addition

0 0 0 1 1 F=A+B+1 Add withcarry

0o 0 1 0 0 F=A+8 Subtract with borrow
0 0 1 0 1 F=A+B8 +1 Subtraction

0 0 1 1 0 F=A-1 Decrement A

0 0 1 1 1 F=A Transfer A

0 1 0 0 x F=ANANB AND

0 1 0 1 Xx F=AvVYS OR

0 1 1 0 x F=A&B XOR

0 1 1 1 x F=A Complement A

1 0 X X X F=shrA Shift right A into F
1 1 x X x F=shlA Shift left A into F

—>Table 4-8 lists the 14 operations of the ALU. The first eight are arithmetic operations and

are selected with S3S; = 00. The next four are logic operations and are selected with $S; =

01. The input carry has no effect during the logic operations and is marked with don't-care

34

COMPUTER ORGANIZATION —UNIT-2

X's. The last two operations are shift operations and are selected with S3S= 10 and 11. The
other three selection inputs have no effect on the shift.
8. Instruction Codes:
—>The internal organization of a digital system is defined by the sequence of micro-operations
it performs on data stored in its registers. By executing several micro-operations in specified
sequence, then a computer instruction can be executed.
Program: A set of instructions that specifies operation, operands, and sequence of processing
has to occur
The instructions of a program, along with any needed data are stored in memory. The CPU reads
the next instruction from memory.
It is placed in an Instruction Register(IR)
Control circuitry in control unit then translates the instruction into the sequence of micro-

operations necessary to implement it

—->A Computer Instruction is a binary code that specifies a sequence of micro-operations for
the computer. Every computer has its own unigue instruction set

—>Instruction code is a group of bits that instruct the computer to perform a specific operation.

—>Operation codeof an instruction is a group of bits that define such operations as add,

subtract, multiply, shift, and complement.

Stored Program Organization:

- The simplest way to organize a computer isto have one processor register andan instruction
code format with two parts. The first part specifies the operation to be performed and the
second specifies an address. The memory address tells the control where to find an operand in
memory. This operand is read from memory and used as the data to be operated on together

with the data stored in the processor register.

—2>Figure 5-1 depicts this type of organization. Instructions are stored in one section of
memory and data in another. For a memory unit with 4096 words we need 12 bits to specify
an address since 2*2 = 4096. If we store each instruction code in one 16-bit memory word, we
have available four bits for the operation code (op-code) to specify one out of 16 possible
operations, and 12 bits to specify the address of an operand. The control reads a 16-bit

instruction from the program portion of memory. It uses the 12-bit address part of the

35

COMPUTER ORGANIZATION —UNIT-2

instruction to read a 16-bit operand from the data portion of memory. It then executes the
operation specified by the operation code.
Figure 5-1 Stored program organization.

Memory
096 = 16

...--"'"-'_-_"""--.__________.-

15 12 11 Q

Opcode Address Instructions
{program)

Instuction {ormat

15 1]
; Elperam:li
Binary operand {data)

Processor register
faccumulatoror AC)

—->Accumulator Register (AC): Computers that have a single register usually assign to it the
name accumulator and label it AC. The operation is performed with the memory operand and
the content of AC.

Indirect Address:
—>One bit of the ingtruction code is used to distinguish between a direct and an indirect
address.

—>As an illugtration of this configuration, consider the instruction code format shown in
Figure 5-2(a). It consists of a 3-hit operation code, a 12-bit address, and an indirect address
mode bit designated by I. The mode bit is O for adirect address and 1 for an indirect address.

- A direct address instruction is shown in Figure 5-2(b).It is placed in address 22 in memory.

The | hit is 0, so the ingtruction is recognized as a direct address instruction. The op-code

36

COMPUTER ORGANIZATION —UNIT-2

specifiesan ADD instruction, and the address part is the binary equivalent of 457. The control
finds the operand in memory at address 457 and adds it to the content of AC.

15 14 12 11 0
| Opcode Address

(2} Instruction format

Memory Memory
22| 0 | ADD 457 is | 1 | ADD 300
00 1350
457 Operand
1350 Crperand
AC AC
(b) Direct address {c) Indwrect address

Figure 5-2 Demonstration of direct and indirect address.

—>The instruction in address 35 shown in Figure 5-2(c) has a mode bit | = 1. Therefore, it is
recognized as an indirect address instruction. The address part is the binary equivalent of 300.
The control goes to address 300 to find the address of the operand. The address of the operand
inthis case is 1350. The operand found in address 1350 is then added to the content of AC.

37

COMPUTER ORGANIZATION —UNIT-2

- Effective address: Address where an operand is physically located. The address that can be
directly used without modification to access an operand for a computation-type instruction, or
asthe target address for a branch-type instruction

—>Thus the effective address in the instruction of Figure 5-2(b) is 457 and in the instruction
of Figure 5-2(c) is 1350.

9. Computer Registers:

A register is a very small amount of very fast memory that is built into the CPU (central
processing unit). Contents can be accessed at extremely high speeds. Registers are used to
store data temporarily during the execution of a program. Different processors have different
register sizes. Registers are normally measured by the number of bits they can hold, for
example, an 8-bit register means it can store 8 bits of data or a 32-hit register means it can
store 32 hit of data.

- The computer needs processor registers for manipulating data and a register for holding a
memory address. These requirements dictate the register configuration shown in Figure 5-3.
Theregistersare also listed in Table 5-1 together with a brief description of their function and
the number of bits that they contain.

->The memory unit has a capacity of 4096 words and each word contains 16 bits. Twelve bits

of an instruction word are needed to specify the address of an operand.

ACCUMULATOR (AC): The processor register AC consists of 16-hits. It is used to hold the
results or partial results of arithmetic and logical operations. An accumulator is a register in

which intermediate arithmetic and logic results are stored.

DATA REGISTER (DR): The register DR consists of 16-bits and it is used to hold memory
operands (data). This register contains the data to be written into memory or receives the data

read from memory.

TEMPORARY REGISTER (TR): Temporary register have 16-bits and it provides

temporary storage of variables or results.

38

COMPUTER ORGANIZATION —UNIT-2

INSTRUCTION REGISTER (IR): The instruction register consists of 16-bits. The purpose
of the instruction register is to hold a copy of the instruction which the processor is to execute.
In our basic computer, instruction register (IR) holds instruction code which is read from

memory.

ADDRESS REGISTER (AR): Thisregister specifies the address in memory for next read or
writes operations. The address register consists of 12-hits.

PROGRAM COUNTER (PC): Program counter has 12-bits and it holds the address of the
next instruction to be read from memory after the current execution is executed. The
instructions are read sequentially because the Program Counter (PC) automatically increments
after fetching the current instruction.

TABLE 5-1 List of Registers for the Basic Computer

Register Number

symbol of bits Repister name Function

DR 16 Data register Holds memory operand

AR 12 Address register Holds address for memory
AC 16 Accumulator Processor register

IR 16 [nstruction register Holds instruction code

& 12 Program counter Holds address of instruction
TR 16 Temporary register Holds temporary data
INPR B [nput register Holds input character
OUTR 8 Qutput register Holds output character

39

COMPUTER ORGANIZATION —UNIT-2

1 0
PC
1 0
AR
Memory
4096 words
15 0 16 bits per word
IR
15 0 15 0
TR DR |
7 0 7 0 15 0
OUTR INPR AC |

Figure 5-3 Basic computer registers and memory.

—>Two registers are used for input and output. The input register (INPR) receives an 8-hit
character from an input device. The output register (OUTR) holds an 8-bitcharacter for an

output device.

Common Bus System:
BUS: A wire or a collection of wires that carry some multi-bit information is known as bus.

Main purpose of bus is to transfer information form one system to another.

DESCRIPTION: The basic computer has eight registers (AC, PC, DR, AC, IR, TR, INPR,
and OUTR), a memory unit and a control unit. Path must be provided to transfer information
from one register to another and between memory and registers. The number of wires will be
excessive if connections are made between the output of each register and input of other
registers. A more efficient scheme is to use a common bus. Thus common bus provides a
path between memory unit and registers. The connection of the registers and memory of the

basic computer to a common bus system is shown in Figure 5-4.

40

COMPUTER ORGANIZATION —UNIT-2

—>Five registers have three control inputs. LD (load), INR (increment) and CLR (clear).
Two registers have only aL D input.

Load (LD): The lines from the common bus are connected to the inputs of each register and
the data inputs of the memory. The particular register whose LD input is enabled receives the
data from the bus.

Increment (INR)) and Clear (CLR): The contents of the particular register are incremented
when its INR signal is enabled and cleared when its CLR signal is enabled.

Memory Unit: The memory receives the 16-bit information from the bus when its write
input is enabled and the memory places its 16-bit information onto the bus when its read input
is activated and $,$:1S = 111.

Address Register (AR): Thisregister specifies the address in memory for next read or writes
operations. The address register consists of 12 bits. When selection inputs S;$1S =001 is
applied to the bus, the address register AR receives or transfers address from or to the bus
when its LD input is enable. The address is incremented or clear by the inputs INR or CLR.

41

COMPUTER ORGANIZATION —UNIT-2
= —
S&, —o| Bus I
4096 x 16 |
| Address

Write Read
’| AR t e —
LD INR CLR
LD INR CLR
I ’l DR T | 3
LD INR CLR
r LD INR CIR
{__INPR
’l IR T | "5
'tlp_gn_'_i—-s
LD INR CIR
OUTR
| _Clock
LD
E—— —

Figure 5-4. The connections of registers and memory of the basic computer to a common

bus system.

42

COMPUTER ORGANIZATION —UNIT-2

Program Counter (PC): Program counter has 12 bits and it holds the address of the next
instruction to be read from memory after the current execution is executed. When selection
inputs $5S = 010 is applied to the bus, the program counter (PC) receives or transfers
address from or to the bus when its LD input is enable. The address is incremented or clear by
the inputs INR or CLR.

Data Register (DR): The register DR consists of 16-bits and memory operands (data). This
register contains the data to be written into memory or receives the data read from memory.
When selection inputs S5 = 011 is applied to the bus, the data register DR receives or
transfers data from or to the bus when its LD input is enable. The data is incremented or clear
by the inputs INR or CLR.

Accumulator (AC): The processor register AC consists of 16 bits. The 16-bit inputs to the
Adder / logic circuit come from the outputs of AC. They are used to implement register micro
operation such as complement and shift the contents of AC. The results of these micro
operations are again transferred to AC. So an accumulator is a register in which intermediate
arithmetic and logic results are stored. When selection inputs $$S = 100 is applied to the
bus, the processor register AC receives or transfers its data to the bus by enabling the LD
input of DR, it transfers the contents of DR through the adder / logic circuit into AC when its
LD input isenable. The data of AC isincremented or clear by the inputs INR or CLR.

Instruction Register (IR): The instruction register consists of 16-bits. The purpose of the
instruction register isto hold a copy of the instruction which the processor is to execute. The
instruction read from memory is placed in the IR. When selection inputs $$S = 101 is
applied to the bus, the instruction register IR receives or transfers instruction code from or to

the bus when its LD input is enable.

Temporary Register (TR): Temporary registers have 16 bits. It provides temporary storage
of variables or results. When selection inputs $5:S = 111 is applied to the bus, the
temporary register TR receives or transfers temporary data from or to the bus when its LD

input is enable. The datais incremented or clear by the inputs INR or CLR.

Input Register (INPR): The Input Register INPR consists of 8-bits and hold alphanumeric

input information. The serial information from the input device is shifted into input of 8-bit

43

COMPUTER ORGANIZATION —UNIT-2

register INPR. When LD input of AC is an enable, the 8-bit information of INPR is
transferred to the AC via Adder/logic circuit.

Output Register (OUTR): The output OUTR receives information from AC and transfers it

to the output device.

5195 Register

000 | Knothin o

T M[i 4 @rnnenftheregiﬂerswi]l have its load signal
activated, or the memory will have its read signa

0190 g activated which wil determine where the data

{1 DR from the bus gets loaded. The 12-bit registers, AR

100 AC and PC, have (15 loaded onto the bus in the high

101 " order 4 bit positions, When the 8-bit register OUTR
is foaded from the bus, the data comes from the

110 TR low order 8 bits on the bus,

8 Memory P

10. Computer Instructions:

- The Basic Computer has 3 instruction code formats as shown in Figure5-5.
—~>Each format has 16 bits. The operation code (op-code) of the instruction contains 3 bits

and the meaning of the remaining 13 bits depends on the operation code encountered.

—->A Memory reference instruction uses 12 bits to specify an address and one bit to specify
the addressing mode |. Addressing mode | is equal to O for direct address and to 1 for indirect
address.

COMPUTER ORGANIZATION —UNIT-2

—>The register reference instruction are recognized by operation code 111 with a 0 in left
most bit (Bit 15) of the instruction. The 12 hits are used in to specify the operation done with
AC register.

—>Input-Output instruction is recognized by operation code 111 with a 1 in the left most bit
of the instruction. The remaining 12 bits are used to specify the type of input —output
operation or test performed.

Figure 5-5 Basic computer instruction formats.

15 14 12 11 0
‘ 1 l Opcode ‘ Address (Opcode = D00 through 110]

(2) Memory - reference instruction

15 12 11 0

01 1 1 Register operation (Opcode= 111, [=0)

(b) Register - reference instruction

15 12 11 0
1 1 1 1 110 operation (Opcode =111, [=1)

(c) Input - output instruction

- Thetype of instruction is recognized by the computer control from the four bits in positions
12 through 15 of the instruction. If the three op-code bits in positions 12 through 14 are not
equal to 111, the instruction is a memory-r eference type and the bit in position 15 is taken as
the addressing mode I. If the 3-bit op-code is equal to 111, control then inspects the bit in
position 15. If this bit is O, the ingtruction is a register-reference type. If the bit is 1, the

instruction is an input-output type.

45

—>The instructions for the computer are listed in Table 5-2.The hexadecimal is egual to the
equivalent number of binary code used for the instruction. When 1=0, the last four bits of an
instruction have a hexadecimal digit equivalent from O to 6 since the last bit is 0. When 1=1,
the hexadecimal digit equivalent of the last four bits of the instruction ranges from 8 to E

COMPUTER ORGANIZATION —UNIT-2

sincethelast bit is 1

Hex Code

Symbol | I=0 I=1 Description

AND | Oxxx 8xxx | AND memory wordtoAC

ADD | 1xxx 9xxx | Add memory wordto AC

LDA 2xxx Axxx | Load AC from memory

STA 3xxx Bxxx | Store contentof AC into memory
BUN | 4xxx Cxxx | Branch unconditionally

BSA | 5xxx Dxxx | Branch and save return address
ISZ 6xxx Exxx | Incrementand skip if zero

CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate leftAC and E

INC 7020 IncrementAC

SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero

HLT 7001 Halt computer

INP F800 Input characterto AC

ouT F400 Output character fromAC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

IOF F040 Interrupt off

46

COMPUTER ORGANIZATION —UNIT-2

TABLE 5-2 Basic Computer instructions.

Note: The presented code is for any instruction that has 16 bits. The xxx represents don’t
care (any data for the first 12 bits). Example 7002 for is a hexadecimal code equivalent to
0111 0000 0000 0010 which means B1 (Bit 1) is set to 1 and the rest of the first 12 bits are set
to zeros.

Timing andControl:

Instruction register (IR

:HHHHH Y SLLRILRINZEIRNZES Q1) FHHHH«H:

: L]

' '

E '

E decoder E

: 76543210 :

' '

' Combinational '

: Control . EF'""F"
' : * signals
: logic o
' '

E '

E '

: '

E 5 14.... :

v 4x16 '

' decoder ‘

E '

: '

: '

: sequence '

' counter '

' 5C '

' '

:ililii LI L N L LI N L I L I R L R NI R YR IYINIY IRl iilii:

47

COMPUTER ORGANIZATION —UNIT-2

Figure 5-6 Control unit of basic computer.

—>The timing for all registers is controlled by a master clock generator. The clock pulses are
applied to al flip-flops and registers in the system, including the flip-flops and registersin the
control unit. The clock pulses do not change the state of a register unless it is enabled by a
control signal. The control signals are generated in the control unit and provide control inputs
for the multiplexers in the common bus, control inputs in processor registers, and micro-
operations for the accumulator.

—>There are two major types of control organization: hardwired control and programmed
control. In Hardwired organization, the control logic is made up of sequential and
combinational circuits to generate the control signals.

—>In Micro-programmed Control, the control memory on the processor contains micro-

programs that activate the necessary control signals.

—>The block diagram of control unit of the basic computer is shown in Figure 5-6.1t consists
of 2 decoders, a 4-bit sequence counter, Instruction Register and a number control logic gates.

—>An instruction read from memory is placed in the instruction register (IR). The instruction
register is divided into three parts. the | bit, operation code, and address part. First 12-bits
(0-11) to specify an address, next 3-bits specify the operation code (op-code) field of the
instruction and last left most bit specify the addressing mode I. | = O for direct address | = 1

for indirect address.

—>First 12-hits (0-11) are applied to the control logic gates. The operation code bits (12 — 14)
are decoded with a3 x 8 decoder. The eight outputs (Do through D7) from a decoder go to the
control logic gates to perform specific operation. Last bit 15 is transferred to a | flip-flop
designated by symbol I.

->The 4-bit sequence counter SC can count in binary from O through 15. The counter output

is decoded into 16 timing pulses To through T1s. The sequence counter can be incremented by

INR input or clear by CLR input synchronously.

48

COMPUTER ORGANIZATION —UNIT-2

> For example:
Consider the case where SC is incremented to provide timing signalsTO, T1, T2, T3, and T4
in sequence. At time T4, SC is cleared to O if decoder output D3 is active. This is expressed
symbolically by the statement:

D3 T4:SC <0

—>The timing diagram of Figure 5-7shows the time relationship of the control signals. The
sequence counter SC responds to the positive transition of the clock. Initially, the CLR input
of SC is active. The first positive transition of the clock clears SC to 0, which in turn activates
the timing signal To out of the decoder. Ty is active during one clock cycle. The positive clock
transition labeled connected To in the diagram will trigger only those registers whose control
inputs are transition, to timing signal To. SC is incremented with every positive clock
transition unless its CLR input is active. This produces the sequence of timing signals To, Ty,
To, T3, T4, and so on. If it is not cleared, the timing signals will continue with Ts, Ts, upto T1s
and back to To.

-Example: Ty, T4, Ty, T3, Ty, Tg, Ty, - -
Assume: At time T,, SC is cleared to 0 if decoder outputD3 is active.

D,T, SC «

T4 TO

e L
o _ N
" \
. \

T3

T4 \

D3

cR N\ \

SC

Figure 5-7 Example of control timing signals.
—>The last three waveforms in Figure 5-7 show how SC is cleared when D3T4 = |. Output D3
from the operation decoder becomes active at the end of timing signal T>. When timing signal
T4 becomes active, the output of the AND gate that implements the control function D3T4
becomes active. This signal is applied to the CLR input of SC. On the next positive clock

49

COMPUTER ORGANIZATION —UNIT-2

transition (the one marked T, in the diagram) the counter is cleared to 0. This causes the
timing signal To to become active instead of Ts that would have been active if SC were
incremented instead of cleared.

11. Instruction Cycle:

—>A program residing in the memory unit of the computer consists of a sequence of
instructions. The program is executed in the computer by going through a cycle for each
instruction. Each instruction cycle in turn is subdivided into a sequence of sub-cycles or
phases. In the basic computer each instruction cycle consists of the following phases:

1. Fetch an instruction from memory.

2. Decodetheinstruction.

3. Read the effective address from memory if the instruction has an
indirect address.

4. Executetheinstruction.

—>Upon the completion of step 4, the control goes back to step 1 to fetch, decode, and execute
the next instruction. This process continues indefinitely unless a HALT instruction is

encountered.

Fetch and Decode:

—>Initially, the program counter PC is loaded with the address of the first instruction in the
program. The sequence counter SC is cleared to 0, providing a decoded timing signal To.
After each clock pulse, SC is incremented by one, so that the timing signals go through a
sequence To, Ty, T2, and so on. The micro-operations for the fetch and decode phases can be

specified by the following register transfer statements.

T0: AR « PC (S,S,5,=010, T0=1)
T1:IR « M[AR], PC «PC +1 (S08182=111, T1=1)
T2: DO, ..., D7 « Decode IR(12-14), AR « IR(0-11), | « IR(15)

—>Since only AR is connected to the address inputs of memory, the address of instruction is
transferred from PC to AR.

50

COMPUTER ORGANIZATION —UNIT-2

—>Figure 5-8 shows how the first two register transfer statements are implemented in the bus
system. To provide the data path for the transfer of PC to AR we must apply timing signal To

to achieve the following connection:

1. Place the content of PC onto the bus by making the bus selection inputs $$1S equal
to 010.
2. Transfer the content of the busto AR by enabling the LD input of AR.

->The next clock transition initiates the transfer from PC to AR since T1 = 1. In order to
implement the second statement:
Ti: IR€MI[AR], PC€PC+1

it is necessary to use timing signal T to provide the following connections in the bus system.
Enable the read input of memory.

Place the content of memory onto the bus by making $,$1S = 111.

Transfer the content o f the bust o IR by enabling the LD input of IR.
Increment PC by enabling the INR input of PC.

A w0 Dd P

—>The next clock transition initiates the read and increment operationssince T, = 1.

51

COMPUTER ORGANIZATION —UNIT-2

T1 ﬂ EE
T0 —9p s, Bus
b
=)—»is
QA | ’
»| Memory e
unit
Address

3:]‘Head
- AR . | 11
=D_f|.n L
> PC | ~2
‘L$ INR
> IR I > 5]
Fs L |
LD Clock

Lommon DUs
Figure 5-8 Register transfersfor the fetch phase.

Determine the Type of Instruction:

—>The timing signal that is active after the decoding is Ts. During time T3z the control unit
determines the type of instruction that was just read from memory. The flowchart of Figure
5-9 presents an initial configuration for the instruction cycle and shows how the control

determines the instruction type after the decoding.

52

COMPUTER ORGANIZATION —UNIT-2

Start
SC«0

4
AR « PC 10

J’ T1

IR « M[AR], PC « PC+1

* T2

Decode Opcode in IR(12-14),
AR « IR(0-11), 1« IR(15)

(Register or 1/0) =1 =0 (Memory-reference)

(10)=1 =0 (register) (indirect) = 1 =0 (direct)

T3 T3 T3 T3
Execute Execute AR « M[AR] Nothing
input-output register-reference l § ‘
instruction instruction
SCe« 0 SC e« 0 Execute T4
memory-reference
instruction
SC « 0
¥ |

Figure 5-9. Flowchart for instruction cycle (initial configuration).

- Decoder output D7 is equal to 1 if the operation code is equal to binary 111. If D7 = 1, the
instruction must be a register-reference or input-output type. If D7 = 0O, the operation code
must be one of the other seven values 000 through 110, specifying a memory-reference
instruction. Control then inspects the value of the first bit of the instruction, which is now
available in flip-flop I. If D7 = 0 and | = 1, we have a memory reference instruction with an

indirect address. It is then necessary to read the effective address from memory. The micro-

53

COMPUTER ORGANIZATION —UNIT-2

operation for the indirect address condition can be symbolized by the register transfer
statement
AR € M [AR]

—>The three instruction types are subdivided into four separate paths. The selected operation
is activated with the clock transition associated with timing signal Ts. This can be symbolized

as follows:

D'71T3: AR <« M[AR]

D'71'Tza: Nothing

D7I'T3: Execute a register-reference instr.
D7IT3: Execute an input-output instr.

TYPES OF INSTRUCTIONS:
- The basic computer has three 16-bit instruction code formats:

= Memory Reference Instructions.
= Register Reference Instructions.

= Input /Output Instructions.

Register-Reference Instructions:

—>Register-reference instructions are recognized by the control when D7 =1 and | = 0. These
instructions use bits 0 through 11 of the instruction code to specify one of 12 instructions.
These 12 bits are available in IR(0-11). They were also transferred to AR during time To.

Register Reference Instructions are identified when

-D;=1, 1=0
- Register Ref. Instr. is specified in by ~ b4, of IR
- Execution starts with timing signal T,

—->The control functions and micro-operations for the register-reference instructions are listed
in Table 5-3.

COMPUTER ORGANIZATION —UNIT-2

TABLE 5-3 Execution of Register-Reference Instructions

D+I'Ts = r (common to ll register-reference instructions)
IR(E) = B [vit in IR(0-11) that specifies the operation]

. SCe0 Clear §C
CLA 1By ACe0 Clear AC
CLE By E<l Clear E
CMA 1By AC<AC Complement AC
CME By E«E Complement E
CR 1By ACeshr AC, AC(15)<E, E<AC(0) Circulate right
CIL By ACeshl AC, AC(0)<E, E<AC(S) Circulate lft
INC 1B; AC<AC+1 [ncrement AC
SPA 1B;: If(AC(15)=0) then (PC<PC +1) Skip if positive
SNA 1By If(AC(15)=1)then (PC<PC +1) Skip if negative
SZA 1B; If(AC=0)then PC<PC +1]) Skip if AC zero
SZE 1By If(E=0)then (PC<PC+]) Skip if E zer0
HLT By §«0(Sisastart-stop ﬂJp—ﬂup) Halt computer

12. Memory Reference Instructions:

—>Table 5-4 lists the seven memory-reference instructions. The decoded output D; for i = 0,

1, 2, 3, 4, 5, and 6 from the operation decoder that belongs to each instruction is included in

the table. The effective address of the instruction is in the address register AR and was placed

there during timing signal T> when | =0, or during timing signal Tz when | = 1. The execution

of the memory-reference instructions starts with timing signal Ta.

55

COMPUTER ORGANIZATION —UNIT-2

TABLE 5-4 Memory-Reference Instructions

Operation
Symbol decoder Symbolic description
AND Dq AC—AC N M[AR]
ADD D, AC+—AC + M[AR], E+C.u
LDA D; AC «—M[AR]
STA D M[AR]+AC
BUN D, PC«—AR
BSA D M|AR]|«<PC, PC+AR + 1
ISZ Dy M[AR]+—M[AR] + 1,

If M[AR] + 1 = 0 then PC«PC + 1

—>All memory-reference instructions have to wait until T4 S0 that the timing is the same
whether the operand is direct or indirect.

AND to AC:

—>This is an instruction that performs the AND logic operation on pairs of bitsin AC and the
memory word specified by the effective address. The result of the operation is transferred to

AC. The micro-operations that execute this instruction are:

AND to AC
DsT;: DR « M[AR] Read operand
DiTs: AC+ACADR SC+0 AND with AC
ADD to AC:

—>This ingtruction adds the content of the memory word specified by the effective address to
the value of AC. The sum istransferred into AC and the output carry Cou is transferred to the
E (extended accumulator) flip-flop. The micro-operations needed to execute this instruction
are:
ADD to AC

DiT,: DR« M[AR] Read operand

D,T.: AC+~AC+DR E«+C_, SC+ 0 AddtoAC and store carryin E

LDA: Load toAC:
—>This insgtruction transfers the memory word specified by the effective address to AC. The

micro-operations needed to execute this instruction are:

56

COMPUTER ORGANIZATION —UNIT-2

LDA: Load to AC

D;Ts: DR« M[AR] {/Read operand
DyTs: AC«DR,SC+0 {/Load AC with DR
STA: Store AC:

—>This instruction stores the content of AC into the memory word specified by the effective
address. Since the output of AC is applied to the bus and the data input of memory is
connected to the bus, we can execute this instruction with one micro-operation:

STA: Store AC
DsTy: M[AR] - AC,5C« 0 |/ store data into memory location

BUN: Branch Unconditionally:

—>This instruction transfers the program to the instruction specified by the effective address.
Remember that PC holds the address of the instruction to be read from memory in the next
instruction cycle. PC is incremented a time T1 to prepare it for the address of the next
instruction in the program sequence. The BUN instruction allows the programmer to specify
an ingtruction out of sequence and we say that the program branches (or jumps)

unconditionally. The instruction is executed with one micro-operation:
BUN: Branch Unconditionally
DiTy PCAR SCe0 J[Branch to specified address

BSA: Branch and Save Return Address:
—>BSA instruction performs the function usually referred to as a subroutine call.
—~>BSA is used to branch to a subprogram. This requires saving the return address, which is

saved at the operand’s effective address with the subprogram beginning one word later in

memory:

BSA: Branch and Save Return Address

DsTy: M[AR] - PC, AR AR +1 {/ save return address and increment AR
DsTs: PCAR SC+ 0 I load PC with AR

57

COMPUTER ORGANIZATION —UNIT-2

Figure 5-10 Example of BSA instruction execution.

Memory Memory
20 0 BSA 135 20 0 BSA 1335
PC =21 MNext instruction 21 Next instruction
AR = 135 135 21
136 Subroutine PC =136 Subroutine
1 BUN 135 1 BUN 133
(a) Memory, PC, and AR at time T, (b) Memory and PC after execution

ISZ: Increment and Skip if Zero:
—2>1SZ skips the next instruction if the operand stored at the effective address is 0. This

requires that the PC incremented, which cannot be done directly:

This is done with the following sequence of micro-operations.

ISZ: Increment and Skip-if-Zero
D:Tg: DR+ MIAR] {/\oad data into DR
D:T:: DR+« DR+1 [/ Increment the data

D;Ty: MIAR] DR, if (DR = 0) then (PCPC+1), SC« 0
{1 DR=0 skip next instruction by incrementing PC

Control Flowchart:
—>A flowchart showing all micro-operations for the execution of the seven memory-reference

instructions is shown in Figure 5-11. The control functions are indicated on top of each box.
The micro-operations that are performed during time T4, Ts, or T, depend on the operation
code value. This is indicated in the flowchart by six different paths, one of which the control

takes after the instruction is decoded. The sequence counter SC is cleared to 0 with the last

58

COMPUTER ORGANIZATION —UNIT-2

timing signal in each case. This causes atransfer of control to timing signal To to start the next
instruction cycle.

Memory-reference instruction

ADD 1

AND LDA STA
l Do Ty l D4Ty l DyTy l D3Ty
DR < M[AR] DR < M[AR] DR « M[AR]—l M[&F*L%OAC
l DoTs l D4T5 l D,yTg
AC <« ACADR| [AC < AC+DR AC « DR
SC« 0 E < Cout SC« 0
SC« 0
BUN BSA 1SZ
l D4Ty l D5Ty l Dg T4
PC « AR M[AR] « PC DR « M[AR]
SCe« 0 AR« AR+ 1
l D5Ts l DgT5
PC « AR DR« DR+1
SC ¢ 0 l
DsTe
M[AR] < DR
If (DR = 0)
then (PC « PC +1)
SC« 0

Figure 5-11 Flowchart for memory-reference instructions.
13. Input- Output and Interrupt:
-> In computer, instructions and data stored in memory come from some input device and

Computational results must be transmitted to the user through some output device.

Input Output Configuration:

- The terminal sends and receives 8 bit data converted to serial information and receives
seria information and convert it back to parallel 8 bits.

- The serial info from the keyboard is shifted into the input register INPR.

59

- The serial info for the printer is stored in the output register OUTR. These two registers
communicate with acommunication interface serially and with the AC in parallel.

->The input-output configuration is shown in Figure 5-12. The transmitter interface receives
serial information from the keyboard and transmits it to INPR. The receiver interface receives

COMPUTER ORGANIZATION —UNIT-2

information from OUTR and sends it to the printer serially.

Figure 5-12 Input-output configuration.

Input ~ output Serial Computer
terminal communication registers and
interface flip-flops
FGO
P Receiver
e i S — o —
e interface OUTR
- AC
Yo Transmiter
Keyboard imerface : INPR

Input Register:

Fisl

INPR: Input register - 8 bits—\\
OUTR: Output register- 8 bits
FGl:Input flag - 1 bit (Is a
control flip-flop, set to 1
when new information is
available)

FGO: Output flag - 1 bit

IEMN: Interrupt enable - 1 bit

gl

60

COMPUTER ORGANIZATION —UNIT-2

- Scenariol: when akey is struck in the keyboard, an 8-bit alphanumeric code is shifted into
INPR and the input flag FGI is set to 1. As long as the flag is set, the information in INPR
cannot be changed by striking another key. The control checks the flag bit, if 1, contents of
INPR is transferred in parallel to AC and FGI is cleared to 0. Once the flag is cleared, new
information can be shifted into INPR by striking another key

Output Register:

—>Scenario2: OUTR works similarly but the direction of information flow is reversed.
Initially FGO is set to 1. The computer checks the flag bit; if it is 1, the information is
transferred in parallel to OUTR and FGO is cleared to 0. The output device accepts the coded
information, prints the corresponding character and when operation is completed, it sets FGO
to 1.

Input-Output Instructions:

TABLE 5-5 Input-Output [nstructions

— —— - —
———— —

D;IT; = p (common to all input—output instructions)
IR(i) = B; [bit in IR(6-11) that specifies the instruction)]

p. SC+0 Clear SC
INP pBy: AC(0-7)«—INFR, FGI+0 Input character
OUT pBw: OUTR«AC(0-7), FGO 0 Output character

SKI pBy: If (FGI = 1) then (PC+«PC + 1) Skip on input flag

SKO pBy If (FGO =1)then (PC«—PC + 1) Skip on output flag
ION pBxn I[IEN<+1] Interrupt enable on
IOF pBs: IEN+<0 Interrupt enable off

- Input and output instructions are needed for transferring information to and from AC
register, for checking the flag bits, and for controlling the interrupt facility. Input-output
instructions have an operation code 1111 and are recognized by the control when D7 = 1 and |
= 1. The remaining bits of the instruction specify the particular operation. The control

functions and micro-operations for the input-output instructions are listed in Table 5-5.

Program Interrupt:

61

COMPUTER ORGANIZATION —UNIT-2

—>Open communication only when some data has to be passed is called as an interrupt.
Interrupts permit other CPU instructions to execute while waiting for 1/0 to complete. The I/O
interface, instead of the CPU, monitors the 1/O device. When the interface founds that the 1/0
device isready for datatransfer, it generates an interrupt request to the CPU.

—>Upon detecting an interrupt, the CPU stops momentarily the task it is doing, branches to the
serviceroutineto processthedata transfer, and then returns to the task it was performing.

—>Scenario3: Consider a computer which completes instruction cycle in 1ps. Assume 1/0O
device that can transfer information at the maximum rate of 10 characters /sec. Equivalently,
one character every 100000us. Two instructions are executed when computer checks the flag
bit and decides not to transfer information. Which means computer will check the flag 50000
times between each transfer. Computer is wasting time while checking the flag instead of
doing some useful processing task.

IEN (Interrupt-enable flip-flop):

—21EN can be set and cleared by instructions. When cleared, the computer cannot be
interrupted.

—>The way that the interrupt is handled by the computer can be explained by means of the
flowchart of Figure 5-13.

—>An interrupt flip-flop R is included in the computer. When R = 0O, the computer goes
through an instruction cycle. During the execute phase of the instruction cycle IEN is checked
by the control. If it is 0, it indicates that the programmer does not want to use the interrupt, so
control continues with the next instruction cycle. If IEN is 1, control checks the flag bits. If
both flags are 0, it indicates that neither the input nor the output registers are ready for transfer
of information. In this case, control continues with the next instruction cycle. If either flag is
set to 1 while IEN = 1, flip-flop R is set to 1. At the end of the execute phase, control checks
the value of R, and if it is equal to 1, it goes to an interrupt cycle instead of an instruction

cycle.

62

COMPUTER ORGANIZATION —UNIT-2

Instruction cyele =0 /Ek =1 Interrupt cycle

| S |

Feich and decode
3 x Sore reurmn address
In&rucinn in location 0
4 M [0] & PC
Execute i
irsirscison
Aranch 1o location 1
PO o= |
1r
TEN 0
R0
Y i i L

Fipure 5-13 Flowcharr for interrupt cyele.

Interrupt Cycle:
—>The interrupt cycle is a hardware implementation of a branch and save return address

operation.
- An example that shows what happens during the interrupt cycle is shown in Figure. 5-14.

—>Suppose that an interrupt occurs and R is set to 1 while the control is executing the
instruction at address 255. At this time, the return address 256 is in PC. The programmer has
previously placed an input-output service program in memory starting from address 1120 and
aBUN 1120 ingtruction at address 1. Thisis shown in Figure 5-14(a).

—>When control reaches timing signal TO and finds that R = 1, it proceeds with the interrupt
cycle. The content of PC (256) is stored in memory location O, PC isset to 1, and R is cleared

63

COMPUTER ORGANIZATION —UNIT-2

to 0. At the beginning of the next instruction cycle, the instruction that is read from memory is
in address 1 since this is the content of PC. The branch instruction at address 1 causes the
program to transfer to the input-output service program at address 1120. This program checks
the flags, determines which flag is set, and then transfers the required input or output
information. Once this is done, the instruction ION is executed to set IEN to 1 (to enable
further interrupts), and the program returns to the location where it was interrupted. This is
shown in Figure 5-14(b).

Figure 5-14 Demonstration of the interrupt cyele.

Memory Memory
0 0 256
1| o BUN 1120 PC=1]|0 BUN 1120
255 . 255 .
PC =256 Main 256 Main
program program
1120 1120
/O /O
program program
I BUN O 1 BUN O

{a} Before intermupt

{b) After intermupt cycle

64

COMPUTER ORGANIZATION —UNIT-2

Resister transfer operationsin interrupt cycle:

Register Transfer Statements for Interrupt Cycle
-R FIF <1 ifIEN (FGI + FGO)T,'T,'T,’
& To'Ty' T (IEN)(FGI+ FGO): R« 1

- The fetch and decode phases of the instruction cycle
must be modified = Replace T,, T,, T, with R'T;,, R'T;, R'T,
- The interrupt cycle :

RT;: AR« 0, TR« PC

RT,: M[AR]« TR, PC« 0

RT,: PC«PC+1, IEN¢ 0, R« 0,SC«0
14. Complete Computer Description:

—>The final flow chart of instruction cycle including interrupt cycle for the basic computer is
shown in Figure5-15.

65

COMPUTER ORGANIZATION —UNIT-2

Stan
SC—0.TEN « D R +0D

(insoection cycle) =10 =1 (imtermapt cycle)
&
R BTy
AR &= PC AR =0, TR = PC
i BT, RT,
IR =M [AEL FC—=FC+ | M AR}~ TR, PC 0
R"Tg 1 R]":
AR+~ IRM-11), T+ IR{I1% PC=PC+. I[EN =D
Dy I = Decode IR (12— 14) f =050 0
| L

(Registeror [A)) =1 =0 [Memory = reference)

o

(i =1 =0 (register) (indirect) =1 a il (direct)

DTy OdTy oL, Ty
 Execute Execute AR = MIAR| Mothing
iFpui-u cegister-reference
instruction instnoction
{Tahle 5-5) {Table 5-1]

Execuie
memary - reference
IFSIRUCHOT
{Fg5-11)

]

Figure 5-15 Flowchas for computer operarion,
—>The control functions and micro-operations for the entire computer are summarized in
Table 5-6

66

COMPUTER ORGANIZATION —UNIT-2

Register-Reference

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

Input-Output

INP
ouT
SKI
SKO
ION
|OF

DT, =r
IR(i)= B,
I

1B,
1B,y
1B,
1B,
1B.:
1B,
1B,
1B,
B,
B,
1B,
1B,

DT, =p

(Common to all register-reference instr)
(i=012,..11)

SCel

AC« 10

E«0

AC « AC

EeF

AC « shrAC, AC[15) « E, E « AC(0)
AC « shl AC, AC[0) ~ E, E « AC(15)
AC « AC +1

If(AC(15) =0) then (PC « PC #1)
If(AC(15) =1) then (PC«PC 1)
If(AC = 0) then (PC &« PC + 1)
[f{E=0) then (PC « PC +1)

S«0

(Common to all input-output instructions)
(i=6,7,09,10.1)

SCe0

AC(0-) « INPR, FGl+ 0

OUTR « AC{0-7), FGO « 0

[f{(FGI=1) then (PC « PC +1)

If(FGO=1) then [PC « PC + 1)

|EN « 1

[EN + 0

67

COMPUTER ORGANIZATION —UNIT-2

Fetch RT, AR « PC
RT,: IR « M[AR], PC« PC + 1
Decode RT,: D0, ..., D7 « Decode IR(12 - 14),
AR « IR(0~ 11}, 1 « IR{135]
Indirect D-'IT,: AR « M[AR]
Interrupt
T,/ T, T,/(IEN)(FGI + FGO): R«
RT,: AR « 0, TR « PC
RT,: M[AR] « TR, PC + 0
RT.. PC-PC+1IEN~0 Re0,8C« 10
Memory-Reference
AND DT, DR « M[AR]
DT, AC«AC A DR SC«0
ADD 0,7, DR « M[AR]
DT, AC+~AC+DR E+C,,SC«0
LDA D.T.. DR « M[AR]
D.Tq AC+ DR, SC+ 10
STA DT, M[AR] + AC, SC « 0
BUN DT, PC« AR, SCe0
BSA D:T, M[AR] « PC, AR « AR + 1
DT PC+~AR SC«0
ISZ DT, DR « M[AR]
D,T.. DR« DR + 1
D.T.: M[AR] ~ DR, if(DR=0) then (FC « PC +1),
SC«10
Design of Basic Computer:

The basic computer consists of the following hardware components:

N o g bk~ w0 D e

A memory unit with 4096 words of 16 hits each.
Nineregisters: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC.
Seven flip-flops. I, S, E, R, IEN, FGI, and FGO.

Two decoders. a3 x 8 operation decoder and a4 x 16 timing decoder.

A 16-bit common bus.

Control logic gates.

Adder and logic circuit connected to the input of AC.

68

A w D P

COMPUTER ORGANIZATION —UNIT-2

IMPORTANT QUESTIONS
Explain the operation of 4-bit adder-subtractor with a neat diagram?
Discuss about various shift micro-operations?
Describe the working of arithmetic logic shift unit?
Describe a common bus system for four registers of 4 bit s each, using three state buffers and
explain its functionality?

5. Discuss about Logic micro operations?

6. What are the register transfer logic languages? Explain few RTL statements for branching

10.
11.
12.
13.

14.

15.
16.
17.
18.

19.
20.
21.
22.
23.
24,

with their actual functioning?
Register A holds the 8-bit binary 11011001.Determine the B operand the logic micro
operation to be performed in order to change the value in A to:
() 001101101
(i) 11111101
The following transfer statements specify a memory. Explain the memory operation in each
case. (i) R2&MJ[AR] (i)M[AR] € R3 (iii) R5¢M[R5]
Explain Register Transfer?
Write about stored program organization?
Explain in detail about control unit of basic computer with a neat diagram?
Discuss the phases of an instruction cycle?
What are the basic computer registers and explain with block diagram how information is
transferred among the registers?
Draw the flowchart for Interrupt cycle and explain how input-output operations are
performed.
Explain memory reference instructions?
Explain instruction cycle? Explain computer registers?
Write the sequence of micro-operations and draw the flow chart for interrupt cycle?
Show the hardware implementation for the following statements. The registers are 4-hit in
length. TO: A€RO, TLLA<RL, T2: A€R2, T3<R3.
Write about the different Logic micro operations?
Describe Three State Buffers?
Micro-operations and Register Transfer Language.
If A=1101 and B=1001, perform the mask operation.
Explain Binary adder with a neat diagram?

Distinguish between Micro and Macro operations?

69

COMPUTER ORGANIZATION —UNIT-2

25. Explain the categories of micro operations?

26. What is the use of Register Transfer Language (RTL)?
27. Draw the circuit diagram of 4-bit binary adder?

28. Draw the diagram for register transfer for fetch phase?
29. What is instruction code?

30. What is direct addressing?

70

COMPUTER ORGANIZATION CHAPTER-3

Central Processing Unit: General Register Organization, STACK Organization. Instruction
Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced
Instruction Set Computer.

Micro programmed Control: Control Memory, Address Sequencing, Micro Program

example, Design of Control Unit.

1. General Register Organization:

Introduction:

—>The part of computer that performs the bulk of data processing operations is called the
central processing unit and isreferred to as CPU.

—>The CPU is made of 3 parts, as shown in figure

———| Register sct
Coners i 1

Arithmenc
e borgic Lomit
CALLD

Figure B-1 Major components of CPLIL

1. Registers: The register set dtores intermediate data used during the execution of the
instructions.
2. ALU: The arithmetic logic unit (ALU) performs the required micro operations for
executing the instructions.
3. Control Unit: The control unit supervises the transfer of data among the registers and
instructs the ALU as to which operation to perform.
—>Design Examples of simple CPU
|. Hardwired Control
2. Micro-programmed Control
- User who programs the computer in machine/assembly language must be aware of
1) Instruction Formats
2) Addressing Modes
3) Register Sets

COMPUTER ORGANIZATION CHAPTER-3

General Register Organization:

Register:

—>Memory locations are needed for storing pointers, counters, return address, temporary
results, and partial products during multiplication. Memory access is the most time-
consuming operation in a computer. More convenient and efficient way is to sore
intermediate values in processor registers.

—>A bus organization for seven CPU registersis shown in Figure.

—>The output of each register is connected to two multiplexers (MUX) to form two buses A
and B. The selection lines in each multiplexer select one register or the input data for the
particular bus. The A and B buses form the inputs to a common arithmetic logic circuit
(ALU).

C’i':k 1T1F|L|t

Ri

R3
R4 |
RS
R

i R #T?TTTTT *l yyYyYy

' -
Ll EELA{ = MUX A MUX B <+]. SELR

TTRTRR

3x8
decdr A bus B bus

444
-
SELD /

OFR |
|

LY

ALL

2222

¥ Output

(a). Block diagram

COMPUTER ORGANIZATION CHAPTER-3

I ;
A | D WD | R

(b). Control word.

Figure 8-2 Register set with common ALU.

—>ALU: The operation (OPR) selected in the ALU determines the arithmetic or logic micro-
operation. The result of the micro-operation is available for data output and also goes into the
inputs of all the registers.

—->3 X 8 Decoder: select the register (by SELD) that receives the information from ALU.
—>The control unit that operates the CPU bus system directs the information flow through the
registers and ALU by selecting the various components in the system. For example, to
perform the operation:

R1<€¢ R2+R3

- The control must provide binary selection variablesto the following selector inputs:

1) MUX A sdlector (SELA): to place the content of R2 into BUS A.
BUSA< R2

2) MUX B selector (SELB): to place the content of R3 into BUS B.
BUSB< R3

3) ALU operation selector (OPR): to provide the arithmetic addition A + B.
ALU to ADD

4) Decoder destination selector (SELD): to transfer the content of the output bus into R1.
R1< Out Bus

COMPUTER ORGANIZATION CHAPTER-3

- These four control signals are generated in control unit in start of each clock cycle ensuring
operands are selected beside correct ALU operation and result is chosen in one clock cycle
only.

Control Word:

—>There are 14 binary selection inputs in the unit, and their combined value specifies a
control word. The 14-bit control word is defined in Fig. 8-2(b).

- 14 bit control word (4 fields):

o SELA (3bits): select a sourceregister for the A input of the ALU
e SELB (3bits): select asource register for the B input of the ALU

e SELD (3 bits): select adegtination register using the 3 X 8 decoder
e OPR (5 bits): select one of the operationsinthe ALU

- The encoding of the register selections is specified in Table 8-1.

Binary

Code SELA SELB SELD
000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

TABLE: 8-1 Encoding of Register Selection Fields.

> The register selected by fields SELA, SELB and SELD is the one whose decimal number is
equivalent to the binary number in the code.

—->When SELA or SELB is 000 (Input) the corresponding MUX selects the external input
data.

—~>When SELD = 000 (None), no destination register is selected but the contents of the output

bus are available in the external output.

COMPUTER ORGANIZATION CHAPTER-3

—>Encoding of ALU Operation (OPR):

—>The OPR field has five bits and each operation is designed with a symbolic name.

OPR
Select Operation

Symbol

00000 Transfer A
00001 Increment A
00010 ADD A+B
00101 Subtract A - B
00110 Decrement A
01000 AND A and B
01010 OR A and B
01100 XOR A and B
01110 Complement A
10000 Shift right A
11000 Shift left A

TSFA
INCA
ADD
SuUB
DECA
AND
OR
XOR
COMA
SHRA
SHLA

TABLE 8-2 Encoding of ALU Operations

->Examples of Micro-operations:

Symbolic Designation
Microoperation SELA SELB SELD OPR

Control Word

R1«R2-R3 RZ R3 R1 SUB
Re<R4vR5 R4 R5 R4 OR
R6<R6+1 R6 - R6 INCA
R7«R1 R1 - R7T TSFA
Qutput « R2 R2 - None TSFA
Output < Input Input - None TSFA
Ré ¢ shi R4 R4 - R§ SHLA
RS0 RS R5 RS XOR

010 011 001 00101
100 101 100 01010
110 000 110 00001
001 000 111 00000
010 000 000 00000
000 000 000 00000
100 000 100 11000
101 101 101 01100

TABLE 8-3 Examples of Micro-operations for the CPU.

COMPUTER ORGANIZATION CHAPTER-3

2. Stack Organization:
—->A Stack (LIFO: Last In Fist Out)is a storage device that stores information in such a
manner that the item stored last isthe first item retrieved.
- Stack Pointer (SP): The register that holds the address for the stack. SP always points at
the top item in the stack.
—>Two Operations of a stack are Insertion and Deletion of Items.

e PUSH (Push Down), operation of insertion of items into stack.

e POP (Pop Up), operation of deletion item from stack.

- These operations are simulated by incrementing or decrementing the stack pointer register
(SP).

1. Register Stack:
- A stack can be placed in a portion of a large memory or it can be organized as a collection
of afinite number of memory words or registers.
- Stack pointer (SP) pointsto the register that is currently at the top of stack.
e stack Address

Flags 63
| FULL | |EMPTY
Stack pointer 4
SP : " C 3
6 bits B 2
A 1
0
[DR]

Figure 8-3 Block diagram of a 64-word stack.

—>Figure 8-3 shows the organization of a 64-word register sack. The stack pointer register
SP contains a binary number whose value is equal to the address of the word that is currently
on top of the stack. Three items are placed in the stack: A, B, and C, in that order. Item C is
on top of the stack o that the content of SP is now 3. To remove the top item, the stack is

popped by reading the memory word at address 3 and decrementing the content of SP. Item B

COMPUTER ORGANIZATION CHAPTER-3

is now on top of the stack since SP holds address 2. To insert a new item, the stack is pushed
by incrementing SP and writing a word in the next-higher location in the stack. Note that item
C has been read out but not physically removed.

—>1n a64-word stack, the stack pointer contains 6 bits because 2 6 = 64. Since SP has only six
bits, it cannot exceed a number greater than 63 (111111 in binary). When63 is incremented by
1, theresult isO since 111111 + 1 = 1000000 in binary, but SP can accommodate only the six
least significant bits.

PUSH:

—>Initially SPiscleared to O, EMPTY isset to 1(true), and FULL iscleared to O(false), so that
SP points to the word at address 0 and the stack is marked empty and not full.

—>I1f the stack is not full (if FULL=0), a new item is inserted with a push operation.

- The push operation is implemented with the following sequence of micro-operations:

/* Initially, SP= 0, EMPTY = 1(true), FULL = O(false) */

SP&SP+1 Increment stack pointer.

M [SP] €DR Writeitem on top of the stack
If (SP=0) THEN (FULL €« 1) Check if stack isfull

EMTY <0 Mark the stack not empty

->Thefirst item is stored at address 1, and the last item is stored at address 0.

Note that:
e Alwayswe use DR to password into stack.
e M [SP] memory word specified by address currently in SP.
e Firstitem stored in stack isat address 1.
e Lastitem stored in stack isat address 0. That is FULL = 1.
e Any pushto sack meansEMTY = 0.

POP:
—>A new item is deleted from the stack if the stack is not empty (I f EMPTY =0).

- The pop operation consists of the following sequence of micro-operations:

COMPUTER ORGANIZATION CHAPTER-3

/* Initially, SP= 0, EMPTY = 1(true), FULL = O(false) */

DR€M [SP]Read item from thetop of stack

SP €SP — 1Decrement stack pointer

If (SP=0) THEN (EMTY €1) Check if stack isempty
FULL €0 Mark the stack not full

Note That:
e Top of stack isread into DR.
e |f SPreached O then stack iISEMTY = 1. That when SP was 1 then pop occurred. No
more pops can happen from here.

e Any pop from stacks means FULL = 0.

2. Memory Stack:
—>A stack can exist as a stand-alone unit as in Figure.8-3 (or) stack can be implemented in a
Random Access Memory attached to a CPU.

—>Figure 8-4 shows a portion of computer memory partitioned into three segments. program,
data and stack.

—>The Program Counter PC points at the address of the next instruction in the program. The
Address Register AR points at an array of data. The Stack pointer SP points at the top of
the stack. Three registers are connected a common address bus, and either one can provide an
address for memory. PC is used during the fetch phase to read an instruction. AR is used
during the execute phase to read an operand. SP is used to push or pop items into or from the
stack.

—>As shown in Figure. 8-4, the initial value of SP is 4001 and the stack grows (pushed) with
decreasing addresses. Thus the first item in the stack is at address 4000, the second item is
stored at address 3999, and the last address that can be used for the stack is 3000.

->We assume that the items in the stack communicate with a dataregister DR. A New item is

inserted with push operation as follows:

SP €SP-1

COMPUTER ORGANIZATION CHAPTER-3
M [SP] €DR
—->The stack pointer is decremented so that it points at the address of the next word. A

memory write operation inserts the word from the DR into the top of the stack. A new item is

deleted with a pop operation asfollows:

DR €M [SP]
SP&ESP+1

—>The top item is read from the stack into DR. The stack pointer is then incremented to point

at the next item in the stack.

100
- Program
P (Instructions)
Data
an » (Operands)
s oiiiii) 300
CoiistaeKe 4

399
399
399
400
400

Stack grows
In this direction

Figure 8-4 Computer memory with program, data, and stack segments.

Stack limits:

- Check for stack overflow (full) / underflow (empty)

- Checked by using two register: Upper Limit and Lower Limit Register
—>After PUSH Operation: SP compared with the upper limit register.

- After POP Operation: SP compared with the lower limit register.

COMPUTER ORGANIZATION CHAPTER-3

3. Reverse Polish Notation (RPN):
—>The common mathematical method of writing arithmetic expressions imposes difficulties
when evaluated by a computer.

—A stack organization is very effective for evaluating arithmetic expressions.

- Wewrite in infix notation such as;
A*B + C*D

- The 3 notations to evaluate expressions:

1. A + B Infix notation

2. +AB Prefix notation (Polish notation)

3. AB+ Postfix notation (reverse Polish notation)

—>Reverse Polish Notation is in a form suitable for stack manipulation. The expression:
A*B+C*D

Iswritten in Reverse Polish notation as AB * CD *+

A*B+C*D — AB*CD*+:

—>Evolution of Arithmetic Expressions:

Example, (3 *4)+ (5% 6) —34 *56 * +

COMPUTER ORGANIZATION CHAPTER-3

Figure 8.5 Stack operations to evaluate J ¢ 4+ 5.4 6

l

o]} |
[]
I

[e

|

s [B
-ELT T
—
—
-
=]

L

Figure 8-5 Stack operationsto evaluate, (3* 4) +(5* 6)

:

L=
L
L 3
-

3. Instruction Formats:
—>1t is the function of the control unit within the CPU to interpret each instruction code. The
bits of the instructions are divided into groups called fields.

Fieldsin Instruction Formats:

1) Operation Code Field: An operation code field that specifies the operation to be
performed

2) Address Field: An address field that designates a memory address or a processor registers.
3) Mode Field: A mode field that specifies the way the operand or the effective address is
determined (Addressing Mode)

k
—>A register address is a binary number of k bits that defines one of 2 registers in the CPU.
Thus a CPU with 16 processor registers RO through R15 will have a register address fields of
four bits. The binary number 0101, for example, will designate registerR5.

- Computers may have instructions of several different lengths containing varying number of

addresses. The number of address fields in the instruction format of a computer depends on

COMPUTER ORGANIZATION CHAPTER-3

the internal organization of its registers. Most computers fall into one of three types of CPU

organizations:

e Single accumulator organization
e General register organization

e Stack organization

—>Singleregister (Accumulator) organization:

» Basic Computer is a good example.

» Accumulator is the only general purpose register.

» Uses implied accumulator register for al operations.
E.g. ADD X Il AC € AC + M[X]

LDAY Il AC € M[Y]

—>General register organization:
» Used by most modern computer processors

» Any of the registers can be used as the source or destination for computer operations.

E.g. ADDR1,R2,R3 //R1& R2+R3
ADD R1, R2 /IR1 € R1+R2
MOV R1, R2 /I R1 € R2

ADD R1, X /I R1 € R1+MI[X]

- Stack organization:
» All operations are done with the stack
» For example, an OR instruction will pop the two top elements from the stack, do a
Logical OR on them, and push the result on the stack
Eg. PUSH X//TOS € M[X]
ADD /| TOS=TOP(S) + TOP(S)

Types of instructions:
—>To illustrate the influence of the number of addresses on computer programs, we will
evaluate the arithmetic statement X = (A + B) ¢ (C + D) using zero, one, two, or three

addressinstructions.

COMPUTER ORGANIZATION CHAPTER-3

—->We will use the symbols ADD, SUH, MUL, and DIV for the four arithmetic operations,
MOQV for the transfer-type operation; and LOAD and STORE for transfers to and from
memory and AC register. We will assume that the operands are in memory addresses A, B, C,
and D, and the result must be stored in memory at address X.

Three-Address I nstructions:
—>Computer with three addresses instruction format can use each address field to specify

either processor register or memory operand.

Program to evaluate X = (A + B) * (C + D):

ADD R1, A, BRI« M [A] +M [B]
ADD R2,C,D R2 « M[C] + M [D]
MUL X, R1, R2 M[X] < R1 * R2

e Resultsin short programs

e Instruction becomes long (many bits)

—~>The advantage of the three address formats is that it results in short program when
evaluating arithmetic expression. The disadvantage is that the binary-coded instructions

require too many bits to specify three addresses.

Two-addressinstructions:
- These are most common used commercial computers. Each address field can specify either

a processor register or a memory word.

Program to evaluate X = (A + B) * (C + D):

MOV R1, A R1 <M [A]
ADD R1, B R1 < R1+ M [B]
MOV R2, C R2 «— MJ[C]
ADDR2,DR2 — R2+D
MUL R1, R2 R1 < R1 * R2
MOV X, R1 M[X] < R1

COMPUTER ORGANIZATION CHAPTER-3

e Triesto minimize the size of instruction.

e Sizeof program isrelative larger.

One-addressinstructions:
—>1t used an implied accumulator (AC) register for all data manipulation. For multiplication /
division, there is a need for a second register.

Program to evaluate X = (A + B) * (C + D):

LOAD A AC <M [A]
ADD B AC — AC + M [B]
STORE TM [T] < AC
LOAD C AC — M|C]
ADD D AC «— AC +M [D]
MUL T AC «— AC * M [T]
STORE X M[X] < AC

e Memory access isonly limited to load and store.

e Largeprogramsize.

Zero-addressinstructions:
- Zero-address ingtructions can be found in a stack-organized computer.
—~>Program to evaluate X = (A + B) * (C + D):

PUSH A TOS «— A

PUSH B TOS <B

ADDTOS « (A +B)

PUSH C TOS « C

PUSH D TOS «— D

ADD TOS < (C + D)

MUL TOS « (C + D) * (A + B)
POPX M[X] « TOS

COMPUTER ORGANIZATION CHAPTER-3

—>A stack organized computer does not use an address field for the instruction ADD and
MUL. The PUSH & POP instruction, however, need an address field to specify the operand
that communicates with the stack (TOS - Top of the stack).

RISC instructions:
—~>Program to evaluate X = (A + B) * (C + D):

LOAD R1, A R1 <M [A]
LOAD R2, B R2 <M [B]
LOAD R3, C R3 — MJC]
LOAD R4, D R4 <M [D]

ADD R1, R1, R2 R1 « R1 + R2
ADD R3, R3, R4 R3 — R3 + R4
MULRI1, R1, R3 R1 «— R1 * R3
STOREX, R1 M[X] < R1

4. ADDRESSING M ODES:
- The addressing mode specifies arule for interpreting or modifying the address field of the

instruction before the operand is actually referenced.

- Computers use addressing mode techniques for the purpose of accommodating one or both
of the following provisions:

1. To give programming versatility to the user by providing such facilities as pointers to
memory, counters for loop control, indexing of data, and program relocation.

2. To reduce the number of bits in the addressing field of the instruction.

->The control unit of a computer is designed to go through an instruction cycle that is divided
into three major phases:

1. Fetch theinstruction from memory.

2. Decode theinstruction.

3. Executetheinstruction.

COMPUTER ORGANIZATION CHAPTER-3

->Program Counter (PC):

—>Thereis oneregister in the computer called the program counter or PC that keeps track of
the instructions in the program stored in memory. PC holds the address of the instruction to be
executed next and is incremented each time an instruction is fetched from memory. The
decoding done in step 2 determines the operation to be performed, the addressing mode of the
instruction, and the location of the operands. The computer then executes the instruction and
returns to step 1 to fetch the next instruction in sequence.

—>An example of an instruction format with a distinct addressing mode field is shown in

Figure.

Figure 8-6 Instruction format with mode field.

Opcode Mode Address

Different types of Addressing M odes:

1. Implied mode

2. Immediate mode

3. Register mode

4.Register Indirect mode
5.Auto-increment or Auto-decrement mode
6. Direct Addressing mode

7.Indirect Addressing mode
8.Relative Addressing mode

0.Indexed Addressing mode
10. Base Register addressing mode.

COMPUTER ORGANIZATION CHAPTER-3

- Two addressing modes require no address fields: the implied mode and immediate mode.

1. Implied mode:

The operands are specified implicitly in the definition of the instruction
No need to specify address in the instruction
All register reference instruction that uses an accumulator are implied mode
Instructions.
Zero address ingtructions in stack-organized computers are implied mode instruction
since operands are implied always at top of stack.
Examples from Basic Computer: CLA, CME, INP
ADD X;
PUSH Y;

2. Immediate mode:

Instead of specifying the address of the operand, operand itself is specified in the
instruction.

Operand is part of instruction.

Operand = operand field

E.g. ADD 5—Add 5 to contents of accumulator —5 is the operand

No memory reference to access data

Fast to acquire an operand

Range of operands limited to # of bits in operand field (< word size)

Instruction

Opcode Operand

3. Register mode:

e Address specified in the instruction is the register address that resides within CPU.

Operand is held in register named in address filed
Effective Address (EA) = Register addressR
Advantages. Very small address field —Shorter instructions —Faster instruction fetch

* Faster memory access to operand(s)

COMPUTER ORGANIZATION CHAPTER-3

e Disadvantage: Very limited address space
Hegister Addressina ﬂiﬂgrﬂm

Instruction

Opcode Register Address R

Registers, in CPLI

COperand

4. Register indirect mode:
e In this mode the instruction specifies a register which contains the memory address of
the operand.
e EA (effective address) = content of R — (R)
e Operand is in memory cell pointed to by contents of register R Comparison with

(memory) indirect: * Same large address space (2n) ¢ One less memory access!

R-iiut-r Indirect .ﬁddr-::lng nl-l_!rllﬂ

Instruction

I)
Opeode Reoster Address B
] = Memory

Pointer to Operand Operand

COMPUTER ORGANIZATION CHAPTER-3

5. Auto-increment or Auto-decrement mode:
e |t is similar to register indirect mode except that the register is incremented or
decremented after (or before) its value is used to access memory.
e When address stored in the register refers to atable of datain memory, it is necessary to
increment or decrement the register after every access to thetable.

e Automatically implement | ncrement/Decrement content of specified register.

Effective address. The effective address is defined to be the memory address obtained from
the computation dictated by the given addressing mode. The effective address is the address

of the operand in a computational -type instruction.

6. Direct addressing mode:
e Inthis mode Address field contains address of operand.
o Effectiveaddress (EA) = addressfield (A)
e E.g.ADDA
—Add contents of cell A to accumulator
—L ook in memory at address A for operand
e Single memory reference to access data.
e No additional calculations to work out effective address.

e Range of addresses limited by # of bitsin A (< word length).

Direct Al:ldrnssinﬂ Dingrnm

Imstruction

iﬂpcndc Address A

Memory

" Operand

COMPUTER ORGANIZATION CHAPTER-3

7. Indirect addressing mode:
Memory cell pointed to by address field contains the address of (pointer to) the operand

o Effective Address (EA) = Contents of Address Register- (A)
0 Lookin A, find address (A) and look there for operand.

e E.g. ADD (A) —Add contents of cell pointed to by contents of A to accumulator.
e Advantage: Large address space —2" where n = word length.

e Disadvantage: Multiple memory accesses to find operand slower.

Indirect Addr&sslnﬂ I'.‘.Il:nﬂram

Instruction

Opcode Address A |

MMemory

Pointer to aperand

Operand

> Displacement Addressing:
*EA=A+(R)
* Address field holds two values
—A =basevalue
—R =register that holds displacement
—or viceversa

e Has many versions, of which we mention these 3:

—Relative
—Base-register

—Indexing

(o]

COMPUTER ORGANIZATION CHAPTER-3

Diaplacnmﬂnt Addressing Diagram

Instruction

‘[me}dc Register R | Address A
Memory
Registers
Pointer to Operand {f} Operand

. Relative (to PC) Addressing mode:

It’s a version of displacement addressing.
In this mode the content of the program counter PC added to the address part of the
instruction in order to obtain the effective address.

R = Program counter, PC

Effective Address (EA) = Address Register A + (PC)

—The operand is A cells away from the current cell (the one pointed to by

PC)

Example: if PC=825 and address part in instruction =24. Then address branched to =826 +
24 = 850

. Baseregister Addressing mode:

It’s a version of displacement addressing
In this mode the content of base register is added to the address part of the instruction to
obtain EA.

Similar to index addressing except register is called base register instead of index register
It’s a generalized relative addressing, where other registers can play the role of PC

A holds displacement and R holds pointer to base address

COMPUTER ORGANIZATION CHAPTER-3

o Effective Address(EA) =A +(R)
---R may be explicit or implicit
e E.g..sixsegment registersin 80x86: CS, DS, ES, FS, GS, SS

10. Indexed Addressing mode:

e It’s a version of displacement addressing

¢ Inthis mode the content of an index register is added to the address part of the instruction
to obtain the effective address EA. The index register is special CPU register that contains

an index value.

e Effective Address (EA) = Base Address Register A + Contents of Address Register-
(A)

e Addressfield holds two values

—A = base value

—R =register that holds displacement

—Or viceversa

Addressing modes (Example):

COMPUTER ORGANIZATION CHAPTER-3

PC =200

Rl =400

XR =100

AC

Address Memory
200 Load to AC Mode
201 Address = 500
202 Next instruction
399 450
400 T00
500 800
600 900
702 325
800 300

Figure 8-7 Numerical example for addressing modes.

Direct address
Value = So0o0

500

Immediate operand

Value = 500
Indirect address
Value = 300
Relative address
Value = 325
Imndexed address
Value = g0
Register
Value = 400
Register indirect
Value = 700
Antoincrement
Value = 700
Antodecrement
Value = 450

500
500
500
500

500

500

390

// AC <« M[500]
// AC <« 500
//AC <« M [M [500]]
// AC <« M [PC+500]
[/ AC « (IX+500)
S/ AC «— R1
// AC <« M [R1]
ffAC «— (R1)

fI7AC «—-(R) =/

COMPUTER ORGANIZATION CHAPTER-3

Addressing
Mode

Effective
Address

Content
of AC

Direct address

Indirect address
Relative address
Indexed address
Register
Register indirect
Autoincrement
Autodecrement

500

Immediate operand -

800

102
600

400
400
399

FACE(500)
FACEH0
AC & ((500))
' AC & (PC+500)
' AC & (RX+500)
FACERT
FACERY)
FACERIE
FACER)

800
500
300
325
900
400
700
700
450

5. Data Transfer and Manipulation:

—~>Most computer instructions can be classified into three categories:

e Datatransfer instructions

e Data manipulation instructions

e Program control instructions

—->Data transfer instructions cause transfer of data from one location to another without

changing the binary information content.

—>Data manipulation instructions are those that perform arithmetic, logic, and shift

operations.

—>Program control instructions provide decision-making capabilities and change the path

taken by the program when executed in the computer.

COMPUTER ORGANIZATION CHAPTER-3

Data transfer instructions:

—>Data transfer instructions move data from one place in the computer to another without
changing the data content. The most common transfers are between memory and processor
registers, between processor registers and input or output, and between the processor registers

them.

TABLE 8-5 Typical Data Transfer

[nstructions
MName Mnemonic

Load LD
Store ST
Move MOV
Exchange XCH
Input 1IN
Output ouT
Push PLUSH
Pop POP

e Load instruction is used to transfer data from memory to processor register(s)
(Accumulator).

e Storeinstruction transfers data from register(s)(Accumulator) to memory.

e Move instruction is used to move data from registers and from register to memory and
vice versa

e Exchange instruction swaps data between 2 registers or between 2 memory locations.

e Input-Output instructions transfer data between processors and 10 device.

e Push-Pop instructions transfer data between stack and registers.

—>Some assembly language conventions modify the mnemonic symbol to differentiate
between addressing modes. For example, the mnemonic for load immediate becomes LDI.
—>As an example, consider the load to accumulator instruction when used with eight different

addressing modes.

COMPUTER ORGANIZATION CHAPTER-3

—>Table 8-6 shows the recommended assembly language convention and the actual transfer

accomplished in each case.

TABLE 86 Eight Addressing Modes for the Load Instruction

Assembly
Mode Convention Register Transfer

Direct address LD ADR AC— M[ADR]
Indirect address LD @ADR AC — M[M[ADR]
Relativeaddress LD SADR AC — M[PC + ADR
[mmediate operand LD #NBR AC—NBR

Index addressing LD ADR(X) AC — M[ADR + XR
Register LD Rl AC—RI

Register indirect LD (R1) AC — M[RI]
Autoincrement LD (RI)+ AC—MIRI, Rl Rl +1

Data M anipulation Instructions:

—>Data manipulation instructions perform operations on data and provide the computational
capabilities for the computer.

The data manipulation instructions in a typical computer are usually divided into three basic

types:

1. Arithmetic instructions
2. Logical and bit manipulation instruction
3. Shift instructions

COMPUTER ORGANIZATION CHAPTER-3

Arithmetic instructions:

—>The four 4 basic operations are addition, subtraction, multiplication, and division. Most
computers provide instructions for all for operations. Multiplication and Division usually
generated using software subroutines.

—A list of typical arithmetic instructions is shown in Table 8-7.

TABLE 8-7 Typical Arithmeric Instructions

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB

Negate (2's complement) NEG

->The mnemonics for three add instructions that specify different data types are shown below.

ADDI Add two binary integer numbers
ADDF Add two floating point numbers
ADDD Add two decimal numbersin BCD

Logical and Bit Manipulation Instructions:
—>Logical instructions perform binary operations on strings of bits stored in registers. They
are useful for manipulating individual bits or a group of bits that represent binary-coded

information. The logical instructions consider each bit of the operand separately and tredt it as

COMPUTER ORGANIZATION CHAPTER-3

Boolean variable. By proper application of the logical instructions it is possible to change bit
values, to clear a group of bits, or to insert new bit values into operands stored in registers or

memory words.

- Some typical logical and bit manipulation instructions are listed in Table

TABLE 8-8 Typical Logical and Bit
Manipulation Instructions

Name Mnemonic
Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt El
Disable interrupt DI

Clear selected bits:

—>The AND instruction is used to clear a bit or a selected group of bits of an operand. For any
Boolean variable x, the relationships x b0 = O and x bl = x dictate that a binary variable
ANDed with a0 produces a 0; but the variable does not change in value when ANDed with a
1.

—>Therefore, the AND instruction can be used to clear bits of an operand selectively by
ANDing the operand with another operand that has 0' s in the bit positions that must be
cleared. The AND instruction is also called a mask because it masks or inserts 0's in a selected

portion of an operand.

COMPUTER ORGANIZATION CHAPTER-3

Set selected bits:

—->The OR instruction is used to set a bit or a selected group of bits of an operand. For any
Boolean variable x, the relationships x + 1 = 1 and x + 0 = x dictate that a binary variable
ORed with a 1 produces a 1; but the variable does not change when ORed with a0.
—>Therefore, the OR instruction can be used to selectively set bits of an operand by ORing it
with another operand with 1' sin the bit positions that must be set to 1.

Complement selected bits:

—>Similarly, the XOR instruction is used to selectively complement bits of bits an operand.

This is because of the Boolean relationships * Dl = x" 59 X PO = x .
Thus a binary variable is complemented when X ORed with a 1 but does not change in value
when XORed with a 0.

Shift Instructions:

—>Instructions to shift the content of an operand are quite useful and are often provided in
several variations. Shifts are operations in which the bits of a word are moved to the left or
right. The bit shifted in at the end of the word determines the type of shift used. Shift
instructions may specify logical shifts, arithmetic shifts, or rotate-type operations. In either
case the shift may be to the right or to the left.

—>Table 8-9 lists four types of shift instructions.

TABLE 8-9 Typical Shift Instructions

Name Mnemonic
Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHRA
Anthmetic shift left SHLA
Rotate right ROR
Rotate left ROL

Rotate right through carry RORC
Rotate left through carry ROLC

COMPUTER ORGANIZATION CHAPTER-3

—>The logical shift inserts O to the end bit position. The end position is the leftmost bit for
shift right and the rightmost bit position for the shift left. Arithmetic shifts usually conform to
the rules for signed-2's complement numbers.

—A possible instruction code format of a shift instruction may include five fields as follows:

OP REG TYPE RL COUNT

—~>Here OP is the operation code field; REG is aregister address that specifies the location of
the operand; TYPE is a 2-bit field specifying the four different types of shifts; RL is a 1-bit
field specifying a shift right or left; and COUNT is ak-bit field specifying up to 2 - 1 shifts.

6. Program Control:

->Program control instructions provide decision-making capabilities and change the
program path. Typically, the program counter is incremented during the fetch phase to the
location of the next instruction. A program control type of instruction may change the address
value in the program counter and cause the flow of control to be altered.

—>This provides control over the flow of program execution and a capability for branching to

different program segments.

- Some typical program control instructions are listed in Table 8-10.

TABLE 8-10 Typical Program Control Instructions

Name Mnemonic
Branch BR
Jump IMP
Skip SKP
Call CALL
Return RET

Compare (by subtraction) CMP
Test (by ANDing) TST

COMPUTER ORGANIZATION CHAPTER-3

—>Branch and Jump instructions may be conditional or unconditional. An unconditional
branch instruction causes a branch to the specified address without any conditions. The
conditional branch instruction specifies a condition such as branch if positive or branch if
zero. If the condition is met, the program counter is loaded with the branch address and the
next instruction is taken from this address. If the condition is not met, the program counter is
not changed and the next instruction is taken from the next location in sequence.

—->The Skip instruction does not need an address field and is therefore a zero-address

instruction. A conditional skip will skip the next instruction if the condition is met.

SKIP ON COND
BRA AD1
BRA AD2

—>The Call and Return instructions are used in conjunction with subroutines.
- The compare instruction performs a subtraction between two operands but the result of the

operation is not retained.

—>Test instruction performs AND between 2 operands and conditional flags will be changed

accordingly.

Status Bit Conditions:

It is sometimes convenient to supplement the ALU circuit in the CPU with a status register
where status bit conditions can be stored for further analysis. Status bits are also called
condition-code bits or flag bits.

—>Figure 8-8 shows the block diagram of an 8-bit ALU with a 4-bit status register.

- The four status bits are symbolized by C. S, Z, and V. The bits are set or cleared as a result
of an operation performed in the ALU.

1. Bit C (carry)issetto 1if theend carry Cgis 1.1t iscleared to O if the carry is zero.

2. Bit S(sgn) isset to 1if the highest order bit F7is 1. It is set to O if the bit is zero.

COMPUTER ORGANIZATION CHAPTER-3

3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0’s. It is cleared to 0

otherwise. In other words, Z=1 if the output is zero and Z=0 if the output is not zero.

4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is equal to 1,

and cleared to O otherwise.

A B
8 8
Cqy
8-bit ALU
1 Cs
v YA § C
1 F';—FD
Fr
]
Check for zero output B
I8
Y
Output F

Figure 8-8 Status register bits.

Conditional Branch Instructions:

—>Table 8-11 gives a list of the most common branch instructions. Each mnemonic is
constructed with the letter B (for branch) and an abbreviation of the condition name.

When the opposite condition state is used, the letter N (for no) is inserted to define the O

COMPUTER ORGANIZATION CHAPTER-3

state. Thus BC is Branch on Carry, and BNC is Branch on No Carry. If the stated
condition is true, program control is transferred to the address specified by the instruction.

If not, control continues with the instruction that follows. The conditional instructions can

be associated also with the jump, skip, call, or return type of program control

instructions.

—>The zero status bit is used for testing if the result of an ALU operation is equal to zero

or not. The carry bit is used to check if there is a carry out of the most significant bit

position of the ALU. The sign bit reflects the state of the most significant bit of the output

fromthe ALU. S = 0 denotesapositive sign and S = 1, anegative sign.

TABLE 8-11 Conditional Branch Instructions

Mnemonic Branch condition Tested condition
BZ Branch if zero Z =1
BNZ Branch if not zero Z =0
BC Branch if carry C=1
BMNC Branch if no carry C =0
BFP Branch if plus S5 =0
BM Branch if minus S =1
BY Branch if overflow =1
BNV Branch if no overflow =0

Unsigned compare conditions (4 — B)
BHI Branch if higher A =B
BHE Branch if higher or equal A=EB
BLO Branch if lower A< B
BLOE Branch if lower or equal A=< B
BE Branch if equal A=058
BNE Branch if not equal A=B8

Signed compare conditions (4 — B)
BGT Branch if greater than A= B
BGE Branch if greater or equal A= B
BLT Branch if less than A =B
BLE Branch if less or equal A== B
BE Branch if equal A =28
BNE Branch if not equal A =8

COMPUTER ORGANIZATION CHAPTER-3

Subroutine Call and Return:

—->A subroutine is a self-contained sequence of instructions that performs a given
computational task.

—>The instruction that transfers program control to a subroutine is known as call subroutine,
jump to subroutine, branch to subroutine, or branch and save address.

—->The return from subroutine instruction causes the stack to pop and the contents of the top of
the stack are transferred to the program counter. In this way, the return is always to the
program that last called a subroutine. A subroutine call is implemented with the following

micro-operations:

Execution of CALL:
SP « SP — 1 Decrement stack pointer
M [SP] < PC Push content of PC onto the stack

PC « Effective Address Transfer control to the subroutine

—>1f another subroutine is called by the current subroutine, the new return address is pushed
into the stack, and so on. The instruction that returns from the last subroutine is implemented

by the micro-operations:

Execution of RET:

PC — M [SP] Pop stack and transfer to PC

SP «— SP+1 Increment stack pointer

Program Interrupt:

—->The concept of program interrupt is used to handle a variety of problems that arise out of
normal program sequence.

—>Program interrupt refers to the transfer of program control from a currently running
program to another service program as a result of an external or internal generated request.

Control returnsto the original program after the service program is executed.

—>An interrupt procedure is similar to a subroutine call except:
e The interrupt is usually initiated by an internal or external signal rather than from the

execution of an instruction.

COMPUTER ORGANIZATION CHAPTER-3

e The address of the interrupt service routine program is determined by the hardware
rather than the address field of an instruction

e Aninterrupt procedure usually stores all information necessary to define the state of the
CPU storing only the program counter.

—>The state of the CPU at the end of the execute cycle is determined from:
1. The content of the PC
2. The content of all processor registers

3. Thecontent of certain status conditions

—>The collection of all status bit conditions in the CPU is sometimes called a program status
word or PSW. The PSW is stored in a separate hardware register and contains the status
information that characterizes the state of the CPU.

—->When the CPU is executing a program that is part of the operating system, it is said to
supervisor mode be in the supervisor or system mode. Certain instructions are privileged and

can be executed in this mode only.

—>Three types of interrupts:

1. External interrupts
2. Internal interrupts

3. Softwareinterrupts

—~>External interrupts come from /O devices, from a timing device, from a circuit
monitoring the power supply, or from any other external source.

—>Examples that cause external interrupts are I/0 device requesting transfer of data, /0 device
finished transfer of data, elapsed time of an event, or power failure.

—Internal interrupts arise from illegal or erroneous use of an instruction or data. Internal
interrupts are also called traps.
—>Examples of interrupts caused by internal error conditions are register overflow, attempt to

divide by zero, an invalid operation code, stack overflow, and protection violation.

COMPUTER ORGANIZATION CHAPTER-3

—>External and internal interrupts are initiated from signals that occur in the hardware of
the CPU. A software interrupt isinitiated by executing an instruction.

- Software interrupt is a special call instruction that behaves like an interrupt rather than a
subroutine call. It can be used by the programmer to initiate an interrupt procedure a any
desired point in the program.

- The most common use of software interrupt is associated with a supervisor call instruction.
This instruction provides means for switching from a CPU user mode to the supervisor mode.

7. RISC (Reduced Instruction Set Computers):

—>An important aspect of computer architecture is the design of the instruction set for the
processor. The instruction set determines the way that machine language programs are
constructed. Many computers have instructions sets of about 100 - 250 instructions.

- These computers employ a variety of datatypes and a large number of addressing modes —
complex instruction set computer (CISC).

—>A RISC uses fewer instructions with simple constructs so they can be executed much faster
within the CPU without having to use memory as often

—>The essential goal of CISC architecture is to attempt to provide a single machine

instruction for each statement that is written in a high-level language

The major characteristics of CISC architecture are:

1. A large number of instructions-typically from 100 to 250 instructions.
Some instructions that perform specialized tasks and are used infrequently.
A large variety of addressing modes-typically from 5 to 20 different modes.
Variable-length instruction formats.

o~ w0 N

Instructions that manipulate operands in memory.

RISC Characteristics:
—->The concept of RISC architecture involves an attempt to reduce execution time by

simplifying the instruction set of the computer.

- The major characteristics of a RISC processor are:
1. Relatively few instructions.
2. Relatively few addressing modes.

3. Memory access limited to load and storeinstructions.

COMPUTER ORGANIZATION CHAPTER-3

All operations done within the registers of the CPU.
Fixed-length, easily decoded instruction formet.
Single-cycle instruction execution.

N o g A~

Hardwired rather than micro-programmed control.

—>A characteristic of RISC processors is their ability to execute one instruction per dock
cycle. This is done by overlapping the fetch, decode, and execute phases of two or three
instructions by using a procedure referred to as pipe lining. A load or store instruction may
require two clock cycles because access to memory takes more time than register operations.
Efficient pipelining, as well as a few other characteristics, are sometimes attributed to RISC,
although they may exist in non-RISC architectures as well.

- Other characteristics attributed to RISC architecture are:

1. A relatively large number of registersin the processor unit.

2. Use of overlapped register windows to speed-up procedure call and return.

3. Efficient instruction pipeline.

4. Compiler support for efficient translation of high-level language programs

into machine language programs.

Overlapped register windows:

—>Overlapped register windows are used to pass parameters and avoids the need for saving
and restoring register values during procedure cals

A characteristic of some RISC processors is their use of overlapped register windows to
provide the passing of parameters and avoid the need for saving and restoring register values.
Each procedure call results in the allocation of a new window consisting of a set of registers
from the register file for use by the new procedure. Each procedure call activates a new
register window by incrementing a pointer, while the return statement decrements the pointer
and causes the activation of the previous window. Windows for adjacent procedures have
overlapping registers that are shared to provide the passing of parameters and results.

->The concept of overlapped register windows is illustrated in Fig. 8-9. The system has a total
of 74 registers. Registers RO through R9 are global registers that hold parameters shared by
all procedures. The other 64 registers are divided into four windows to accommodate
procedures A, B, C, and D. Each register window consists of 10 local registers and two sets of
Six registers common to adjacent windows. Local registers are used for local variables.

Common registers are used for exchange of parameters and results between adjacent

COMPUTER ORGANIZATION CHAPTER-3

procedures. The common overlapped registers permit parameters to be passed without the
actual movement of data. Only one register window is activated at any given time with a
pointer indicating the active window. Each procedure call activates a new register window by
incrementing the pointer. The high registers of the calling procedure overlap the low registers
of the called procedure, and therefore the parameters automatically transfer from calling to
called procedure.

—1n general, the organization of register windows will have the following relationships:
Number of global registers = G

Number of local registers in each window = L

Number of registers common to two windows = C

Number of windows =W

- The number of registers available for each window is calculated as follows:

Window size=L +2C + G

The total number of registers needed in the processor is

Register file=(L + C)W + G

—>Inthe example of Figure. 8-9, wehave G = 10, L =10, C =6, and W = 4. The window size
is10 + 12 + 10 = 32 registers, and the register file consists of (10 + 6) x 4 + 10 = 74 registers.

COMPUTER ORGANIZATION CHAPTER-3

R1%
Common to £ and A4
RI10
R13
Local ta D
Red
R&3
Commen to O and D
R54
Proc D R57
Local ol
R44
R47
Common to 8and C
R42
Proc C R41
Local to B
w2
Rl
CommontoA ad B
R
Proc 8 Ri5
Local to 4
R16
kG R15
Common to al Common toA ad B
procedunes
RO 10
Global Proc A

Figure 89 Overlapped register windows

BERKELY RISC I :
—->The Berkeley RISC | is a 32-bit integrated circuit CPU. It supports 32-bit addresses and
either 8-, 16-, or 32-hit data. It has a 32-bit instruction format and a total of 31 instructions.

There are three basic addressing modes: register addressing, immediate operand, and relative

COMPUTER ORGANIZATION CHAPTER-3

to PC addressing for branch instructions. It has a register file of 138 registers arranged into 10
global registers and 8 windows of 32 registers in each. The 32 registers in each window have
an organization similar to the one shown in Fig. 8-9. Since only one set of 32 registersin a
window is accessed at any given time, the instruction format can specify a processor register
with aregister field of five bits.

—>Figure 8-10 shows the 32-bit instruction formats used for register-to-register instructions

and memory access instructions.

Figure 8-10 Berkeley RISC [instruction formats.

3l 24 23 19 18 14 13 12 54 0
Opcode Rd Rs 0 Not used S2
8 5 5 1 8 5

(a) Register mode: (S2 specifies a register)

3l 24 23 19 18 14 13 12 0
o[[W [[=
13

(b) Register-immediate mode: (S2 specifies an operand)

3l 24 23 19 18 0
Opcode COND Y

8 3 19

(c) PCrelative mode:

—>The 31 ingtructions of RISC | are listed in Table 8-12. They have been grouped into three
categories.

Opoode

Operands
Data manipulation Instructions

ADD RsSIRd
ADDC RsSLRd
B ReSLRd
W RsSORd
SUBR RsSORd
SUBCR RsSLRd
AND RsSLRd
R RsSORd
XOR RsSLRd
L RsfiRd
ML RsSLRd
A RsSORd

COMPUTER ORGANIZATION CHAPTER-3

TABLE 8:12 Ingruction Set of Berkeley RISC

Register Tranfer Deseription

RdeRs + 5 Integer add

Rd s+ 52+ camy Add with cany
RdeRs - §2 [nteger subtract
RdRs = 52 - carry - Subteact with carry
fd 52 - Rs Subtract reverse
Rd 52 - Ry = carry Subtract with canry
RdeRs A\S) AND

RdeRs 52 OR

Rd s 52 Exclugve-OR
Rd R shifted by 52 Shiftkeft

Rd Ry shifted by 52 Shiftrightogica
Rd =R shifted by 52~ Shift-right arthmetic

Data transfer instructions
DL (RgS2Rd
LDSU (Rs)S2Rd
DS (Rs)S2Rd
LDBU (Rs)SRd
LDBS (Rs)S2Rd
LDHI RdY
STL Rd{Rs)S2
S Rd(Rs)S2
S8 Rd(Rs)S2
OETPSW Rd
PUTPSW Rd
Program control instructions
IMP COND,
S2(Rs)
JMPR COND,Y
CALL Rd,S2(Rs)
CALLR Rd)Y
RET Rd,S2
CALLINT Rd
RETINT Rd,S2
GTLPC Rd

COMPUTER ORGANIZATION CHAPTER-3

Rd «M|Rs
Rd «M|Rs
Rd «M|Rs
Rd «M|Rs
Rd «M|Rs
RieY

MiRs + §2
MRs + 82|

MRs + 52
Rd « PSW
PSW «Rd

PC<«Rs

t§)
t 52
t 52
152
t 52

«Rd
Rd
Rd

+ 52

PC«<PC+Y

Rd < PC
PC «Rs

CWP«CWP -1

Rd < PC

+ §2

PC«<PC+Y

CWP «CWP -1

PC «<Rd

CWP - CWP +1

Rd <« PC

CWP<CWP -1

PC «<Rd

CWP «CWP + 1

Rd «PC

+ §2

+ 52

Load long

Load short unsigned
Load short signed
Load byte unsigned
Load byte signed
Load immediate high
Store long

Store short

Store byte

Load status word
et status word

Conditional jump

Jump relative
Call subroutine

and

change window
Call relative

and

change window
Return and

change window
Disable interrupts

Enable interrupts

Get last PC

COMPUTER ORGANIZATION CHAPTER-3

8. Control Memory:

—>In digital computer, function of control unit is to initiate sequences of micro-operations.
Types of micro-operations for particular system are finite. The complexity of digital systemis
dependent on the number of sequences of micro-operations that are performed. There are two

major types of control organization: hardwired control and micro programmed control.

Hardwired Programmed Control Unit:

—->We can take one of two approaches to ensure control lines are set properly. The first
approach is to physically connect all of the control lines to the actual machine instructions.
The instructions are divided up into fields, and different bits in the instruction are combined
through various digital logic components to drive the control lines. This is called hardwired
control, and isillustrated in Figure (1)

[nstruction Register

L
[nstruction Decoder

L B A L
P — —
— A | Input Ir[:r!‘n svstem bus
o Control Uit | (such as interrupts)
Input from clock (Combinational Circutt)
: — —
L] |
e — - Inp;t I"rnrnl ﬁtullm'
— — ag register
yvYey
\
-
Control Signals
{These signals go to register)
The bus and the ALL

Figurel. Hardwired Control Organization.

COMPUTER ORGANIZATION CHAPTER-3

—In the hardwired organization, the control unit is implemented using hardware (for
example: NAND gates, flip-flops, and counters).We need a special digital circuit that uses, as
inputs, the bits from the operation-code field in our instructions, bits from the flag (or status)
register, signals from the bus, and signals from the clock. It should produce, as outputs, the

control signals to drive the various components in the computer.

-> The advantage of hardwired control isthat is very fast.

—>The disadvantage is that the instruction set and the control logic are directly tied together
by special circuits that are complex and difficult to design or modify. If someone designs a
hardwired computer and later decides to extend the instruction set, the physical componentsin
the computer must be changed. This is prohibitively expensive, because not only must new
chips be fabricated but also the old ones must be located and replaced.

Micro-Programmed Control Unit:

->Microprogramming is a second alternative for designing control unit of digital computer
(uses software for control). A control unit whose binary control variables are stored in
memory is called a micro-programmed control unit. The control variables at any given time
can be represented by a string of 1's and O's called a control word (which can be programmed
to perform various operations on the component of the system). Each word in control memory
contains within it a microinstruction. The microinstruction specifies one or more micro-
operations for the system. A sequence of microinstructions constitutes a micro-program. A

memory that is part of a control unit isreferred to as a control memory.

—>A more advanced development known as dynamic microprogramming permits a micro-
program to be loaded initially from an auxiliary memory such as a magnetic disk. Control
units that use dynamic microprogramming employ a writable control memory; this type of

memory can be used for writing (to change the micro-program) but is used mostly for reading.

- The general configuration of a micro-programmed control unit is demonstrated in the block

diagram of Figure

COMPUTER ORGANIZATION CHAPTER-3

Figure 7.1 Microprogrammed control organization.

&mﬂ+ :E‘lﬁ Control Control Control CTQT
g e | s || memory |—p| da2

(e register (ROM) register

Next-address information

—>The control memory is assumed to be a ROM, within which all control information is
permanently stored. The control memory address register specifies the address of the

microinstruction and the control data register holds the microinstruction read from memory.

—->The microinstruction contains a control word that specifies one or more micro-operations
for the data processor. Once these operations are executed, the control must determine the
next address. The location of the next microinstruction may be the one next in sequence, or it
may be locate somewhere else in the control memory. For this reason it is necessary to use
some bits of the present microinstruction to control the generation of the address of the next
microinstruction. The next address may also be a function of external input conditions. While
the micro-operations are being executed, the next address is computed in the next address
generator circuit and then transferred into the control address register to read the next

microinstruction.

—>The next address generator is sometimes called a micro-program sequencer, as it
determines the address sequence that is read from control memory, the address of the next
microinstruction can be specified several ways, depending on the sequencer inputs. Typical
functions of a micro-program sequencer are incrementing the control address register by one,
loading into the control address register an address from control memory, transferring an

external address or loading an initial address to start the control operations.

COMPUTER ORGANIZATION CHAPTER-3

—>The control data register holds the present microinstruction while the next address is
computed and read from memory. The data register is some-times called apipeline
register. It allows the execution of the micro-operations specified by the control word
simultaneously with the generation of the next microinstruction. This configuration requires a
two-phase clock, with one clock applied to the address register and the other to the data
register.

-> The system can operate without the control dataregister by applying a single-phase clock to
the address register. The control word and next-address information are taken directly from
the control memory. It must be realized that a ROM operates as a combinational circuit, with
the address value as the input and the corresponding word as the output. The content of the
specified word in ROM remains in the output wires as long as its address value remains in the
address register. No read signal is needed as in a random-access memory. Each clock pulse
will execute the micro-operations specified by the control word and also transfer a new
address to the control address register. In the example that follows we assume a single-phase
clock and therefore we do not use a control dataregister. In thisway the address register isthe
only component in the control system that receives clock pulses. The other two components:

the sequencer and the control memory are combinational circuits and do not need a clock.

ADVANTAGES:

e The design of micro-program control unit is less complex because micro-programs are
implemented using software routines.

e The micro-programmed control unit is more flexible because design modifications,
correction and enhancement is easily possible.

e The new or modified instruction set of CPU can be easily implemented by simply
rewriting or modifying the contents of control memory.

e The fault can be easily diagnosed in the micro-program control unit using diagnostics

tools by maintaining the contents of flags, registers and counters.

DISADVANTAGES:
e The micro-program control unit is slower than hardwired control unit.
e That means to execute an instruction in micro-program control unit requires more

time.

COMPUTER ORGANIZATION CHAPTER-3

e The micro-program control unit is expensive than hardwired control unit in case of
limited hardware resources.

e The design duration of micro-program control unit is more than hardwired control unit
for smaller CPU.

COMPARISON BETWEEN HARDWIRED AND
MICRO-PROGRAMMED CONTROL UNIT

Hardwired Contral Micro-programmed Contral

Speed Fast Slow
Cost of
Implementation Mo Bpe
- Not flexible, difficult to modify for new Flexible, new instructions can
i instruction easily be added
Ability to Himd]el Diffcd i
Complex Instructions
Decoding Complex Easy
Applications RISC Microprocessor (ISC Microprocessor
Instruction et Size Small Large
Control Memory ~ Absent Present

ChipAreaRequired ~ Less More

COMPUTER ORGANIZATION CHAPTER-3

9. Address Sequencing:

—>Microinstructions are stored in control memory in groups, with each group specifying
routine. Each computer instruction has its own micro-program routine in control memory to
generate the micro-operations that execute the instruction. Process of finding address of next
micro-instruction to be executed is called address sequencing. Address sequencer must have

capabilities of finding address of next micro-instruction in following situations:

* In-line Sequencing

« Unconditional Branch

» Conditional Branch

» Subroutinecall and return

» Looping

* Mapping from instruction op-code to addressin control memory.

-> Steps the control must undergo during the execution of a single computer instruction:

e Load an initial address into the CAR when power is turned on in the computer. This
address is usually the address of the first microinstruction that activates the instruction
fetch routine — IR holds instruction

e The control memory then goes through the routine to determine the effective address of
the operand — AR holds operand address

e The next sep is to generate the micro-operations that execute the instruction by
considering the op-code and applying a mapping

e After execution, control must return to the fetch routine by executing an unconditional

branch

—>In summary, the address sequencing capabilities required in a control memory are:

1. Incrementing of the control addresses register.
2. Unconditional branch or conditional branch, depending on status bit conditions.
3. A mapping process from the bits of theinstruction to an addressfor control memory.

4. A facility for subroutine call and return.

Figure 7-2 shows ablock diagram of control memory and the associated hardware needed for

selecting the next microinstruction address.

COMPUTER ORGANIZATION CHAPTER-3

» Control address register (CAR) receives address of next micro instruction from
different sources.

* Incrementer simply increments the address by one.

» Incase of branching branch address is specified in one of the field of microinstruction.

* In case of subroutine call return address is stored in the register SBR which is used
when returning from called subroutine.

Conditional Branching:

—>The branch logic of Figure. 7-2 provides decision making capabilities in control unit.
—>Conditional branching is obtained by using part of the microinstruction to select a specific
status bit in order to determine its condition.

Instruction code

i

Mapping
logic
L) L) T
Saatus Branch MLUX 4
nita —1 logic . Multiplexers
Subroutine
register
(SBR)
" “_
Clock —— Control address register
. g (CAR)
Incrementer
1
L
Control memory
Select @ s1atus
bit

Microoperations

Branch address

COMPUTER ORGANIZATION CHAPTER-3

Figure 7-2 Selection of address for control memory.

- Simplest way of implementing branch logic hardware is to test the specified condition and
branch to the indicated address if condition is met otherwise address resister is simply
incremented. If Condition is true, h/w set the appropriate field of status register to 1.
Conditions are tested for O (overflow), N (negative), Z (zero), C (carry), etc.

Unconditional Branching:
—>For unconditional branching, fix the value of one status bit to be one load the branch

address from control memory into the CAR.

Mapping of Instruction:

- Assuming operation code of 4-bits which can specify 16 (2%) distinct instructions. Assume
further and control memory has 128 words, requiring an address of 7-bits. Now we have to
map 4-bit operation code into 7-bit control memory address. Thus, we have to map Op-code
of an instruction to the address of the Microinstruction which is the starting microinstruction

of its subroutine in memory.

- One simple mapping process that converts the 4-bit operation code to a 7-bit address for
control memory is shown in Figure.7-3. This provides for each computer instruction a micro-

program routine with a capacity of four microinstructions.

Figure 7-3 Mapping from instruction code to microinstruction address.

Opcode

Computer instruction: 1011 address

Mapping bits; Olx x x x|0 0

Microinstruction address: 0101100

COMPUTER ORGANIZATION CHAPTER-3

Subroutines:

—> Subroutines are programs that are used by other routines to accomplish a particular task. A
subroutine can be called from any point within the main body of the micro-program.
Frequently many micro-programs contain identical section of code. Microinstructions can be
saved by employing subroutines that use common sections of microcode.

—>For example, the sequence of microinstructions needed to generate the effective address of
the operand for an instruction is common to al memory reference instructions. Thus, this
sequence could be a subroutine that is called from within many other routines to execute the
effective address computation.

—>The subroutine register can then become the source for transferring the address for the
return to the main routine.

—>Subroutine resister is used to save a return address during a subroutine call which is
organized in LIFO (last in, first out) stack.

10. Micro-program Example:

—>0Once we have a configuration of a computer and its micro-programmed control unit, the
designer generates the microcode for the control memory. Code generation of this type is
called microprogramming and is similar to conventional machine language
programming. We assume here a simple digital computer similar (but not identical) to

Manos’ basic computer.

Computer Configuration:
- The block diagram of the computer is shown in Figure 7-4.1t consists of two memory units:
a main memory for storing instructions and data, and a control memory for storing micro-

program. Four registers are associated with the processor unit and two with the control unit.

—>Four processor registersare:
* Program counter — PC
« Addressregister — AR
« Dataregister - DR
« Accumulator register - AC

->Two control unit registersare:
« Control addressregister — CAR
* Subroutineregister — SBR

COMPUTER ORGANIZATION CHAPTER-3

Computer Hardware Configuration

¥ $
MUX
10 i
: ,
AR
Memory
* 2048 x 16
1 ()
PC -
l v oy
J MUX
15 l 0
) 6 () DR
SBR CAR " T &
ALSU
Control memory 1
128x20 15 0
AC
|

Figure. Computer Hardware Configuration

COMPUTER ORGANIZATION CHAPTER-3

—->The transfer of information among the registers in the processor is done through
multiplexers rather than a common bus. DR can receive information from AC, PC, or
memory. AR can receive information from PC or DR. PC can receive information only from
AR. The arithmetic, logic, and shift unit performs micro-operations with data from AC and
DR and places the result in AC. Note that memory receives its address from AR. Input data

written to memory come from DR, and data read from memory can go only to DR.

- The computer instruction format is depicted in Figure. It consists of three fields:
» 1-bit field for indirect addressing.
» 4-bit operation code.
« 11-bit addressfield.

—>Figure 7-5(b) lists four of the 16 possible memory-reference instructions.

Figure 7-5 Compurer instructions.

15 14 I 10 0

| Opcode Address

(a) Instruction format

Symbol Opcode Description
ADD 0000 AC «— AC + M [EA]
BRANCH 0001 If (AC < 0) then (PC « EA)
STORE 0010 M [EA] +— AC
EXCHANGE 0011 AC « M[EA], M[EA] « AC

EA is the effective address

(b) Four computer instructions

—>The ADD instruction adds the content of the operand found in the effective address to the
content of AC. The BRANCH instruction causes a branch to the effective address if the

operand in AC is negative. The program proceeds with the next consecutive instruction if AC

COMPUTER ORGANIZATION CHAPTER-3

is not negative. The AC is negative if its sign bit (the bit in the leftmost position of the

register) is a 1. The STORE instruction transfers the content of AC into the memory word
specified by the effective address. The EXCHANGE instruction swaps the data between AC

and the memory word specified by the effective address.

Microinstruction Format:

- The microinstruction format for the control memory is shown in Figure.

->The microinstruction format is composed of 20 bits with four partsto it.

Three fields F1, F2, and F3 specify micro-operations for the computer [3 bits each]
The CD field selects status bit conditions [2 bits]

The BR field specifies the type of branch to be used [2 bits]

The AD field contains a branch address [7 bits]

3 3 3 2 2 7

F]lFZ‘FE‘CDIERl AD l

Fl, F2, F3: Microoperation fields
CD: Condition for branching

BR: Branch field

AD: Address field

Figure 7-6 Microinstruction code format (20 bits).

—->The micro-operations are subdivided into three fields of three bits each. The three bits in

each field are encoded to specify seven distinct micro-operations as listed in Table 7-1. This

gives atotal of 21 micro-operations. No more than three micro-operations can be chosen for a

microinstruction, one from each field.

COMPUTER ORGANIZATION CHAPTER-3

TABLE 7-1 Symbols and Binary Code for Microinsmuction Fields

F1 Microoperation Symbol

000 MNone NOP

001 AC+—AC + DR ADD

010 AC 0 CLRAC

011 AC—AC + 1 INCAC

100 AC—DR DRTAC

101 AR «— DR(0-10) DRTAR

110 AR «— PC FCTAR

111 M[AR]+— DR WERITE

F2 Microoperation Symbol

000 None NOP

001 AC+—AC — DR SUB

010 AC—AC s DR OR

011 AC—AC N DR AND

100 DR +—M[AR] READ

101 DR+ AC ACTDR

110 DR«—DR + 1 INCDR

111 DR(0-10) «— PC PCTDR
F3 Microoperation Symbol
o000 None NOP
001 AC —ACP DR XOR
010 AC —AC COM
011 AC +—shl AC SHIL
100 AC «—shr AC SHR

1 101 PC—PC + 1 INCPC

110 PO oa— A R ARTPRC
111 Reserved

—>1f fewer than three micro-operations are used, one or more of the fields will use the binary

code 000 for NOP (No operation). As an illustration, a microinstruction can specify two

simultaneous micro-operations from F2 and F3 and none from F1.

DR « M [AR]
And PC — PC +1
F1 F2 F3 =

with F2 =100
with F3 =101
000 100 101

COMPUTER ORGANIZATION CHAPTER-3

- The condition field (CD) istwo hitsto specify four status bit conditions.

00 Always=1 U (Unconditional branch)

01 DR (15) I (Indirect address bit)
10AC (15) S (Sign bit of AC)
11AC=0 Z (Zerovaluein AC)

—>The Branch field (BR) is two bits and is used with the address field to choose the address
of the next microinstruction

BR=00 JMP CAR < AD if condition =1
CAR < CAR + 1 if condition=0
BR =01 CALL CAR < AD, SBR <« CAR + 1 if condition =1
CAR «— CAR +1 if condition=0
BR=10 RET CAR < SBR (Return from subroutine)
BR=11 MAP CAR(2-5) — DR (11-14), CAR (0,1,6) < 0

CD Condition Symbaol Comments

00 Always = 1 [%) Unconditional branch
o1 DR(15) I Indirect address bit
10 AC(15) S Sign bit of AC

11 AC =0 £ Zero value in AC

BR Symbol Function

o0 IMP CAR — AD if condition = 1
CAR +—CAR + 1 if condition = 0

01 CALL CAR +— AD, SBR +—CAR + 1 if condition = 1
CAR «+— CAR + 1 if condition = 0

10 RET CAR +—S5BR (Return from subroutine)

11 MAP CAR(2-5)+—DR(11-14), CAR(0,1,6) «+—0

Symbolic Microinstructions:

—>Each line of an assembly language micro-program defines a symbolic microinstruction and
isdivided into five fields: label, micro-operations, CD, BR, and AD.

The fields specify the following information:

COMPUTER ORGANIZATION CHAPTER-3

1. The label field may be empty or it may specify a symbolic address. A label is
terminated with a colon (:).

2. 2. The micro-operations field consists of one, two, or three symbols, separated by
commas, from those defined in Table 7-1. There may be no more than one symbol
from each F field. The NOP symbol is used when the microinstruction has no micro-
operations. Thiswill be translated by the assembler to nine zeros.

3. The CD field has one of the lettersU, I, S, or Z.

4. The BR field contains one of the four symbols defined in Table

5. The AD field specifies a value for the address field of the microinstruction in one of
three possible ways:

a. With a symbolic address, this must also appear as a label.
b. With the symbol NEXT to designate the next address in sequence.
¢. When the BR field contains a RET or MAP symbol, the AD field is left empty and
is converted to seven zeros by the assembler.
—>The symbol ORG defines the first address of a micro-program routine ORG 64 — places
first microinstruction at control memory 1000000.

Fetch Routine:

—~>During FETCH Read an instruction from memory and decode the instruction and update
PC.

—>The control memory has 128 locations, each one is 20 bits. The first 64 locations are
occupied by the routines for the 16 instructions, addresses 0-63. A convenient starting
location for fetch routine is address 64.

-> The fetch routine requires the following three microinstructions (locations 64-66)
AR «— PC
DR « M [AR], PC « PC +1

AR « DR (0-10), CAR (2-5) < DR (11-14), CAR (0, 1, 6) < 0

->Write the symbolic micro program for the fetch routine as follows:

ORG 64
Fetch: PCTAR U JMP NEXT
READ, INCPC U JMP NEXT

DRTAR U MAP

COMPUTER ORGANIZATION CHAPTER-3

—>The trandation of the symbolic micro-program to binary produces the following binary

micro-program.

Binary Address F1 F2 K3 CD BR AD
1000000 110 000 000 00 00 1000001
1000001 000 100 101 00 00 1000010
1000010 101 000 000 00 11 0000000

Symbolic Micro-program:
- The execution of the third MAP microinstruction in the fetch routine results in a branch to
address OXXXX00, where XXXX are the four bits of operation code. For example,

e Control Storage: 128 20-bit words

« Thefirst 64 words: Routines for the 16 machine instructions

« Thelast 64 words: Used for other purpose (e.g., fetch routine and other subroutines)

* Mapping: Op-code XXXX into OXXXXO00, the first address for the 16 routines is 0(0

0000 00), 4(0 0001 00), 8(0 0010 00), 12, 16, 20, ...,60.

—>This gives 4 words in control memory for each routine

TABLE 7-2 Symbolic Micropraogram {Partial)

Label Mi:rﬂﬂptraﬁﬂns D BE Al

ORC 0

A0 NOP | CALL INDRCT
REATDY Lr JhAP HEXT
ADTD L&) AP FETCH
ORC: 4

BRAMNMCH: O 5 JhAP OVER
MNOFP] JMAP FETCH

OVER: MIOYE 1 CALL INDRCT
ARTPC LI JhAP FETCH
ORCEF B

STORE: P I CALL INDRCT
ACTDR u JInIP NEXT
WRITE o AP FETCH
DRG 12

EXCHAMNGE: HOP | CaAall INDRCT
FEEAD L JMP NEXT
ACTDR, DRTAC L JMP HEXT
WRITE L JhAFP FETCH

COMPUTER ORGANIZATION CHAPTER-3

ORG 64

FETCH: PCTAR U JMF NEXT
READ, INCPC §) IMP NEXT
DRTAR U MAP

INDRCT: READ U IMP NEXT
DRTAR U RET

- Execution of ADD instructions

Indirect Routine:

—>We need to calculate the indirect procedure for accessing the address of operand in all
memory-reference instructions.

—> S0 INDRCT routine has been placed in a subroutine that can be called in every memory-
reference instruction

—>ltisonly can be called if I=1 then a branch to NDRCT occurs (See Table)

—> S0 inthis cycle memory is accessed to get the effective address of operand

e For ADD instruction, the microinstructions in locations 1 and 2 will carry out.
e Reads operand from memory into DR

e Add contentsof DRto AC

e Jumpsto fetch routine

- Execution of BRANCH instructions
e It causes a branch to effective address of instruction if AC < 0 which means S = 1
Starts by checking the value of S. if S=0 then no branch occurs and next
microinstruction causes a jump to fetch routine
e |f S=1 then control goesto location OVER where a call to INDRCT takes place first if
I=1 then control goesto where AR register points to.

->Execution of STORE instructions

e UsesINDRCT routineif =1

e Content of AC is transferred to DR then memory write operation is initiated to store DR
into MEM(AR)

COMPUTER ORGANIZATION CHAPTER-3

- Execution of EXCHANGE instructions

e Exchange content of MEM(AR) with AC

e Jumpsto INDRCT routine to get the effective operand address
e Reads from memory the operand and direct it to DR

e AC and DR are exchanged in third microinstruction

e DR iswritten to memory MEM(AR)

Binary Micro-program:
—>The symbolic micro-program is a convenient form for writing micro-programs in a way
that people can understand. But this is not a way that the micro-program is stored in memory.

The symbolic program must be translated to binary either by means of an assembler program
or by the user.

—>Binary equivalent of a micro-program translated by an assembler for fetch cycle:

Binary address F1 F2 F3 cD BR AD
1000000 110 000 000 00 00 1000001
1000001 000 100 101 00 00 1000010

1000010 101 000 000 (0 11 0000000

COMPUTER ORGANIZATION CHAPTER-3

TABLE 7-3 Binary Microprogram for Control Memory (Partial)

Address Binary Microinstruction
Micro

Routine ~ Decimal Binary F2 F3 CD BR AD
ADD 0 0000000 000 QOO OO0 O1 01 1000011
1 0000001 000 100 00O 00O 00 0OOOOLO
2 (000010 O0OL COO 0OC 00O 0O 1000000
3 (000011 0O QOO 000 00 00O 100000
BRANCH 4 0000100 000 0QO0O 000 10 00 (0O0OIO
5 0000101 0OC 000 000 00O 00 1000000
6 0000110 000 000 o000 O1 O 1000011
7 0000111 000 000 110 00 00 1000000
STORE § 0001000 000 000 000 O1 01 1000011
9 0001001 00O 100 00O 00 00 0001010
10 0001010 000 000 00 00 1000000
EXCHANGE 12 0001100 00 000 01 Of 1000011
13 0001101 00 000 00 00 O001LI0
4 0000110 101 000 00 00 OQoOLINM
15 000111 000 000 00 00 1000000
FETCH 64 1000000 000 000 00 00 1000001
65 1000001 00 100 00 00 1000010
66 1000010 000 000 00 11 0000000
INDRCT 67 1000011 100 000 00 00 1000100
68 1000100 000 000 00 10 000OOOO

COMPUTER ORGANIZATION CHAPTER-3

11. Design of Control Unit:

—>The number of control bits that initiate micro-operations can be reduced by grouping
mutually exclusive variables into fields and encode k bits into 2k micro-operations.

Decoding of F fields:

—>The 9-bits of the micro-operation field are divided into 3 subfields of 3 bits each. The
control memory output of each subfield must be decoded to provide distinct micro-operations.
The outputs of the decoders are connected to the appropriate inputs in the processor unit.
—>Figure 7-7 shows 3 decoders of 3X8 type, so each field gives 8control lines.

—>E.g. when F1=101 (binary 5), next clock pulse transition transfers the content of DR(0-10)
to AR (DRTAR). Similarly when F1=110(6), there is a transfer from PC to AR (PCTAR).
Outputs 5 & 6 of decoder F1 are connected to the load inputs of AR so that when either is
active information from multiplexers istransferred to AR.

Arithmetic-L ogic-shift Unit:

—>Arithmetic logic shift unit instead of using gates to generate control signals, is provided
inputs with outputs of decoders (AND, ADD and ARTAC).

—>Output from the 3 decoders will generate control signals to indicate the micro-operation

performed

COMPUTER ORGANIZATION CHAPTER-3

Fl F2 F3
3% § decoder 3% § decoder 3 x 8 decoder
76543210 76543210 76543210
Tk SRIRAR RRRRAR
AND
ADD =
DRTAC "] vt
logic§l11ﬁ
umit
né g From From
ol |2 P DRO-10) | |
Bla==
0 I
”_Se_le_cx’ Multiplexers
—
D—» AR < +— (lock

Figure: Decoding of micro-operation fields .Micro-program Sequencer

COMPUTER ORGANIZATION CHAPTER-3

->Basic components of a micro-programmed control unit are control memory and the circuits
that select the next address. This address selection part is called a micro-program sequencer.
The purpose of micro-program sequencer isto load CAR so that microinstruction may be read
and executed. Commercial sequencers include within the unit an internal resister stack to store

addresses during micro-program looping and subroutine calls.

Design of input logic:

—>Theinput logic circuit in Fig. 7-8 hasthree inputs o, 11,and T, and three outputs, So, S1, and
L. Variables So, and S1 select one of the source addresses for CAR.Variable L enables the
load input in SBR. The binary values of the two selection variables determine the path in the

multiplexers.

* MUXZ1 selects an address from one of four sources of and routesit into CAR.
+ MUX2 teststhe value of selected status bit and result is applied to input logic circuit.
» Output of CAR provides address for the control memory

—~>E.g. when S1S0=10, MUX input number 2 is selected and establishes a transfer path from
SBRto CAR.

—>Internal structure of a typical micro-program sequencer for a control memory is shown in

the Figure. It consists of input logic circuit having following truth table.

BR Input MUX 1 Load SBR
Field L Is, T S; So L
0O 0 0O 0 0 0O 0 0
0 0 0O 0 1 0 1 0
0 1 0O 1 0 0 0 0
0 1 0 1 1 0 1 1
1 0] O X 1 O 0
1 1 1 1 Xx ¥ .1 0

Fig: Input Logic Truth for Microprogram Sequencer

COMPUTER ORGANIZATION CHAPTER-3

External
(MAP)

Ib Input Load
logic S a—

I Incrememerl
Test

Y
ock

MUX2
Select

Control memory

CD BR

Microops

Figure: Micro-program sequencer for a control memory

- The truth table can be used to obtain the simplified Boolean functions for the input logic

circuit:
=0 — 1o
= = Iply + 1071

. — Io° I, T

[1]
[2]
[3]
[4]
[5]

[6]
[7]

[8]
[9]

[10]
[11]

[12]
[13]
[14]

[15]
[16]
[17]

COMPUTER ORGANIZATION CHAPTER-3

IMPORTANT QUESTIONSUNIT-3

Explain various instruction formats used in general purpose computers?

What are the different types of interrupts? Explain.

Explain various data transfer instructions?

Explain about RISC?

Explain in detail the influence of number of number of addresses on computer
programs and evaluate the arithmetic statements for different address instructions?
Explain about stack organization?

How many times does the control unit refer to memory when it fetches and executes
an indirect addressing mode instruction if the instruction is (a) a computational type
requiring an operand from memory; (b) abranch type?

Explain different types of addressing?

Discuss the implementation of a typical 64 word STACK in memory and give its
PUSH and POP operations?

Compare and contrast RISC and CISC computers?

The memory unit of a computer has 256K words of 32 bits each. The computer has an
instruction format with four fields: an operation code field, a mode field to specify one
of seven addressing modes, a register address field to specify one of 60 processor
registers, and a memory address. Specify the instruction format and the number of bits
in each field if the in instruction is in one memory word.

Explain about the micro-program sequencer for a control unit?

Draw the block diagram for design of control unit and explain its functionality?
Hardwired control unit is faster than micro-programmed control unit. Justify the
statement.

Explain control memory and symbolic micro-program?

Explain the Fetch routine?

Describe how micro-ingtructions are arranged in control memory and how they are
interpreted?

(a) Draw the block diagram of micro-program sequencer for a control memory and
explain its operation?

(b) Distinguish between micro-program and hardwired control ?

(c) What is the difference between a microprocessor and a micro-program? Is it

possible to design a microprocessor without a micro-program?

[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

[31]

COMPUTER ORGANIZATION CHAPTER-3

(a) Formulate a mapping procedure that provides eight consecutive microinstructions
for each routine. The operation code has six bits and the control memory has 2048
words.

(b) A computer has 16 registers, an ALU (arithmetic logic unit) with 32 operations,
and a shifter with eight operations, all connected to a common bus system.
(i)Formulate to a control word for a micro-operation.

(if)Specify the number of bits in each field of the control word and give a general
encoding scheme.

Explain the difference between hardwired and micro-programmed control?

Write in brief micro-programmed control and hardwired control.

What is control word?

Discus about pipeline register?

Control memory unit?

Name the different micro-instruction formats.

What is the purpose of micro-program sequencer?

What are the different stack operations? Explain.

Explain in brief about Conditional Branch Instructions and Indirect Addressing Mode.
What do you understand by addressing mode?

Perform the logic AND, OR, and XOR with the two binary strings 1001 1100 and
10101010.

Convert the following arithmetic expressions from reverse Polish notation to infix
notation. AB C*/ D-EF/ +

State the relative advantages and disadvantages of direct and indirect addressing
mode? Convert (A+ B)*[C* (D + E) +F] into reverse Polish notation.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory,
Associative Memory, Cache Memory, Virtual Memory.

Input-Output Organization: Peripheral Devices, |nput-Output |nterface,
Asynchronous data transfer, Modes of Transfer, Priority Interrupts, Direct
Memory Access

1. Memory Hierarchy:

->The memory unit that communicates directly with the CPU is called main
memory.

—>Devices that provide backup storage are called auxiliary memory.The most
common auxiliary memory devices used in computer systems are magnetic disks
and tapes. They are used for storing system programs, large data files, and other
backup information. Only programs and data currently needed by the processor
reside in main memory. All other information is stored in auxiliary memory and
transferred to main memory when needed.

—>The memory hierarchy system consists of all storage devices employed in a
computer system from the slow but high-capacity auxiliary memory to a
relatively faster main memory, to an even smaller and faster cache memory
accessible to the high speed processing logic.

- CPU Register - also known as Internal Processor Memory. The data or
instructions which have to be executed are kept in these registers.

>The Cache Memory is employed in computer system to compensate for
the speed differential between main memory access time and processor logic.
CPU logic is usually faster than main memory access time, with result that
processing speed is limited primarily by the speed of main memory. The cache
Is used for storing segments of programs currently being executed in the CPU
and temporary data frequently needed in the present calculations.

- By making program and data available at arapid rate, it is possible to increase
the performance rate of the computer.

- The typical access time ratio between cache and main memory is about 1to
7~10. Auxiliary memory access time is usually 1000 times that of main
memory.

-2 Multiprogramming- Many operating systems are designed to enable the
CPU to process a number of independent programs concurrently — known as
multiprogramming. Sometimes a program is too long to be accommodated in
total space available in main memory. A program with its data normally resides

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

in auxiliary memory. When a program or a segment of program is to be
executed, it is transferred to main memory to be executed by the CPU. The part
of the computer system that supervises the flow of information between
auxiliary and main memory is called the memory management system.

> Figure 1 illustrates the components in a typical memory hierarchy.

' Magnetic '
tapes N i |
;] . i 1 Wain
E i ') |'|"|{:IIL CRaiT |'r|.'3m{:lr_'|-'
i Magnetic 1 ™
5 discs f
| Auxiliary memoty I ‘
CPU » 4 Cache

Main Memory

Magnetic Disk

| Magnetic Tape |

Figure 1 Memory hierarchy in computer system

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

2. Main Memory:

—>Main memory is central storage unit in computersystem. It is arelatively large
and fast memory used to store programs and data during the computer operation.
The principal technology used for main memory is based on semiconductor
integrated circuits.

Random access memory (RAM):

—>The integrated circuit chips are available in two possible operating models:
Static and Dynamic.

> TheStatic RAM (SRAM):consists essentially of internal flip-flops that
store the binary information. The dynamic RAM stores the binary information in
the form of electronic charges that are applied to capacitors. The stored charge
on the capacitors tends to discharge with time and the capacitors must be
periodically recharged by refreshing the dynamic memory. The static RAM is
easier to use and has shorter read and write cycles and used in cache.

->TheDynamic RAMs (DRAMs):are used for implementing the main
memory.DRAMSs stores data as form of electronic charges in small capacitors.
Capacitors are provided by CMOS transistors. Needs refreshing periodically as
charges on small capacitor discharge soon (need electronic control unit for that).

—>DRAM compared to SRAM offer reduced power consumption and larger
capacity. But SRAM are faster.

—>ROM is different type of main memories. Used to store programs and data
that does not change at al (programs, tables, etc.)

—>The ROM portion of main memory is needed for storing an initial program
called abootstrap loader (start loading operating systems).

- ROM s are used to startup any computer.

—->ROM and RAM chips are available in different sizes. And usually we have to
combine many chips to increase size.

RAM and ROM Chips:

1. RAM Chip:

—->A RAM chip is better suited for communication with the CPU if it has one or
more control inputs that select the chip only when needed. Another common
feature is a bidirectional data bus that allows the transfer of data either from
memory to CPU during aread operation or from CPU to memory during awrite
operation.

—>A bidirectional bus can be constructed with three-state buffers. A three-state
buffer output can be placed in one of three possible states: a signal equivalent to
logic 1, asignal equivalent to logic O or a high impedance state.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

- The block diagram of a RAM chip is shown in Figure 12-2.

- The capacity of the memory is 128 words of eight bits (one byte) per word.
This requires a 7-bit address and an 8-bit bidirectional data bus. The read and
write inputs specify the memory operation and two chips select (CS) control
inputs are for enabling the chip only when it is selected by the microprocessor.
—>The function table listed in Fig. 12-2(b) specifies the operation of the RAM
chip.

>When CS1=1 and <S> = 0, the memory can be placed in a write or read
mode.

—->When the WR input is enabled, the memory stores a byte from the data bus
into a location specified by the address input lines.

- When the RD input is enabled, the content of the selected byte is placed into
the data bus.

Figure 12-2 Typical RAM chip.

Chip select | s (S|
Chip select 2 =i OS2

128 X 8

Read RD RAM i H-hit data bus
Write WR
7-bit address AD7

(a) Block diagram

CSI CS2 RD WR |Memory function State of data bus
0 0 x x Inhibit High-impedance
0 1 x x Inhibit High-impedance
1 0 0 0 Inhibit High-impedance
1 0 0 1 Write Input data to RAM
I 0 1 x Read Output data from RAM
I 1 x % Inlubit High-impedance

(b) Function table

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

2., ROM Chip:

Chip seleCt | st CS]

Chip select 2 we—— CS2

512X8 | §-bit data bus
ROM

0-bit address e AD9

Figure 12-3 Typical ROM chip.

—> Since the ROM can only read, the data bus can only be in an output mode.

- The block diagram of a ROM chip is shown in Figure 12-3.

—->No need of READ and WRITE control. Same sized RAM and ROM chip, itis
possible to have more bits of ROM than of RAM, because the internal binary
cellsin ROM occupy less space than in RAM.

—>The nine address lines in the ROM chip specify any one of the 512 bytes
stored in it. The chip select inputs must be CS1=1 and <s2 =0 for the unit to
operate. Otherwise, data bus is in a high-impedance state.

Memory Address Map:
—>Memory Address Map is a pictorial representation of assigned address space
for each chip in the system.

—>Assume computer system with 512 bytes of RAM and 512 bytes of ROM.
The memory address map is shown in TABLE 12-1.

- The RAM chips have 128 bytes and need seven address lines. The ROM chip
has 512 bytes and needs nine address lines. The X’s are always assigned to low-
order bus lines: lines 1 through 7 for the RAM and lines 1 through 9 for the
ROM.

- The table clearly shows that the nine low-order bus lines constitute a memory
space for RAM equal to 2° = 512 bytes.

—->When line 10 is O, the CPU selects a RAM, and when this line is equal to 1, it
selects the ROM.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

TABLE 12-1 Memory Address Map for Microprocomputer

Address bus
Hexadecimal
Component address 109 87635 4321

RAM 1 0000-007F 00 O0x xx X X X X
RAM 2 008000FF 00 1 x x X X X X X
RAM 3 0100-017F 01 0 x%xxx X% x X
RAM 4 OI80-0IFF 01 1 x x x X x x X
ROM 0200-03FF l ¥ X X% X X XK X

Memory connection to CPU:
—->RAM and ROM chips are connected to a CPU through the data and address
buses.

- The connection of memory chips to the CPU is shown in Figure 12-4. This
configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of
ROM. It implements the memory map of Table 12-1.

—->Each RAM receives the seven low-order bits of the address bus to select one
of 128 possible bytes. The particular RAM chip selected is determined from
lines 8 and 9 in the address bus.

—->When the address lines 8 and 9 are equal to 00, the first RAM chip is selected,
and so on. The RD and WR outputs from the microprocessor are applied to the
inputs of each RAM chip.

- The selection between RAM and ROM s achieved through bus line 10. The
RAMs are selected when the bit in this line is 0 and the ROM when the bit is 1.
The other chip select input in the ROM is connected to the RD control line for
the ROM chip to be enabled only during a read operation. Address bus lines 1 to
9 are applied to the input address of ROM without going through the decoder.
This assigns addresses 0 to 511 to RAM and 512 to 1023 to ROM.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

CPU
Address bus
l6-=11 10 9 B 7-1 RD WR Data bus
Decoder
3 2 0
I = 5]
= C52
128 =8B e
L Data |-t
=1 RD RAM I
=1 WER
=t ALY7
=— C5l
= C52
o 128 =8 P
= R RAM 2 Data |-t—»
= WER
=1 AD7
~|Cs!
—=1 52
28 x 8 g
= RD RAM 3 Data [
= WER
= A7
= C51
= C52
_ 128 < 8
= RD RAM 4 Data |-
—= WR
= AD7
= C5l1
1=-17 G 128 =8B
D :.. * il
ROM Data A

e (=]
WOy
2

Figure 12-4 Memory connection to the CPU.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

3. Auxiliary Memory:

->The most common auxiliary memory devices used in computer system are
magnetic disk and tapes. Other components used, but not as frequently, are
magnetic drums, magnetic bubble memory, and optical disks. The average time
required to reach a storage location in memory and obtain its contents is called
the access time. In electromechanical devices with moving parts such as disks
and tapes, the access time consists of seek time required to position the read-
write head to a location and a transfer time required to transfer data to or from
the device.

1. Magnetic Disks:

- A magnetic disk is a circular plate constructed of metal or plastic coated with
magnetized material. Often both sides of the disk are used and several disks
may be stacked on one spindle with read/write heads available on each surface.
All disks rotate together at high speed and are not stopped or started for access
pUrposes.

—>Bits are stored in magnetized surface in spots along concentric circles called
tracks.

—>The tracks are commonly divided into sections caled sectors.In most
systems, the minimum quantity of information which can be transferred is a
sector.

—>The subdivision of one disk surface into tracks and sectors is shown in

Figure. 12-5.

3%

| —
e
e

Read fwrite
hread

Figure 12-5 Magnetic disk.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

. = 7 A sector
S 25, [
,,-""i—-__ = » Each track of a disk is
1 subdivided into sectors
- '.Iﬁ'- = There are 8 or more
' sectors per track

A sector typically contains
512 bytes

Disk drives are designed to
read/write only whole
sectors at a time

Illustrates Grouping of Tracks and Use of Different
Number of Sectors in Tracks of Different Groups for
Increased Storage Capacity

Q

\©

&)

——
-::T"H-\,,_\

i

—
i

Innermost group of tracks
has 8 sectors/track

Mext groups of tracks has
9 sectors/track

Outermost group of tracks
has 10 sectors/track

Storage capacity of a disk system = Number of recording surfaces

« Number of tracks per surface
« Number of sectors per track
x Number of bytes per sector

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Magnetic Disks
|
| |
Floppy Disks Hard Disks
|
| | !
Zip/Bernoulli Disks Disk Packs Winchester
Disks

Flom)v Disks:

Found, flat piece of flexible plastic disks coated with
magnetic oxide

= So called because they are made of flexible plastic
plates which can bend

= Also known as floppies or diskettes

= Plastic disk Is encased |n a square plastic or vinyl jacket
cover that gives handling protection to the disk surface

= The two types of floppy disks in use today are:

= S5u-inch diskette, whose diameter is 5va-inch.
It is encased in a square, flexible vinyl jacket

= 3%-inch diskette, whose diameter is 3%:-inch.
It is encased in a square, hard plastic jacket

Most popular and inexpensive secondary storage
medium used in small computers

Hard Disks:

Round, flat piece of rigid metal (frequently aluminium)
disks coated with magnetic oxide

= Come in many sizes, ranging from 1 to 1l1l4-inch
diameter.

= Depending on how they are packaged, hard disks are of
three types:

= Fip/Bernoulli disks
» Disk packs
= Winchester disks

= Primary on=line secondary storage device for most
computer systems today

1. Magnetic Tapes:

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

= Commonly used seguential-access secondary storage
device

= Physically, the tape medium is a plastic ribbon, which
i= usually Y= inch or va inch wide and 50 to 2400 feet
long

= Plastic ribbon is coated with a magnetizable recording
material such as Iron-oxide or chromium dioxide

= Data are recorded on the tape in the forrmm of tiny
invisible magnetized and non-magneatized spots
(representing 1s and 0s) on its coated surface

= Tape ribbon is stored in reels or a small cartridge or
cassette

Moving Head Disk Fixed Head Disk

-i-h-

a1
EN W

Figure. Magnetic Tape

—>Bits are recorded as magnetic spots on the tape along several parallel tracks(7
to 9 tracks to form character with parity).

- Read/write heads are mounted one on each track so that data can be recorded
and read as a sequence of characters.

—>Magnetic tape units can be stopped, started to move forward, or in reverse, or
can be rewound.

—>Data are recorded in records (number of characters) followed by gaps between
record for synchronization.

—> Each record on tape has an identification bit pattern at the beginning and end.
—> Records are identified by reading ID bit patterns.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

4. Associative Memory:

—->The time required to find an object stored in memory can be reduced
considerably if the objects are based on their contents, not on their locations. A
memory unit accessed by the content is called an associative memory.

—>A memory unit is accessed by content is called an associative memoryor
Content addressable memory (CAM). This type of memory is
accessed simultaneously and in parallel on the basis of data content rather than
by specific address or location.

- The memory is capable of finding an empty unused location to store the word.

* When a word is to be read from an associative memory, the content of the
word, or part of the word, is specified.

* An associative memory is more expensive than a random access memory
because each cell must have storage capability as well as logic circuits for
matching its content with an external argument. For this reason, associative
memories are used in applications where the search time is very critical, and
must be very short, figure bellow show Block diagram of associative memory.

Hardware Organization:

Figure 12-6 Block diagram of associative memory.

Argument reguster (A)

l

Key register (K)
Match
register

Associative memory
array and logic

INpul ————

Read ———e rm words

r bits per word

!

Output

‘Write—-—-

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

—>The block diagram of an associative memory is shown in Figure. 12-6. It
consists of a memory array and logic for m words with n bits per word. The
argument register A and key register k each have n bits, one for each bit of a
word. The match register M has m bits, one for each memory word.

—>Each word in memory is compared in parallel with the content of the
argument register . The words that match the bits of the argument register set a
corresponding bit in the match reqgister. After the matching process, those bits
in the match register that have been set indicate the fact that their corresponding
words have been matched. Reading is accomplished by a sequential access to
memory for those words whose corresponding bits in the match register have
been set. The key register provides a mask for choosing a particular field or key
in the argument word.

—>As example, suppose that the argument register A and the key register K have
the bit configuration shown below. Only the three leftmost bits of A are
compared with memory words because K has 1's in these positions.

A 101 111100

K 111 000000
Word 1 100 111100 no match

Word 2 101 000001 match

Word 2 matches the unmasked argument field because the three left most bits of
the argument and the words are equal.

—->The relation between the memory array and external registers in an
associative memory is shown in Fig. 12-7.

—>The cell Cj is the cell for bit j in word i. A bit A; in the argument register is
compared with all the bits in column j of the array provided that K; =1.This is
done for all columnsj=1, 2... n. If amatch occurs between all the unmasked bits
of the argument and the bits in word i, the corresponding bit M; in the match
register is set to 1. If one or more unmasked bits of the argument and the word
don’t match, M; is cleared to O.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Figure 12-7 Associative memory of m word, n cells per word.

4 4 Ay
[l 11{x]

Ki K; Ky

l i
Word If | €y T Ca | H M,
Wordi|| €, G IR
Word m| | Cany Cni Coun ""'Tm

Bit | Bitj Bitn

—>The internal organization of a typical cell Cj; is shown in Fig. 12-8. It consists
of a flip-flop storage element F; and the circuit for reading, writing and
matching the cell. The input bit is transferred into the storage cell during a write
operation. The bit stored is read out during a read operation. The match logic
compares the content of the storage cedll with the corresponding unmasked bit
of the argument and provides an output for the decision logic that sets the bit in

M;.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Figure 12-8 One cell of associative memory.

A K;
[Nput —— / [
Write
R Ay
Read if logic f
Qutput
Match L ogic:

- The match logic for each word can be derived from the comparison algorithm
for two binary numbers. First, we neglect the key bits and compare the argument
in A with the bits stored in the cells of the words. Word i is equal to the
argument in A if Aj=F;forj=1, 2, ..., n. Two bits are equal if they are both 1or
both 0. The equality of two bits can be expressed logically by the Boolean
function

x; = A F + A F;

where x; = 1 if the pair of bits in position j are equal; otherwise, x; = 0. For a
word i to be equal to the argument in A we must have all x; variables equal to 1.
This is the condition for setting the corresponding match bit M; to 1. The
Boolean function for this condition is

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

M, = xxx3---x,
and constitutes the AND operation of all pairs of matched bitsin aword.

We now include the key bit Kj in the comparison logic. The requirement is that
if K; =0, the corresponding bits of A; and F; need no comparison. Only when K;
= 1 must they be compared. This requirement is achieved by ORing each term
with &5 . thus:

P I_, iij
&Y ¥ _{1 if K;

When K; = 1, we have ¥ = 0 and x; + 0 = x;. When K = 0, then ¥ = 1 and x; +
1=1. Aterm (x;+ &) will be in the 1 state if its pair of bits is not compared.
This is necessary because each term is ANDed with all other terms so that an
output of 1 will have no effect. The comparison of the bits has an effect only
when K = 1.

1
0

- The match logic for word i in an associative memory can now be expressed
by the following Boolean function:

M; = (x; + Kj)(x; + K3)(x3 + K3) - - - (xa + Kj)

Each term in the expression will be equal to 1 if its corresponding K; = 0. If K| =
1, the term will be either O or 1 depending on the value of X;. A match will occur
and M; will be equal to 1 if all terms are equal to 1.

->|f we substitute the original definition of x;, the Boolean function above can
be expressed as follows:

M, = Il (a;F; + Ay Fj + K))
Frm-)

where 7 is a product symbol designating the AND operation of all n terms.We
need m such functions, one for eachword i =1, 2,3, ...m.

- The circuit for matching one word is shown in Figure 12-9. Each cell requires
two AND gates and one OR gate. The inverters for Aj and K;are needed once for
each column and are used for all bits in the column. The output of all OR gates
in the cells of the same word go to the input of acommon AND gate to generate
the match signal for M;. M; will be logic 1 if a match occurs and O if no match

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

occurs. Note that if the key register contains all O's, output M, will be a 1
irrespective of the value of A or the word. This occurrence must be avoided
during normal operation.

Ky Ay K A, K, A,

Fir Fit Fio Fia Il ----

YL Y v AR
JUl |0C l*l

VARAVAIRAVE

Figure 12-9M atch logic for one word of associative memory.

Read Operation:

—>In the read operation all the matched words are read in sequence by applying
read signal to each word line whose corresponding M; bit is logic 1.In
application where no two identical items are stored in the memory, only one
word may match the unmasked argument field.In such case we can use M;
output directly as a read signal for the corresponding word.The contents of the
matched word will be presented automatically at the output lines and no special
signal is needed.

Write Operation:

—>An associative memory must have a write capability for storing the
information to be searched. Writing in an associate memory can take different
forms, depending upon the application. If the entire memory is loaded with new

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

information at once prior to a search operation then the writing can be done by
addressing each location in sequence.This will take the memory device a
random access memory for writing and a content addressable memory for
reading.

—>The advantage here is the address for input can be decoded as in a random
access memory. Thus instead of having m address lines, one for each word in
memory, the number of address lines can be reduced by the decoder to d lines,
where m=2¢,

5. Cache Memory:

—~>Locality of referenceis defined as an analysis has shown that references to
memory at given interval of time is confined within few localized areas in
memory.

—>If the active portions of the program and data are placed in a fast small
memory, the average memory access time can be reduced, thus reducing the
total execution of time of the program. Such a fast small memory is referred to
as a cache memory.lt is placed between the CPU and main memory as
illustrated in Figure 12-10.

Main memory

GFU
Cache memory fel

Figure 12-10 Example of cache memory.

Hit Ratio: The performance of cache memory is frequently measured in terms of
quantity called hit ratio. The ratio of the number of hits divided by the total CPU
references (hits + misses) to memory.

¢ hit : the CPU finds the word in the cache (0.9)

e miss: theword is not found in cache (CPU must read main memory)

—> Cache memory access time = 100 ns, main memory access time = 1000 ns
and
hit ratio = 0.9

—>The basic characteristic of cache memory is its fast access time. The
transformation of data from main memory to cache memory is referred to as

Mmapping process.

- Three types of mapping techniques are:

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

e Associative mapping
e Direct mapping
e Set associative mapping

Associative mapping:
- The fastest and most flexible cache organization uses an associative memory.
This organization isillustrated in Figure 12-11.
—>The associative memory stores both the address and content (data) of the
memory word. This permits any location in cache to store any word. This
permits any location in cache to store any word from main memory.
- The diagram shows three words presently stored in the cache. The address
value of 15 bits is shown as a five-digit octal humber and its corresponding 12-
bit word is shown as a four-digit octal number.
—>A CPU address of 15 bits is placed in the argument register and the
associative memory is searched for a matching address.

Figure 12-11 Associative mapping cache {all numbers in ocral).

CPU address (15 bits)

|

Argument register

Address i Data ————=
01000 3450
Q2777 6710
22345 1234

—>|f the address is found, the corresponding 12-bit data is read and sent to CPU.
If no match occurs, the main memory is accessed for the word. The address-data
pair is then transferred to the associative cache memory.

—>If the cache is full, an address-data pair must be displaced to make room for a
pair that is needed and not presently in the cache.

—>This constitutes a first-in first-out (FIFO) replacement policy.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Direct mapping:

—>Associative memories are expensive compared to random access memories
because of the added logic associated with each cell. The possibility of using a

random-access memory for the cache is investigated in Fiqure. 12-12.

Figure 12-12 Addressing relationships berween main and cache memories.

Ghit 9biks
Tag | Index
0 skxn 000
Octal
Octal Main memory address
address
? Address = 15 bils m
’ Data = 12 bits
nm

—>The CPU address (15 bits the number of address bits (n) required to access the
32Kx12 main memory as example) is divided into two fields. The least
significant bits constitute the index field (nine bits the number of address bite
(k) required to access the 512x12 cache memory as example) and the remaining
six bits from the taqg field (n-k). The figure shows that main memory needs an

address that includes both the tag and the index bits.

512X 12
Cache memory

Address = 9 bits
Data=12 bits.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Memory Index

address Memory data address Tag Data
00000 1220 000| 00 1220
007717 2340
01000 3450
01777 4560 717 02 6710

02000 5670

(h) Cache memory

2T 6710

{a) Main memory

Figure 12-13 Direct mapping cache organization.

—>The direct mapping cache organization uses the n-bit address to access the
main memory and the k-bit index to access the cache. The internal organization
of the words in the cache memory is as shown in Fig 12-13(b).

—>Each word in cache consists of the data word and its associated tag. When a
new word is first brought into the cache, the tag bits are stored alongside the
data bits.

—->When CPU generates a memory request, the index field is used for the
address to access the cache. The tag field of the CPU address is compared with
the tag in the word read from the cache.

—>1f the two tags match, there is a hit and the desired data word is in cache. If
there is no match, there is a miss and the required word is read from main
memory.It is then stored in the cache together with the new tag, replacing the
previous value.

—> The disadvantage of direct mapping is that the hit ratio can drop considerably
If two or more words whose addresses have the same index but different tags are
accessed repeatedly. However, this possibility is minimized by the fact that such

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

words are relatively far apart in the address range (multiples of 512 locations in
this example).

—> Consider the numerical example shown in Figure 12-13. The word at address
zero is presently stored in the cache (index = 000, tag = 00, data = 1220).
Suppose that the CPU now wants to access the word at address 02000. The
index address is 000, so it is used to access the cache. The two tags are then
compared. The cache tag is 00 but the address tag is 02, which does not produce
a match. Therefore, the main memory is accessed and the data word 5670 is
transferred to the CPU. The cache word at index address 000 is then replaced
with a tag of 02 and data of 5670.

- The direct-mapping example just described uses a block size of one word. The
same organization but using a block size of B words is shown in Figure 12-14.
The index field is now divided into two parts: the block field and the word field.
In a512-word cache there are 64 blocks of 8 words each, since 64 x 8 = 512.

Index Tag Data 6 6 3
000 | Ol 3450 Tag | Block | Word
Block 0
007 | 01 6578 L Y ’
Index
010
Block |
017
' |
|
i I |
ol
I |
| I I
| I |
770 | 02
Block 63

77| 02 6710

Figure 12-14 Direct mapping cache with block size of 8 words,

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Set-Associative mapping:

—>A third type of cache organization, called set-associative mapping, is an
improvement over the direct-mapping organization in that each word of cache
can store two or more words of memory under the same index address. Each
data word is stored together with its tag and the number of tag-data items in one
word of cache is said to form a set.

—>An example of a set-associative cache organization for a set size of two is
shown in Figure 12-15. Each indexaddress refers to two data words and their
associated tags. For 32KxI2 main memory and 512x12 cache memory Each tag
requires six bits and each data word has 12 bits, so the word length is 2(6 + 12)
= 36 hits. An index address of nine bits can accommodate 512 words. Thus the
size of cache memory is 512 x 36. It can accommodate 1024 words of main
memory since each word of cache contains two data words. In general, a set-
associative cache of set size k will accommodate k words of main memory in
each word of cache.

Index Tag Diata Tag Drata
DD 01 450D 02 S6a 70
77 o2 a7 10 5] 2340

Figure 12-15 Two-way set-associative mapping cache.

Writing into Cache:

- An important aspect of cache organization is concerned with memory write
requests. When the CPU finds aword in cache during a read operation, the main
memory is not involved in the transfer. However, if the operation is a write,
there are two ways that the system can proceed.

- The simplest and most commonly used procedure is to update main memory
with every memory write operation; with cache memory being updated in
parallel if it contains the word at the specified address. This is called the write-
through method. This method has the advantage that main memory always
contains the same data as the cache. This characteristic is important in systems
with direct memory access transfers. It ensures that the data residing in main

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

memory are valid at all times so that an 1/O device communicating through
DMA would receive the most recent updated data.

- The second procedure is called the write-back method. In this method only
the cache location is updated during a write operation. The location is then
marked by a flag so that later when the word is removed from the cache it is
copied into main memory. The reason for the write-back method is that during
the time a word resides in the cache, it may be updated several times; however,
as long as the word remains in the cache, it does not matter whether the copy in
main memory is out of date, since requests from the word are filled from the
cache.

Cacheinitialization:

—>One more aspect of cache organization that must be taken into consideration
Is the problem of initialization. The cache is initialized when power is applied to
the computer or when the main memory is loaded with a complete set of
programs from auxiliary memory. After initialization the cache is considered to
be empty, but in effect it contains some non-valid data. It is customary to
include with each word in cache a valid bit to indicate whether or not the word
contains valid data.

—>The cache is initialized by clearing all the valid bits to 0. The valid bit of a
particular cache word is set to 1 the first time this word is loaded from main
memory and stays set unless the cache has to be initialized again. The
introduction of the valid bit means that a word in cache is not replaced by
another word unless the valid bit is set to 1 and a mismatch of tags occurs. If the
valid bit happens to be 0, the new word automatically replaces the invalid data.
Thus the initialization condition has the effect of forcing misses from the cache
until it fills with valid data.

By Sreenu Konda (9490970060)

6.Virtual Memory:

—>In amemory hierarchy system, programs and data are first stored in auxiliary
memory. Portions of a program or data are brought into main memory as they
are needed by the CPU.

—>Virtual memory is a concept used in some large computer systems that
permit the user to construct programs as though a large memory space were
available, equal to the totality of auxiliary memory. Each address that is
referenced by the CPU goes through an address mapping from the so-called
virtual address to a physical address in main memory.

—>A virtual memory system provides a mechanism for translating program-
generated addresses into correct main memory locations. This is done
dynamically, while programs are being executed in the CPU. The translation or
mapping is handled automatically by the hardware by means of a mapping table.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Address Space and M emory Space:
—>An address used by a programmer will be called a virtual address, and the set
of such addresses the address space. An address in main memory is called a
location or physical address. The set of such locations is called the memory
space. Thus the address space is the set of addresses generated by programs as
they reference instructions and data; the memory space consists of the actual
main memory locations directly addressable for processing. In most computers
the address and memory spaces are identical. The address space is allowed to be
larger than the memory space in computers with virtual memory.
—>As example for 1024k auxiliary memory and 32k main memory then

Virtual address bits =20 Physical address bits =15

Address space =1024k Memory space = 32k
—>In a multi-program computer system, programs and data are transferred to and
from auxiliary memory and main memory based on demands imposed by the
CPU. Suppose that program 1 is currently being executed in the CPU. Program
1 and a portion of its associated data are moved from auxiliary memory into
main memory as shown in Eigure 12-16.

Auxiliary memory

Main memory

Program | h--‘-""'"""-‘- Program |
Data I, |
Data |, 2

Data 1, |
Program 2
Data 2, |

Memory space

M = 32k = 213

Address space

N=1024K = 220

Figure 12-16 Relation between address and memory space in a virtual
memory system.

—> A table is then needed, as shown in Figure 12-17, to map a Vvirtual address of
20 bits to a physical address of 15 bits. The mapping is a dynamic operation

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

which means that every address is translated immediately as a word is
referenced by CPU.

-> The mapping table may be stored in a separate memory as shown Figure 12-
17 or in main memory. In the first case, an additional memory unit required as
well as one extra memory access time. In the second case, the table takes space
from main memory and two accesses to memory are required with the program
running at half speed. A third alternative is to use an associative memory.

Figure 12-17 Memory table for mapping a virtual address.

Virtual address

Virtual " Main memory
address SFILy address Main
register — mapping register || memory
(20 bits) Eatile (15 bits)
1 Main memory
Memory tlabh: buffer register
buffer register

Address M apping Using Pages:

—>The table implementation of the address mapping is simplified if the
information in the address space and the memory space are each divided into
groups of fixed size. The physical memory is broken down into groups of equal
size called blocks, which may range from 64 to 4096 words each. The term
page refers to groups of address space of the same size.

->Consider a computer with an address space of 8K and a memory space of 4K.
If we split each into groups of 1K words we obtain eight pages and four blocks
as shown in Figure 12-18. At any given time, up to four pages of address space
may reside in main memory in any one of the four blocks.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Page 0

Page |

Page 2

Page 3

Page 4 Block 0

Page 5 Block |

Page 6 Block 2

Page 7 Block 3
Address space Memory space
N=8K =21 M= 4K = 2"

Figure 12-18 Address space and memory space split into groups of 1K words.

- The mapping from address space to memory space is facilitated if each virtual
address is considered to be represented by two numbers: a page number address
and a line (word) within the page. In a computer with 2 words per page, p bits
are used to specify a line address (word) and the remaining high-order bits of the
virtual address specify the page number.

—>The line address in address space and memory space is the same; the only
mapping required is from a page number to a block number.

—>The organization of the memory mapping table in a paged system is shown in
Figure bellow. This figure for 8k x 12 auxiliary memory and 4k x 12 main
memory with block size = page size = 1k

—>The organization of memory mapping table in page system is shown in
Figure 12-19. The memory-page table consists of eight words, one for each
page. The address in the page table denotes the page number and the content of
the word gives the block number where that page is stored in main memory. The
table shows that pages 1, 2, 5, and 6 are now available in main memory in
blocks 3, 0, 1, and 2, respectively. A presence bit in each location indicates
whether the page has been transferred from auxiliary memory into main
memory.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Figure 12-19 Memory rable in a paged system.

Page no. Line number
1 011010101001 1) Virtual address
e — e

000 0 Main memory
001 11 1 Block 0
oo o0 |t [% Block |
(1] 0 01] 0101010011 —[-.- Block 2
100 0 Main memory Block 3
101 ol I address register ’
110 10 1
T o MBR

01 1

Memory page table
Associative M emory Page Table:

—>A random-access memory page table is inefficient with respect to storage
utilization.

—>A more efficient way to organize the page table would be to construct it with
a number of words equal to the number of blocks in main memory. In this way
the size of the memory is reduced and each location is fully utilized. This
method can be implemented by means of an associative memory with each word
In memory containing a page number together with its corresponding block
number. The page field in each word is compared with the page number in the
virtual address. If a match occurs, the word is read from memory and its
corresponding block number is extracted.

- Consider again the case of eight pages and four blocks as in the example of
Figure 12-19. We replace the random access memory-page table with an
associative memory of four words as shown in Figure 12-20. Each entry in the
associative memory array consists of two fields. The first three bits specify a
field for storing the page number. The last two bits constitute a field for storing
the block number. The virtual address is placed in the argument register. The

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

page number bits in the argument register are compared with all page numbers
in the page field of the associative memory. If the page number is found, the 5-
bit word is read out from memory. The corresponding block number, being in
the same word, is transferred to the main memory address register. If no match
occurs, a call to the operating system is generated to bring the required page
from auxiliary memory.

Figure 12-20 An associative memory page table.

Virtual address

A
r B
Page no.
f—_hﬁ
I 01 Line number Argument register
(I 0 0 Key register
0 01 1 1
01 0 0 0
Associative memory
1 01 0 1
| 1 T8 | 7.6
#‘Wg

Page no. Block no.

Replacement algorithm:
—->When a program starts execution, one or more pages are transferred into main
memory and the page table is set to indicate their position. The program is
executed from main memory until it attempts to reference a page that is still in
auxiliary memory. This condition is called page fault.
—->When a miss occur in a Cache memory and the Cache is full, it is necessary to
replace one word with new word from main memory. The most common
replacement algorithms are:-
1- Random Replacement: Select the item randomly.
2- 2- FIFO (First-In First-Out): Select the item has been in the Cache the
longest.
3- 3- LRU (Least Recently Used): Select the item that has been least recent
used by the CPU.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

INPUT-OUTPUT ORGANIZATION

7. Peripheral Devices:

I1/0 subsystem:

-> The input-output subsystem (also referred as 1/0) proves an efficient mode of
communication between the central system and outside environment. Data and
programs must be entered into the computer memory for processing and result
of processing must be must be recorded or displayed for the user.

Peripheral devices:

->Any input/output devices connected to the computer are called peripheral
devices.

~>Input devices are used to put the information into computer. With the help
of input devices we can store information in memory so that CPU can use it.
Program or data is read into main memory from input device or secondary
storage under the control of CPU input instruction.

->Output devices are used to output the information from computer. If some
results are evaluated by computer and it is stored in computer, then with the help
of output devices, we can present it to the user. Output data from the main
memory go to output device under the control of CPU output instruction.

Input Devices Output Devices
* Keyboard - Card Puncher, Paper Tape Puncher
+ Optical input devices »CRT
- Card Reader » Printer (Impact, Ink Jet,
- Paper Tape Reader Laser, Dot Matrix)
- Bar code reader * Plotter
- Digitizer - Analog
- Optical Mark Reader * Voice
* Magnetic Input Devices
- Magnetic Stripe Reader

= Screen Input Devices
- Touch Screen
- Light Pen
- Mouse

* Analog Input Devices

- The computer keyboard, based on the typewriter keyboard, contains keys f
or entering letters, numbers, and punctuation marks, as well as keys to change th

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

e meaning of other keys. The function keys perform tasks that vary fromprogra
m to program.

->The mouse is adevice that is rolled on the desktop to move the cursor onthe
screen. A ball on the bottom of the mouse translates the device's movements to
sensors within the mouse and then through the connecting port to the computer.

- The printer puts text or other images produced with a computer onto paper
or other surfaces. Printers are either impact or nonimpact devices.

->The joystick is a pointing device used principally for games.

->The light pen performs the same functions as a mouse or trackball, but it is
held up to the screen, where its sensors detect the presence of pixels and send a s
ignal through a cable to the compuiter.

—->The graphics, or digitizing, tablet is a pad with electronics beneath the surfa
ce which is drawn upon with a pointed device, called a stylus. The shapes drawn
appear on the monitor's screen.

- The Cathode Ray Tube (CRT) contains an electronic gun that sends an
electronic beam to a phosphorescent screen in front of the tube.

- The monitor is the device on which images produced by the computer oper
ator or generated by the program are displayed on a cathode-ray tube (CRT).

—->Magnetic tapes are used mostly for storing files of data: for example,
company’s payroll system.

“>Magnetic disks have high-speed rotational surfaces coated with magnetic
material.

ASCII Alphanumeric Characters:
—>Standard binary code for the alphanumeric characters is ASCIl (American
Standard Code for Information I nterchange).
—>ASCII uses 7 bits to code 128 characters as shown in Table11-1.
e 94 printable characters and 34 non printable characters.
Printable characters consist of:
e 26 uppercase letters - (A through Z)
e 26 lowercase letters - (athrough z)
e 10 numerals— (0 through 9)
o 32 special printable characters such as %, *, and $.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

TABLE 11-1 American Standard Cod e for Informadon lorerchange {ASCID

By b bs
baby by by D00 001 010 011 100 101 110 111
0000 NUL DLE SP 0 @ P 1 p
D001 SOH D I 1 A Q a q
o010 STX DC2 2 2 B R b r
0011 ETX D3 # 3 C 5 = &
0100 EOT DC4 b 4 D T d i
0101 ENOQ MAK T 5 E L] e u
0110 ACK SN o] F L f v
0111 BEL ETB r 7 G w E w
1000 BS CAN (8 H b 4 h x
1001 HT EM } 9 I Y i y
1010 LF SUB * . J & i F A
1011 vT ESC + : K [k {
1100 FF FS ; < L A I |
1101 CR GS - - M 1 m ¥
1110 S0 RS : = M P n —
1111 Sl Us) T (8 -— o DEL
Control characters
NUL MNull DLE Data link escape
S0OH Start of heading D1 Device control 1
STX Start of text DC2 Device control 2
ETX End of text D3 Device control 3
EOT End of transmission DC4 Device control 4
ENG Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETH End of transmission block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
vT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage returm 35 Group separator
. S0 Shift out RS Record separator
51 Shift in us Unit separator
5P Space DEL Delete

8.1 nput-Output | nterface:
—> Input-output interface provides a method for transferring information between
internal storage and external 1/0O devices.

- The main purpose of 1/O interface is to resolve differences between CPU and
the peripherals.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

The major differences between the central computer and each
peripheral are:

1. Peripherals are electromechanical and electromagnetic devices and their
manner of operation is different from the operation of the CPU and
memory.

2. The data transfer rate of peripherals is usually slower than the transfer rate
of the CPU.

3. Data codes and formats in peripherals differ from the word format in the
CPU and memory.

4. The operating modes of peripherals are different from each other and each
must be controlled so as not to disturb the operation of other peripherals
connected to the CPU.

—>To resolve these differences, computer systems include special hardware
components between the CPU and peripherals to supervise and synchronize all
input and output transfers. These components are called interface units
because they interface between the processor bus and the peripheral device.

I/0 Bus and Interface Modules:
- A typical communication link between the processor and several peripherals
isshown in Figure. 11-1.

/0 bus
Data
UG == p—peye— ises
Control

Keyboard | |
and Printer | |Magnetic| | Magnetic
display disk tape
terminal

Figure 11-1 Connection of I/O bus to input-output devices.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

—->The 1/0 bus from the processor is attached to all peripheral interfaces. To
communicate with a particular device, the processor places a device address on
the address lines. Each interface attached to the 1/O bus contains an address
decoder that monitors the address lines. When the interface detects its own
address, it activates the path between the bus lines and the device that it controls.

- Functions of an interface are as below: -
- Decodes the device address (device code).
- Decodes the I/O commands (operation or function code).
- Provides signals for the peripheral controller.
- Synchronizes the data flow and
- Supervises the transfer rate between peripheral and CPU or Memory.

—>At the same time that the address is made available in the address lines, the
processor provides a function code in the control lines(1/0 command) which is
one of the types:-

1. A control command is issued to activate the peripheral and to inform
it what to do. For (a magnetic tape unit may be instructed to backspace
tape by one record, to rewind the tape, or to start the tape moving in
forward direction).

2. A status command is used to test various status conditions in the
interface and the peripheral (the computer may wish to check the status of
the peripheral before a transfer is initiated).

3. A data output command causes the interface to respond by
transferring from the bus into one of its registers.

4. Data input command is the opposite of the data output. In this case
interface receives an item of data from the peripheral and places it in its
buffer register.

I/0 versus Memory Bus:

—->1/0 Bus: Communication between CPU and al interface units is via a
common 1/O bus. An interface connected to a peripheral device may have a
number of data registers, a control register, and a status register. A command is
passed to the peripheral by sending to the appropriate interface register

“>Memory bus: used for information transfers between CPU and the MM
(main memory). 1/O bus is for information transfers between CPU and 1/O
devices through their I/O interface.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

“>There are three ways that computer buses a used to
communicate with memory and I/0:

1. Use two separate buses, one for memory and the other for |/O.

2. Use one common bus for both memory and 1/0 but have separate control
lines for each.

3. Use one common bus for memory and 1/0O with common control lines.

Isolated versus Memory-Mapped 1/0:
—->Many computers use one common bus to transfer information between
memory or |/O and the CPU. The distinction between a memory transfer and 1/0
transfer is made through separate read and write lines. The CPU specifies
whether the address on the address lines is for a memory word or for an
interface register by enabling one of two possible read or write lines. The I/O
read and 1/0 write control lines are enabled during an 1/O transfer. The memory
read and memory write control lines are enabled during a memory transfer. This
configuration isolates all 1/O interface addresses from the addresses assigned to
memory and is referred to as the isolated I/O method for assigning
addresses in a common bus.
—>The other alternative is to use the same address space for both memory and
I/0O. This is the case in computers that employ only one set of read and write
signals and do not distinguish between memory and 1/O addresses. This
configuration is referred to as memory-mapped I/O. The computer treats
an interface register as being part of the memory system. The assigned addresses
for interface registers cannot be used for memory words, which reduce the
memory address range available.
e In a memory-mapped 1/O organization there are no specific inputs or
output instructions.
e Inatypical computer, there are more memory-reference instructions than
1/O instructions. With memory mapped 1/O all instructions that refer to
memory are also available for 1/0.

Differences between Isolated I/0 and Memory Mapped
1/0.

>Memory Mapped I/O and Isolated I/O are two methods of
performing input-output operations between CPU and installed peripheralsin
the system. Memory mapped 1/O uses the same address bus to connect both
primary memory and memory of hardware devices. Thus the instruction to
address a section or portion or segment of RAM can also be used to address a
memory location of a hardware device.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

—>0On the other hand, isolated I/O uses separate instruction classes to access
primary memory and device memory. In this case, 1/O devices have separate
address space either by separate 1/0O pin on CPU or by entire separate bus. As it
separates general memory addresses with /O devices, it is caled isolated
I/0.

Differences Between Isolated /0 and Memory Mapped 1/0:

Isolated [/0 No. Memary Mapped L/0
Isofated /0 uses separate memary space, 01 | Memory mapped [0 uses memary from the
main memary.

Limited instructions can be used. Those are 02 | Any instruction which references to memary

[N, OUT, INS, OUTS, an be used.
The addresses for Isolated 1'O devices are 03 | Memory mapped /0 devices are treated as
called ports, memary locations on the memary map.

[0RC & IOWCsignals expands the circuitry. | 04 | JORC & JOW signals has no functions in this
case which reduces the drcuitry.

Efficient L0 operations due to using separate | 05 | Inefficient I/0 operations due to using single

bus bus for data and addressing
Comparatively larger in size 06 | Smaller in size
Uses complex intemal logic 07 | Common internal logic for memory and 1/O
davices
Slower aperations 08 | Faster operations

Example of I/O Interface:

—>An example of an I/O interface unit is shown in block diagram form in Figure
12-2. It consists of two data registers called ports, a control register, a status
register and bus buffers, and timing and control circuits. The interface
communicates with the CPU through the data bus. The chip select and register
select input determine the address assigned to the interface. The 1/O read and

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

writes are control lines that specify an input or output, respectively. The four
registers communicate directly with the 1/O device attached to the interface.
—>The interface registers communicate with the CPU through the bidirectional
data bus. The address bus selects the interface unit through the chip select and
the two register select inputs. A circuit must be provided externally (usually, a
decoder) to detect the address assigned to the interface registers. This circuit
enables the chip select (CS) input when the interface is selected by the address
bus. The two register select inputs RSO and RS1 are usually connected to the
two least significant lines of the address bus. These two inputs select one of the
four registersin the interface.

—>Bidirectional lines represent both data in and out from the CPU. Information
In each port can be assigned a meaning depending on the mode of operation of
the 1/O device: Port A = Data; Port B =Command; Port C = Status. CPU
initializes (loads) each port by transferring a byte to the Control Register. CPU
can define the mode of operation of each port.

110 data
Port A
Bidirectional 5 B
Bus buffers Register
Data bus
Pat B | VO data
Chip select ¥
Chip select Ch Register
— ¥ RS]
i Control Control
: VN " register g
Register Select pepy & . B
Control s
l =
= Status Sy
10 write ; o : R
— WR register

S — To ‘:D L/ To II.-"r 8 df'l."'l';ff C—

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

CS RS1 RSO Register selected

b x x None: data bus in high-impedance
1 0 0 Port A register
1 0 1 Port B register
1T 0 Control register

LI Status register

Figure 11-2.Example of I/0 Interface unit.

9. Asynchronous Data Transfer:

—>1In a computer system, CPU and an |/O interface are designed independently
of each other.When internal timing in each unit is independent from the other
and when registers in interface and registers of CPU uses its own private clock.
—>In that case the two units are said to be asynchronous to each other. CPU and
1/O device must coordinate for data transfers.

Strobe Control: This is one way of transfer i.e. by means of strobe pulse
supplied by one of the units to indicate to the other unit when the transfer has to
occur.

Handshaking: This method is used to accompany each data item being
transferred with a control signal that indicates the presence of data in the bus.
The unit receiving the data item responds with another control signal to
acknowledge receipt of the data.

METHODS USED IN ASYNCHRONOUS DATA TRANSFER:

e Strobe Control
e Handshaking

Strobe Control:

—>Asynchronous data transfer between two independent units requires that
control signals be transmitted between the communicating units to indicate the
time at which data is being transmitted. One way of achieving this is by means
of a strobepulse supplied by one of the units to indicate to the other unit when
the transfer has to occur. The strobe may be activated by either source or the

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

destination unit. The Strobe signal is disabled indicates that the data bus does
not contain valid data. New valid data will be available only after the strobe is
enabled again.

—> Strobe control method of data transfer uses a single control signal for each
transfer. The strobe may be activated by either the source unit or the destination
unit.

eSource Initiated Strobe
e Destination Initiated Strobe

SOURCE INITIATED STROBE:

—-> The data bus carries the binary information from source unit to the destination
unit as shown below.

—>The strobe is a single line that informs the destination unit when a valid data
word is available in the bus. The source unit first places the data on the bus.
After a brief delay to ensure that the data settle to a steady value, the source
activities the strobe pulse.

- The information of the data bus and the strobe signal remain in the active state
for a sufficient time period to allow the destination unit to receive the data. The
source removes the data from the bus for & brief period of time after it disables
its strobe pulse.

Source-Initiated Strobe
for Data Transfer

Block Diagram

Data bus >
Source Destination

unit Strobea > unit

Timing Diagram

p— ' alid data —————p

Data

Strobe I I

DESTINATION INITIATED STROBE:

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

—>First, the destination unit activates the strobe pulse, informing the source to
provide the data. The source unit responds by placing the requested binary
information on the unit to accept it.

- The data must be valid and remain in the bus long enough for the destination
unit to accept it. The falling edge of the strobe pulse can be used again to trigger
a destination register. The destination unit then disables the strobe. The source
removes the data from the bus after a predetermined time interval.

Destination-Initiated Strobe
for Data Transfer

Block Diagram

Data bus
Source > Destination

unit Strobe unit

<4

Timing Diagram

— Valid data ——,

Data

Strobe

HANDSHAKING:

Another method commonly used is to accompany each data item being
transferred with a control signal that indicates the presence of data in the bus.
The unit receiving the data item responds with another control signal to
acknowledge receipt of the data. This type of agreement between two
independent units is referred to as handshaking. The handshaking may be
activated by either source or the destination unit.

->The disadvantage of the strobe method is that the source unit that initiates
transfer has no way of knowing whether the destination unit has actually

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

received the data item that was placed in the bus. Similarly, a destination that
Initiates the transfer has no way of knowing whether the source unit has actually
placed the data on the bus. The handshaking method solves this problem by
introducing a second control signal that provides a reply to the unit that initiates
the transfer.

2There are two control lines in handshaking technique:

e Source to destination unit.
e Destination to source unit.

SOURCE INITTATED TRANSFER:

—>Handshaking signals are used to synchronize the bus activities. The two
handshaking lines are data valid, which is generated by the source unit, and data
accepted, generated by the destination unit. The timing diagram shows exchange
of signals between two units.

SOURCE INITIATED TRANSFER USING HANDSHAKING:

—>The sequence of events:

e The source unit initiates the transfer by placing the data on the bus and
enabling its data valid signal.

e The data accepted signals are activated by the destination unit after it
accepts the data from the bus. The source unit then disables its data valid
signal, which invalidates the data on the bus.

e The destination unit the disables its data accepted signal and the system
goes into itsinitial state.

DESTINATION INITIATED TRANSFER USING HANDSHAKING:

e |n this case the name of the signal generated by the destination unit is
ready for data.

e The source unit does not place the data on the bus until it receives the
ready for data signal from the destination unit.

e The handshaking procedure follows the same pattern as in source initiated
case. The sequence of events in both the cases is aimost same except the
ready for signal has been converted from data accepted in case of source
initiated.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

SOURCE-INITIATED TRANSFER USING HANDSHAKE

Data bus "

: Source Data valid Destination
=

\ialld data

Timing Diagram 222
Data valid
Cata accepled
Sequence of Events Souree unf Destinaion un
Place data on bus.
| vt dat vl
Accapt data from bus.
Enable data accepted
Disable data valid
Imvalidate data on bus.
Disable data accepled.
Ready to accept data

(initial state).

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

DESTINATION-INITIATED TRANSFER USING HANDSHAKE

Data bus
Block Diagram Solee Data valld Destination

unit Ready for it unit

Timing Diagram ~ Readyforcat

Data valid

\4— Vil data

Source unit Destination unit

Ready to acozpt data i
Place data on bus, Enabe ready for data
Enable data valid. \

Aucept data from bus,

Disable data valid. Disable ready for data.
Invalicate data on bus — T
(nital state).

.

Diaka bus

Sequence of Events

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Asynchronous Serial Transfer:
—>A serial asynchronous data transmission technique used in many interactive
terminals employs special bits which are inserted at both ends of the character

code.
—>With this technique each character consists of three parts:

e Start bit: is always a 0 and is used to indicate the beginning of a
character.

e Character bits: data.

e Stop hits: isalwaysal.

- An example of this format is shown in Figure. 11-7.

Sg‘i"tnd— Character bits —H-Sbti‘:sp-r

(1hi at least 1 bif)

Figure 11-7 Asynchronous serial transmission

- A transmitted character can be detected by the receiver from knowledge of the
4 transmission rules:

1. When a character is not being sent, the line is kept in the 1-state (idle state).

2. The initiation of a character transmission is detected from the Sart Bit,
which is always a0.

3. The character bits always follow the Sart Bit.

4. After the last bit of the character is transmitted, a Stop Bit is detected
whenthe line returns to the 1-state for at least 1 bit time.

->As illustration, consider the serial transmission of a terminal whose
transfer rate is 10 characters per second. Each transmitted character consists of a
start bit, eight information bits, and two stop bits, for a total of 11 bit. Ten
characters per second that means each character take 0.1 s for transfer. Since
there are 11 bits to be transmitted, it follows that the bit time is 9.09 ms.

Sir C R Reddy College of Engineering, Eluru , CSE

Computer Organization-UNIT4

- The Baud Rate is defined as the rate at which serial information is transmitted

and is equivalent to the data transfer in bits per second.

—->10 characters per second with an 11 bit format have a transfer rate of 110

baud.

Asynchronous Communication Interface:

(UNIVERSAL ASYNCHRONOUSRECEIVER-TRANSMITTER -UART):

—->The block diagram of A typical asynchronous communication interface is

shown inFigure. 11-8 . It functions as both a transmitter and receiver.

Bidirectional pe—

(iata bus Bus

l I buffers
Chip select 3
Register select RS Tiing
Oed | and
(™ Control
)10 write

1l

Inmntermnal Bus

Transmitter
register

Shift
reqister

Transmit
(ata

Control | [Transmitter Tranlsmlltler
ogister | | contol g
and clock
Status | | Receiver | Receiver
agistr | | conrl |20
and clock

e - RECEIVE
Recelver Shit | data
register € register ¢

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

CS RS | Oper.| Register selected

X |None
WR | Transmitter register
WR | Control register
RD | Receiver register
RD | Status register

—_ ek ke
—_— D D D

Figure 11-8 Block diagram of a typical asynchronous
communication interface.

-1t works as both a recelver and a transmitter. Its operation is initialized by
CPU by sending a byte to the control register.

Transmitter:

—>The operation of the transmitter portion of the interface is as follows. The
CPU reads the status register and checks the flag. If the transmitter register is
empty, the CPU transfers a character to the transmitter register and the interface
clears the flag to mark the register full. The first bit in the transmitter shift
register is set to O to generate a start bit. The character is transferred in parallel
from the transmitter register to the shift register and the appropriate numbers of
stop bits are appended into the shift register.

—>The transmitter register is then marked empty. The character can now be
transmitted one bit at a time by shifting the data in the shift register at the
specified baud rate. The CPU can transfer another character to the transmitted
register after checking the flag in the status register. The interface is said to be
double buffered because a new character can be loaded as soon as the previous
one starts transmission.

- The transmitter register accepts a data byte from CPU through the data
bus and transferred to a shift register for serial transmission.

Receiver:
- The operation of the receiver portion of the interfaceis similar.

- The receive portion receives information into another shift register, and
when a complete data byte is received it is transferred to receiver register. CPU
can select the receiver register to read the byte through the data bus. Data in the
status register is used for input and output flags.

First In First OQut Buffer (FIFO):

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Rl Rl R} Rd
—-_L_-r —

m[i i 'i"t'“ e Hlt . "-IIH R ————jc | 4_h” — Eﬂﬁ
nput .| reister | regiler .| TESHLEC o| Temeter | outpul
—p E ———a e 5 rre—r
A A Al A

Clock Clock Clock Clock
e —— T — P

&

A F:——_j _F-z——] 'FJ-- — { F‘. -
Output
ready

_R _FII- -—R FI!- -—R Fr- -—R F._

’ Delete
a4 _*
Input ready
Master clear)

Figure 11.9 Circuit dizgram of 4 4 FIFO buffer.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

—->When placed between two units, the FIFO can accept data from the source
unit at one rate of transfer and deliver the data to the destination unit at another
rate.

—>If the source is slower than the destination unit, the buffer can be filled with
data at a slow rate and later emptied at the higher rate.

—>When placed between two units, the FIFO can accept data from the source
unit at one rate of transfer and deliver the data to the destination unit at another
rate.

—>If the source is faster than the destination, the FIFO is useful for source data
arrive in bursts that fills out the buffer. FIFO is useful in some applications
when data are transferred asynchronously.

> The logic diagram of atypical 4 x 4 FIFO buffer is shown Figure. 11-9. It
consists of four 4-bit registers RI, 1=1,2,3,4 and a control register with flip-flops
F,1=1,2,3,4, one for each register.FIFO can store four words of four bits each.
—A flip-flop F in the control register that is set to 1 indicates that a 4-bit data
word is stored in the corresponding register RI. A 0 in F; indicates that the
corresponding register does not contain valid data. The control register directs
the movement of data through the registers.

—->Whether the F bit of the control register is set (Fi=1) and the bhit is reset
(Fi+1=1), aclock register is generated causing register R(I+1) to accept the data
from the register RI. The same clock transition sets Fi+1 to 1 and resets F; to O.
This causes the control flag to move one position to the right together with the
data.

10. Modes of Transfer:

—>The data transfer can be handled by various modes. Some of the modes use
CPU as an intermediate path, others transfer the data directly to and from the
memory unit and this can be handled by 3 following ways:

A). Programmed I/0
B). Interrupt-initiated I/O
C). Direct memory access (DMA)

(A).Programmed I/0O:

—>Programmed 1/0 operations are the result of 1/O instructions written in the
computer program. Each data item transfer is initiated by an instruction in the
program. Usually, the transfer is to and from a CPU register and peripheral.
Other instructions are needed to transfer the data to and from CPU and memory.
Transferring data under program control requires constant monitoring of the
peripheral by the CPU. Once a data transfer is initiated, the CPU is required to
monitor the interface to see when a transfer can again be made. It is up to the

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

programmed instructions executed in the CPU to keep close tabs on everything
that is taking place in the interface unit and the I/O device.

—>1n the programmed 1/O method, the 1/O device does not have direct access to
memory. A transfer from an /O device to memory requires the execution of
several instructions by the CPU, including an input instruction to transfer the
data from the device to the CPU and a store instruction to transfer the data from
the CPU to memory. Other instructions may be needed to verify that the data are
available from the device and to count the numbers of words transferred.

->An example of data transfer from an |/O device through an interface into the
CPU is shown in Figure 11-10.

Figure 11-10 Data transfer from UO device to CPU.

Interface
_Data bus 10 bus

Addressbus Data register

' _ Data valid 10

| Omd | [foic

110 write Status

. gl F Data accepted J

F = Flag bit

- The device transfers bytes of data one at a time as they are available.

“>When a byte of data is available, the device places it in the I/0O bus and
enables its data valid line. The interfaceaccepts the byte into its data register
and enables the data accepted line. The interface sets a bit in the status register
that refer to as an F or “flag” bit.The devicecan now disable the data valid line,
but it will not transfer another byte until the data accepted line is disabled by the
interface. This is according to the handshaking procedure established.

—>If the flag is equal to 1, the CPU reads the data from the data register. The flag
bit is then cleared to O by either the CPU or the interface, depending on how the

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

interface circuits are designed. Once the flag is cleared, the interface disables the
data accepted line and the device can then transfer the next data byte.

l I

Eead data register

Check flag but

l - 3L Flag

Eead status register

|

Transfer data (o Mmemory

Orperation
complcic?

Continue
with

program

Figure 11-11 Flow chart for CPU program to input data.

—2A flow chart of the program that must be written for the CPU is shown in
Figure. 11-11. |t is assumed that the device is sending a sequence of bytes that
must be stored in memory. The transfer of each byte requires three instructions:

¢ Read the status register.
e Check the status of the flag bit and branch to step 1 if not set or to step 3
If set.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

e Read the dataregister

Drawback of the Programmed I/O:
->The main drawback of the Program Initiated 1/0O was that the CPU has to
monitor the units all the times when the program is executing. Thus the CPU
stays in a program loop until the 1/O unit indicates that it is ready for data
transfer. This is a time consuming process and the CPU time is wasted a lot in
keeping an eye to the executing of program.

-> To remove this problem an Interrupt facility and special commands are used.

(B) Interrupt-Initiated I/0:

—>In the programmed 1/O method, the CPU stays in a program loop until the I/O
unit indicates that it is ready for data transfer. This is a time-consuming process
since it keeps the processor busy needlessly. It can be avoided by using an
interrupt facility and special commands to inform the interface to issue an
interrupt request signal when the data are available from the device. In the
meantime the CPU can proceed to execute another program. The interface
meanwhile keeps monitoring the device. When the interface determines that the
device is ready for data transfer, it generates an interrupt request to the
computer. Upon detecting the external interrupt signal, the CPU momentarily
stops the task it is processing, branches to a service program to process the 1/0
transfer, and then returns to the task it was originally performing.

—>An alternative to the CPU constantly monitoring the flag is to let the interface
inform the computer when it is ready to transfer data. This mode of transfer uses
the interrupt facility. While the CPU is running a program it does not check the
flag. However, when the flag is set, the computer is momentarily interrupted
from proceeding with the current program and is informed of the fact that the
flag has been set. The CPU deviates from what it is doing to take care of the
input or output transfer. After the transfer is completed, the computer returns to
the previous program to continue what it was doing before the interrupt.

- The CPU responds to the interrupt signal by storing the return address from
the program counter into a memory stack and then control branches to a service
routine that processes the required 1/O transfer.

- For each interrupt there is service routine, service routine address must be
known by CPU to branch to it. This is accomplished by two methods:

1. Vector Interrupt.
2. Non-vector Interrupt.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

Non-vectored interrupt:

-1n a non-vectored interrupt, the branch address is assigned to a fixed
location in memory. Vectored interrupt: the source that interrupts supplies the
branch information to the computer. This information is called the interrupt
vector. In some computers the interrupt vector is the first address of the I/0O
service routine. In other computers the interrupt vector is an address that points
to a location in memory where the beginning address of the I/O service routine
IS stored.

—>There is possibility that several sources will request service simultaneously; in
this case the system must also decide which device to service first.

11. PRIORITY INTERRUPT:

A priority interrupt is a system that establishes a priority over the
various sources to determine which condition is to be serviced first when two or
requests arrive simultaneously. The system may also determine which
conditions are permitted to interrupt the computer while another interrupt is
being serviced.

—> Establishing the priority of simultaneous interrupts can be done by software
or hardware.

>Software priority interrupts:

—>A polling procedure is used to identify the interrupt source having highest-
priority. Only one branch address is used for all interrupts. The priority of each
interrupt source determines the order in which it is polled. The source with the
highest priority is tested first, and if its interrupt signal is on, control branches to
a routine that services that source. Otherwise, the source with the next lower
priority is tested, and so on.

—>Thus the initial service routine for all interrupts consists of a program that
tests the interrupt sources in sequence and branches to one of many possible
service routines. The disadvantage of the software method is that if there are
many interrupts, the time required to poll them can exceed the time available to
service the I/O device. In this situation a hardware priority-interrupt unit can be
used to speed up the operation.

-2 Hardware priority interrupts:

->A hardware priority-interrupt unit functions as an overall manager
In an interrupt system environment. It accepts interrupt requests from many
sources, determines which of the incoming requests has the highest priority, and
Issues an interrupt request to the computer based on this determination.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

—>To speed up the operation, each interrupt source has its own interrupt vector
to access its own service routine directly. Thus no polling is required because all
the decisions are established by the hardware priority interrupt unit.The
hardware priority function can be established by either a serial or a parallel
connection of interrupt lines. The serial connection is also known as the daisy
chaining method.

Daisv-Chaining Priority:

Processor dats bus
VAD VAD] VAD 3
Device | | Device] Device 3
- To neat
!
Interrupt request
% % > INT
CPU
Interrupt acknowledge
= f o — INTACK

Figure 11-12 Daisy-chain priority mtermupt.

» The daisy-chaining method of establishing priority consists of serial
connection of all devices that request an interrupt. The device with the
highest priority is placed in the first position, followed by lower-priority
devices up to the device with the lowest priority, which is placed last in the
chain and closest to the CPU. This method of connection between three
devices and the CPU is shown in Figure. 11-12.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

= The interrupt request line is common to all devices and forms a wired logic
connection. If any device has its interrupt signal in the low-level state, the
interrupt line goes to the low-level state and enables the interrupt in the CPU.
When no interrupts are pending, the interrupt line says in the high-level state
and no interrupts are recognized by the CPU. This is equivalent to negative
logic OR operation.

= The CPU responds to an interrupt request by enabling the interrupt
acknowledge line. This signal is received by device 1 at its PI (Priority in)
input. The acknowledge signal passes on to the next device through the PO
(priority out) output only if device 1 is not requesting an interrupt. If 1 has a
pending interrupt, it blocks the acknowledge signal from the next device by
placing O in the PO outpui.

= |f then proceeds to inserts its own interrupt vector _address (VAD)into the
data bus for the CPU touse during the interrupt cycle.

—A device with a0 on its Pl input generates a 0 on its PO output to inform the
device with the next lower priority that the acknowledge signal has been
blocked. A device that is requesting an interrupt and has a 1 on its Pl input will
intercept the acknowledge signal by placing a 0 on its PO output. If the device
does not have pending interrupts, it transmits the acknowledge signal to the next
device by placing a1 on its PO output.

—>Thus the device with PI=1 and PO=0 is one with the highest priority that is
requesting an interrupt, and the device places its VAD on the data bus. The daisy
chain arrangement gives the highest priority to the device that receives that
interrupt acknowledge signal from the CPU. The farther the device is from the
first position; the lower isits priority.

- Figure 11-13 shows the internal logic that must be included with each
device when connected to the daisy-chain scheme.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

VAD

Priority in

Enable
f Vector address

Priority out

Interrupt
request =t ()
from device

R Pl RF | PO Enable
0 0| 0 0
01100
Deyy o=y g |10
Open-collector I 110 |
inverter
Internupt request to CPU

Figure 11-13 One stage of the daisy-chain priority arrangement.

—->The device sets its RF flip-flop when it wants to interrupt the CPU. The
output of the RF flip-flop goes through an open-collector inverter, a circuit that
provides the wired logic for the common interrupt line. If Pl = 0, both PO and
the enable line to VAD are equal to O, irrespective of the value of RE. If Pl = 1
and RF = 0, then PO = 1 and the vector address is disabled. This condition
passes the acknowledge signal to the next device through PO. The device is
active when Pl = 1 and RF = 1. This condition places a 0 in PO and enables the
vector address for the data bus.

Parallel Priority Interrupt:

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

—>The parallel priority interrupt method uses a register whose bits are set
separately by the interrupt signal from each device. Priority is established
according to the position of the bits in the register. In addition to the interrupt
register, the circuit may include a mask register whose purpose is to control the
status of each interrupt request. The mask register can be programmed to disable
lower-priority interrupts while a higher-priority device is being serviced. It can
also provide a facility that allows a high-priority device to interrupt the CPU
while alower-priority device is being serviced.

—->The priority logic for a system of four interrupt sources is shown in
Figure. 11-14.

Interrupt

Interrupt
rcgiclc[; acknowledge
- —t from CPL
Highest 5
> . —» 3
priority ‘) 4 D. I
|
—> |
T, T
| ~ Prionty
—> l e — \
! | encoder Al » Tea
Lowest | 0 i | D
prionity | | | Figure 4-12 v >
A L T)
—l 3 r———
I »
o) \ 0 >
.—’ L .l.
| |) >
'S |
0 >
—» 0 |
Mask 0 >
register _
) VAD
»
Interrupt
008 Paarson Educason, e o ('Pl'

dorrs Mano 8 Charfes R Kime

- Flgure 12-17 Parallel Priority Interrupt Hardware

-1t consists of an interrupt register whose individual bits are set by external
conditions and cleared by program instructions. The magnetic disk, being a

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

high-speed device, is given the highest priority. The printer has the next priority,
followed by a character reader and a keyboard. The mask register has the same
number of bits as the interrupt register. By means of program instructions, it is
possible to set or reset any bit in the mask register. Each interrupt bit and its
corresponding mask bit are applied to an AND gate to produce the four inputs to
a priority encoder. In this way an interrupt is recognized only if its
corresponding mask bit is set to 1 by the program. The priority encoder
generates two bits of the vector address, which is transferred to the CPU.
—>Another output from the encoder sets an interrupt status flip-flop IST when an
interrupt that is not masked occurs. The interrupt enable flip-flop IEN can be set
or cleared by the program to provide an overall control over the interrupt
system. The outputs of IST ANDed with IEN provide a common interrupt signal
for the CPU. The interrupt acknowledge INTACK signal from the CPU enables
the bus buffers in the output register and a vector address VAD is placed into the
data bus. We will now explain the priority encoder circuit and then discuss the
interaction between the priority interrupt controller and the CPU.

Priority Encoder:

—>The priority encoder is a circuit that implements the priority function. The
logic of the priority encoder is such that if two or more inputs arrive at the same
time, the input having the highest priority will take precedence.

- The truth table of a four input priority encoder is given in Table 11-2.

TABLE 11-2 Priority Encoder Truth Table

Inputs Outputs
I I, 11 s x 3y JST Boolean functions
1 X X X 0 0 1
G 1 % X o 1 1 x =01
0 0 1 X 1 0 |1 y =10 + 1.1,
0 0 0 1 - (UST)=1l, + 1, + L, + 1,
0 0 0 0 X X 0

—->The Xx's in the table designate don't-care conditions. Input o has the highest
priority; so regardless of the values of other inputs, when this input is 1, the
output generates an output xy : 00. |, has the next priority level. The output is 01

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

if 11 =1 provided that 1o = O, regardless of the values of the other two lower-
priority inputs. The output for I, is generated only if higher-priority inputs are 0,
and so on down the priority level.

—>The interrupt status IST is set only when one or more inputs are equal to 1. If
al inputs are O, IST is cleared to O and the other outputs of the encoder are not
used, so they are marked with don't-care conditions. This is because the vector
address is not transferred to the CPU when IST = 0.

Interrupt Cycle:

- The interrupt enable flip-flop IEN shown in Figure. 11-14 can be set or
cleared by program instructions. When 1EN is cleared, the interrupt request
coming from IST is neglected by the CPU. The program-controlled IEN bit
allows the programmer to choose whether to use the interrupt facility. An
instruction to set IEN indicates that the interrupt facility will be used while the
current program is running.

—>At the end of each instruction cycle the CPU checks IEN and the interrupt
signal from IST. If either is equal to O, control continues with the next
instruction. If both IEN and IST are equal to 1, the CPU goes to an interrupt
cycle. During the interrupt cycle the CPU performs the following sequence of
micro-operations:

SP € SP-1 Decrement stack pointer
M [SP] € PC Push PC into stack
NTACK € 1 Enable interrupt acknowledge
PC € VAD Transfer vector address to PC
IEN € o Disable further interrupts

Go to fetch next instruction

—>The CPU pushes the return address from PC into the stack. It then
acknowledges the interrupt by enabling the INTACK line. The priority interrupt
unit responds by placing a unique interrupt vector into the CPU data bus. The
CPU transfers the vector address into PC and clears IEN prior to going to the
next fetch phase. The instruction read from memory during the next fetch phase
will be the one located at the vector address.

Softwar e Routines:

—>A priority interrupt system is a combination of hardware and software
techniques. The computer must also have software routines for servicing the
interrupt requests and for controlling the interrupt hardware registers.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

—~>Figure 11-15 shows the programs that must reside in memory for handling
the interrupt system. Each device has its own service program that can be
reached through a jump GMP) instruction stored at the assigned vector address.
The symbolic name of each routine represents the starting address of the service
program. The stack shown in the diagram is used for storing the return address
after each interrupt.

Figure 11-15 Programs stored in memory for servicing interrupts,

Address
l Memary 10 service programs
0 IMP DISK DISK— Program lo service
magnetic disk
1 IMF FTR
: S PTR — Program to service
line printer
3 IMF KBD
Main program
RDR —™ Program to service
character reader
TS()
KBD — Program o service
keyboard
Stack 236 =¥
256
750

—->To illustrate with a specific example assume that the keyboard sets its
interrupt bit while the CPU is executing the instruction in location 749 of the
main program. At the end of the instruction cycle, the computer goes to an
interrupt cycle. It stores the return address 750 in the stack and then accepts the
vector address 00000011 from the bus and transfers it to PC. The instruction in

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

location 3 is executed next, resulting in transfer of control to the KBD routine.
Now suppose that the disk sets its interrupt bit when the CPU is executing the
instruction at address 255 in the KBD program. Address 256 is pushed into the
stack and control is transferred to the DISK service program. The last instruction
in each routine is a return from interrupt instruction. When the disk service
program is completed, the return instruction pops the stack and places 256 into
PC. This returns control to the KBD routine to continue servicing the keyboard.
At the end of the KBD program, the last instruction pops the stack and returns
control to the main program at address 750.

Initial and Final Operations:
—>Theinitial sequence of each interrupt service routine must have instructions to
control the interrupt hardware in the following manner:

1. Clear lower-level mask register bits.

2. Clear interrupt status bit IST.

3. Save contents of processor registers.

4. Setinterrupt enable bit [EN.

5. Proceed with service routine.

—>The final sequence in each interrupt service routine must have instructions to
control the interrupt hardware in the following manner:

1. Gear interrupt enable bit IEN.

2. Restore contents of processor registers.

3. Clear the bit in the interrupt register belonging to the source that has been

serviced.
4. Set lower-level priority bits in the mask register.
5. Restore return address into PC and set |EN.

12. Direct Memory Access (DMA):

—>The transfer of data between a fast storage device such as magnetic disk and
memory is often limited by the speed of the CPU. Removing the CPU from the
path and letting the peripheral device manage the memory buses directly would
improve the speed of transfer. This transfer technique is caled direct
memory access (DMA). During DMA transfer, the CPU is idle and has no
control of the memory buses.

- Figure 11-6 shows two control signals in the CPU that facilitate the DMA
transfer.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

AB = Address bus
Bus request —{ BR
DB = Databus | High impedance
(U (disabled)
Bus granted <— B D> Read 80 =1

WR > Writ

Figure 11-16 CPU bus signals for DMA transfer.

->The bus request (BR)inputis used by the DMA controller to request the
CPU to relinquish control of the buses. When BR input is asserted, the CPU
places the address bus, the data bus, and the read and write-lines into a high-
impedance state.

- Then, the CPU asserts the bus granted (BG) output to inform the
external DMA that it can take control of the buses. As long as the BG line is
asserted, the CPU is unable to proceed with any operations requiring access to
the buses.

—>When the BR, bus request, signal is reset by the DMA, the CPU returns to its
normal operation, resets the BG, bus granted, signal, and resumes control of the
buses.

—>When the BG line is asserted, the external DMA controller takes control of
the bus system in order to communicate directly with memory. The transfer can
be made for an entire block of memory words, suspending operation of the CPU
until the entire block is transferred, a process referred to as burst transfer.

- Alternatively, the transfer can be made one word at a time between executions
of CPU instructions, a process called single cycle transfer or cycle stealing.

DMA Controller:

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

—->The DMA controller needs the usual circuits of an interface to communicate
with the CPU and 1/O device. In addition, it needs an address register, a word-
count register, a set of address lines.

>Address Register: Used to communicate directly with memory
Incremented after each word is transferred to memory.

>Word-Count Register: Specifies the number of words to transfer
Decremented after each word is transferred to memory.

>Control Register: Specifies the mode of transfer Modes — read from
memory, or write to memory.

- Figure 11-17 shows the block diagram of atypical DMA controller.

Address bus <
Data bus <=»{ Databus o Address bus
buffers buffers
'
DMA select—| DS £ ftmpel Acldress register
YA x E
Register select —>{ RS E
-
Read <> RD = [Word-count register
Write <—>{ WR (ontrol
Bus request <— BR lUglC [) Control regisler
Bus granted —> BG
DMA request
Interrupt <— B |
DMA acknowledge to 1O device
)
TR

Figure 11-17 Block diagram of DMA controller.

—~>Registers in the DMA are selected by the CPU through the address bus by
enabling the DS (DMA select) and RS (Register Select) inputs.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

—->The RD (Read) and WR (Write) inputs are bidirectional.

—->When the BG (Bus Granted) input is 0, the CPU can communicate with the
DMA registers through the data bus to read from or write to those registers.
—->When BG=1, the CPU has relinquished the buses, and the DMA can
communicate directly with memory by specifying an address on the address bus
and activating the RD or WR control.

—>The DMA communicates with the external peripheral through the DMA
request and DM A acknowledge lines by a prescribed handshaking procedure.

—->The CPU can read from or write into the DMA registers under program
control viathe data bus.

—->The CPU initializes the DMA by sending the following information through
the data bus:
1. The starting address of the memory blocks where data are available (for
read) or where data are to be stored (for write).
2. The word count, which is the number of words in the memory block.
3. Control to specify the mode of transfer such as read or write.
4. A control to start the DMA transfer.

DMA Transfer:

—->The position of the DMA controller among the other components in a
computer system s illustrated in Figure 11-8.

—>The CPU communicates with the DM A through the address and data buses, as
with any interface unit. The DMA has its own address, which activates the DS
(DMA Select) and RS (Register Select) lines. The CPU initializes the DMA
through the data bus. Once the DM A receives the start control bit, it can begin
transferring data between the peripheral device and memory.

—->When the peripheral device sends a DMA request, the DMA controller
activates the BR (Bus Request) line, informing the CPU that it is to relinquish
the buses. * The CPU responds with it BG (Bus Granted) line, informing the
DMA that the buses are disabled. « The DMA then puts the current value of its
address register onto the address bus, initiates the RD or WR signal, and sends a
DMA acknowledge to the peripheral device.

—->When the peripheral device receives a DMA acknowledge, it puts a word on
the data bus (for writing) or receives a word from the data bus (for reading). *
The DMA controls the read or write operation and supplies the address for
memory. The peripheral unit can then communicate with memory through the

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

data bus for a direct transfer of data between the two units while the CPU access
to the data bus is momentarily disabled.

» Intermp!
3G Random-access
CPU memory unit (RAM)
—»ER
RD WR Addr Data RD WR Addr Data
[' R T 1
I Read conirol
I , | Write control
¥ Data bus L)
'} I
Y Address bus
| Address
salect
vy v Y v
RO WR Addr Data
Bl DMA ack. >
® RS DMA 0
g Corlroer Pl
fdewce
»EG . DOMA request
Internupt

Figure 11-8 DMA transfer in computer system

- For each word that is transferred, the DMA increments its address registers
and decrements its word count-register. If the word count does not reach zero,
the DMA checks the request line coming from the peripheral. For a high-speed

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

device, the line will be active, as soon as the previous transfer is completed. A
second transfer is then initiated, and the process continues until the entire block
Is transferred. If the peripheral speed is slower, the DMA request line may come
somewhat later. In this case the DMA disable the bus request line so that the
CPU can continue to execute its program. When the peripheral requests a
transfer, the DMA requests the buses again.

—>If the word count register reaches zero, the DMA stops any further transfer
and removes its bus request. It also informs the CPU of the termination by
means of an interrupt. When the CPU responds to the interrupt, it reads the
content of the word count-register. The zero value of this register indicates that
all the words were transferred successfully.

—->DMA transfer is very useful in many applications. It is used for fast transfer
of information between magnetic disks and memory.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

IMPORTANT QUESTIONS (UNIT-4)

Explain in detail how a memory is connected to the CPU? (14M)
Describe the block diagram of associative memory?

Explain address mapping using pages?

Explain different cache memory address mapping techniques?(14M)
Explain paging scheme in detail? (14M)

Explain associative memory?

Explain main memory?

© N o g~ WD P

Discuss the direct mapping procedure from main memory to cache
memory?
9. (a) Describe the concept of cache memory. What are the mapping schemes
adopted? Explain.
(b). Explain the need for auxiliary memory devices. How are they
different from main memory and from other peripheral devices?
(c) What are the virtual memories and how are they implemented? (14M)
10.A computer uses RAM chips or 1024 x | capacity.
()How many chips are needed, and how should their address lines be
connected to provide a memory capacity of 1024 bytes?
(if)How many chips are needed to provide a memory capacity or 16K
bytes? (14M)
11.Explain commonly used memory replacement algorithm in virtual memory
system and their implementation?
12. Explain memory management hardware?
13. Distinguish between Isolated I/O and memory mapped |/O? What are the
advantages and disadvantages of each?
14. Explain in detail about DMA?
15. Write about Asynchronous Data transfer operation.

Sir C R Reddy College of Engineering, Eluru , CSE
Computer Organization-UNIT4

16. Explain DMA transfer in a computer system?
17. Describe I/O interface?
18. Explain Priority Interrupt?
19. Describe the data transfer procedure using handshaking?
20. Explain in detail about programmed /O and Interrupt- Initiated 1/0?
21. What is daisy chaining? Explain with neat sketch?
22. Explain I/O versus Memory Bus?
23. Explain about O Processor?
24. What are the various modes of transfer employed in a computer? Compare
their advantages and disadvantages?
25. Explain with a block diagram, how an asynchronous transmitter and receiver
communication with each other?
26. What are the advantages of handshaking over strobe control? Outline the
steps in source initiated transfer using handshaking?
27. What is an interrupt? Explain parallel priority interrupt and daisy chain
interrupt systems with examples?
SHORT QUESTIONS

Auxiliary memory.

List the different types of memories?

What is hit-miss ratio?

Draw the block diagram for ROM chip?

What is memory hierarchy?

Explain cache memory?

Draw the cell structure of associative memory?

What are pages and frames?

© © N o 00 s~ w D PE

What is the purpose and functions of Bootstrap loader?
10. What is priority interrupt?

COMPUTER ORGANIZATION-UNITS
Multi Processors. Introduction, Characteristics of Multiprocessors, Interconnection Structures, Inter

Processor Arbitration.
Pipeline: Parallel Processing, Pipelining, Instruction Pipeline, RISC Pipeline, Array Processor.

1. Introduction:

- A multiprocessor system is an interconnection of two or more CPU’s with memory and input-
output equipment. The term "processor" in multiprocessor can mean either a central processing unit
(CPU) or an input-output processor (IOP).

—>Multiprocessors are classified as multiple instruction stream, multiple data stream (MIMD)
systems. There are some similarities between Multiprocessor and Multicomputer systems since both
support concurrent operations.

However, there exists important distinction between a system with multiple computers and a system

with multiple processors.

- Computers are interconnected with each other means of communication lines to form a computer
network. The network consists of several autonomous computers that may or may not communicate

with each other.

—>A multiprocessor system is controlled by one operating system that provides interaction between

processors and all the components of the system cooperate in the solution of a problem

—->VLS circuit technology has reduced the cost of the computers to such a low Level that the
concept of applying multiple processors to meet system performance requirements has become an

attractive design possibility.
Benefits of M ultiprocessing:
1. Multiprocessing increases the reliability of the system so that a failure or error in one part has
limited effect on the rest of the system. If a fault causes one processor to fail, a second

processor can be assigned to perform the functions of the disabled one.

2. Improved System performance. System derives high performance from the fact that

computations can proceed in parallel in one of the two ways.

COMPUTER ORGANIZATION-UNITS

(a). Multiple independent jobs can be made to operate in parallel.
(b). A single job can be partitioned into multiple parallel tasks. This can be achieved in two
ways:
» The user explicitly declaresthat the tasks of the program be executed in parallel.
* The compiler provided with multiprocessor sw that can automatically detect
parallelism in program. Actually it checks for Data dependency.

2. Characteristics of M ultiprocessors:

—>Multiprocessors are classified by the way their memory is organized.

Tightly coupled micro-processor/Shared memory:

—>A multiprocessor system with common shared memory is classified as a shared memory or tightly
coupled multiprocessor. This does not preclude each processor from having its own local memory.
In fact, most commercial tightly coupled multiprocessors provide a cache memory with each CPU.
In addition, there is a global common memory that all CPUs can access. Information can therefore

be shared among the CPUs by placing it in the common global memory.

COMPUTER ORGANIZATION-UNITS

SHARED MEMORY MULTIPROCESSORS

] M
b
Interconnection Metwork
P P
Characteristics

Busis,
Multistage IN,
Crosshar Switch

All processors have equally direct access to one large memory address

space

Limitations

Memory access latency; Hot spot problem

L oosely coupled micro-processor/Distributed memory:

—>An aternative model of microprocessor is the distributed-memory or loosely coupled system.
Each processor element in a loosely coupled system has its own private local memory. The
processors are tied together by a switching scheme designed to route information from one processor
to another through a message-passing scheme. The processors relay program and data to other
processors in packets. A packet consists of an address, the data content, and some error detection
code. The packets are addressed to a specific processor or taken by the first available processor,
depending on the communication system used. Loosely coupled systems are most efficient when the

interaction between tasks is minimal, whereas tightly coupled systems can tolerate a higher degree of

interaction between tasks.

COMPUTER ORGANIZATION-UNITS

MESSAGE-PASSING MULTIPROCESSORS

Message-Passing Network Puoint-to-point connections
P P s [
L M fiaid M
Characteristics

- Interconnected computers
- Each processor has its own memory, and
communicate via message-passing

Limitations

- Communication overhead; Hard to programming

—>The principal characteristic of a multiprocessor is its ability to share a set of main memory and
some |/O devices. This sharing is possible through some physical connections between them called
the interconnection structures

3. Interconnection Structures:

- There are several physical forms available for establishing an inter connection network.

e Time-shared common bus

e Multiport memory

e Crossbhar switch

e Multistage switching network

e Hypercube system

COMPUTER ORGANIZATION-UNITS5
Time-shared common bus;

—->A common-bus multiprocessor system consists of a number of processorsconnected through a
common path to a memory unit. A time-shared common bus for five processors is shown in Fig. 13-
1

Memory unit

CPU1 CPU 2 CPU3 I0F 1 10P2

Figure 13-1 Time-shared common bus organization.

—>Only one processor can communicate with the memory or another processor at any given time.

—>A single common-bus system is restricted to one transfer at a time. This means that when one
processor is communicating with the memory, all other processors are either busy with internal
operations or must be idle waiting for the bus. As a consequence, the total overall transfer rate within
the system is limited by the speed of the single path. The processors in the system can be kept busy
more often through the implementation of two or more independent buses to permit multiple

simultaneous bus transfers. However, this increases the system cost and complexity.
- A more economical implementation of a dual bus structureis depicted in Fig. 13-2.
—>Here we have a number of local buses each connected to its own local memory and to one or more

processors. Each local bus may be connected to a CPU, an 10OP, or any combination of processors. A

system bus controller links each local bus to a common system bus. The 1/O devices connected to

COMPUTER ORGANIZATION-UNIT5
the local 10P, as well as the local memory are available to the local processor. The memory

connected to the common system bus is shared by all processors. If an IOP is connected directly to
the system bus, the 1/O devices attached to it may be made available to all processors. Only one
processor can communicate with the shared memory and other common resources through the
system bus at any given time. The other processors are kept busy communicating with

their local memory and 1/O devices.

SYSTEM BUS STRUCTURE FOR MULTIPROCESSORS

Local Bus
Common System
Shared Bus cPU IOP M';“ﬂ'jg'w
Memory Controller
\ SYSTEM BUS ‘
System Local System Local
Bus CPU IOP Mﬂ'lﬂﬂl’y Bus CPU HBmurj‘
Controller Controller
Local Bus Local Bus

Figure 13-2 System Bus Structure for multiprocessors.

Multiport memory:

—->A multiport memory system employs separate buses between each memory module and each
CPU.

—>This is shown in Fig. 13-3 for four CPUs and four memory modules (MMs). Each processor bus
is connected to each memory module. A processor bus consists of the address, data, and control lines
required communicating with memory. The memory module is said to have four ports and each port

accommodates one of the buses.

COMPUTER ORGANIZATION-UNITS
—>The priority for memory access associated with each processor may be established by the physical

port position that its bus occupies in each module. Thus CPU 1 will have priority over CPU 2, CPU
2will have priority over CPU 3, and CPU 4 will have the lowest priority.

- The advantage of the multiport memory organization is the high transfer rate that can be achieved
because of the multiple paths between processors and memory.

- The disadvantage is that it requires expensive memory control logic and a large number of cables
and connectors. As a consequence, this interconnection structure is usually appropriate for systems

with a small number of processors.

Memory Modules
MM 1 MM 2 MM 3 MM 4
CPU1
CPU 2 ® @ &
CPU3 ¢ - -
CPU 4 * 5 &

Figure 13-3 M ulti-port memory organization.

Crossbar switch:

—>The crossbar switch organization consists of a number of cross points that are placed at
intersections between processor buses and memory module paths.

—>Figure 13-4 shows a crossbar switch interconnection between four CPUs and four memory
modules.

—>The small square in each cross point is a switch that determines the path from a processor to a

memory module. Each switch point has control logic to set up the transfer path between a processor

COMPUTER ORGANIZATION-UNITS
and memory. It examines the address that is placed in the bus to determine whether its particular

module is being addressed. It aso resolves multiple requests for access to the same memory module
on a predetermined priority basis.

—>Figure 13-5 shows the functional design of a crossbar switch connected to one memory module.
The circuit consists of multiplexers that select the data, address, and control from one CPU for
communication with the memory module. Priority levels are established by the arbitration logic to
select one CPU when two or more CPUs attempt to access the same memory. The multiplexers are
controlled with the binary code that is generated by a priority encoder within the arbitration logic.

—>A crossbar switch organization supports simultaneous transfers from memory modules because

there is a separate path associated with each me module. However, the hardware required to
implement the switch can become quite large and complex.

Memory modules
‘MM1\ ‘MMZ\ ‘MME\ ‘MMd\

CPU4

Figure 13-4 Crossbar switch.

COMPUTER ORGANIZATION-UNITS

= | data,address, and
| control from CPU 1
~ data
" Multiplexers [| data,address, and
Memorv |4 address and e | control from CPU 2
mﬂduﬁ RIW arbitration
e — logic S——
memory . data,address, and
enable — } control from CPU 3
| data,address, and
«— [control from CPU 4

Figure 13-15 Block diagram of crossbar switch.

Multistage switching network:

—>The basic component of a multistage network is a two-input, two-output interchange switch. As
shown in Fig. 13-6, the 2X2 switch has two input labeled A and B, and two outputs, labeled 0 and 1.
There are control sign (not shown) associated with the switch that establish the interconnection
between the input and output terminals. The switch has the capability connecting input A to either of
the outputs. Terminal B of the switch behaves in a similar fashion. The switch also has the capability
to arbitrate between conflicting requests. If inputs A and B both request the same output terminal
only one of them will be connected; the other will be blocked.

COMPUTER ORGANIZATION-UNITS
0 0

A A e
1 \ 1
B — — B — —
A connected to 0 A connected to 1
A 9 A — A
/ 1 1
B — —_— B
B connected to 0 B connected to 1

Figure 13-6 Operation of a 2x2 interchange switch.

—>Using the 2x2 switch as a building block, it is possible to build multistage network to control the
communication between a number of sources and destinations.

—>Consider the binary tree shown Fig. 13-7. The two processors P1 and P2 are connected through
switches to eight memory modules marked in binary from 000 through 111. The path from source to
a destination is determined from the binary bits of the destination number. The first bit of the
destination number determines the switch output in the first level. The second bit specifies the output
of the switch in the second level, and the third bit specifies the output of the switch in the third level.

—>For example, to connect P1 to memory 101, it is necessary to form a path from P1to output 1 in
the first-level switch, output O in the second-level switch, and output 1 in the third-level switch. It is
clear that either P1 or P2 can be connected to any one of the eight memories. Certain request
patterns, however, cannot be satisfied simultaneously. For example, if P1 is connected to one of the
destinations 000 through 011, P2 can be connected to only one of the destinations100 through 111.

i COMPUTER ORGANIZATION-UNITS5
- 2 Switches

0__ 000
0 1
— 001
1
0 o010
P1 = 1
1 011
P2 ™
o 0 _ 400
— 1
| 4 101
0 _ 410
1
111

Figure 13-17 Binary treeswith 2x2 switches.

—>Many different topologies have been proposed for multistage switching networks to control
processor-memory communication in a tightly coupled multiprocessor system or to control the
communication between the processing elementsin aloosely coupled system.

—>One such topology is the omega switching network shown in Fig. 13-8. In this configuration,
there is exactly one path from each source to any particular destination. Some request patterns,
however, cannot be connected simultaneously.

—>For example, any two sources cannot be connected simultaneously to destinations 000 and 001.

0 000
1 001

010

011
4 100
5 101
6 110
1 11

COMPUTER ORGANIZATION-UNIT5
Figure 13-8 8x8 omega switching network.

Hypercube I nter connection:

- The hypercube or binary n-cube multiprocessor structure is aloosely coupled system composed of
N = 2" processors interconnected in an n - dimensional binary cube. Each processor forms a node of
the cube.

—>There are 2" distinct n-bit binary addresses that can be assigned to the processors. Each processor
address differs from that of each of its n neighbors by exactly one bit position.

->Figure 13-9 shows the hypercube structure for n = 1, 2, and 3. A one-cube structure hasn =1 and
2" = 2. It contains two processors interconnected bya single path. A two-cube structure hasn = 2 and
2" = 4. It contains four no disinter connected as a square. A three-cube structure has eight nodes inter
connected as a cube.

—>An n -cube structure has 2" nodes with a processor residing in each node. Each node is assigned a
binary address in such away that the addresses of two neighbors differ in exactly one bit position.
—>For example, the three neighbors of the node with address 100 in a three-cube structure are 000,
110, and 101. Each of these binary numbers differs from address 100 by one bit value.

1 111

{ o1

01
S
010
A
O

01
| 20) (o {
O 000 100

One-cube Two-cube Three-cube
Figure 13-19 Hypercube structuresfor n=1, 2, 3.

—>Routing messages through an n-cube structure may take from one to n links from a source node to
a destination node. For example, in a three-cube structure, node 000 can communicate directly with
node 00L. It must cross a least two links to communicate with 011 (from 000 to 001 to 011 or from

COMPUTER ORGANIZATION-UNITS
000to 010 to 011). It is necessary to go through at least three links to communicate from node 000 to

node 111.

—A routing procedure can be developed by computing the exclusive-OR of the source node address
with the destination node address. The resulting binary value will have 1 bits corresponding to the
axes on which the two nodes differ. The message is then sent along any one of the axes.

—>For example, in athree-cube structure, a message at 010 going to 001produces an exclusive-OR of
the two addresses equal to 01 1 . The message can be sent along the second axis to 000 and then
through the third axis to 001.

4. Interprocessor Arbitration:

—>Computer systems contain a number of buses at various levels to facilitate the transfer of
information between components.

—>The CPU contains a number of internal buses for transferring information between processor
registersand ALU.

—>A memory bus consists of lines for transferring data, address, and read/write information.

—>An 1/O bus is used to transfer information to and from input and output devices. A bus that
connects major components in a multiprocessor system, such as CPUs, 10Ps, and memory, is called

asystem bus.

* Only one of CPU, IOP, and Memory can be granted to use the bus at a time.

* Arbitration mechanism is needed to handle multiple requests to the shared resources to resolve
multiple contentions.

System Bus:

—> A bus that connects the major components such as CPU’s, IOP’s and memory.

—A typical system bus consists of approximately 100 signal lines. These lines are divided into three
functional groups. data, address, and control. In addition, there are power distribution lines that

supply power to the components.

—>For example, the IEEE standard 796 multi bus system has 16 data lines, 24 address lines, 26

control lines, and 20 power lines, for atotal of 86 lines.

COMPUTER ORGANIZATION-UNITS

—>Table 13-1 lists the 86 lines that are available in the IEEE standard 796multibus. It includes 16
data lines and 24 address lines. All signals in the multi bus are active or enabled in the low-level
state. The data transfer control signals include memory read and write as well as 110 read and write.

Consequently, the address lines can be used to address separate memory and 110spaces.

IEEE Standard 796 Multibus Signals

Data and address
Data lines (16 lines)
Address lines (24 lines)
Data transfer

DATAO - DATA15
ADRSO - ADRS23

Memory read MRDC
Memory write MWTC
10 read IORC
1O write IOWC

Transfer acknowledge
Interrupt control

TACK (XACK)

Interrupt request INTO - INT7

interrupt acknowledge INTA
Miscellaneous control

Master clock CCLK

System initialization INIT

Byte high enable BHEN

Memory inhibit (2 lines) INH1 - INH2

Bus lock LOCK
Bus arbitration

Bus request EREQ

Common bus request CBRQ

Bus busy BUSY

Bus clock ECLK

Bus priority in BPRN

Bus priority out BPRO

Power and ground (20 lines)

Serial Arbitration Procedure:

—>Figure 13-10 shows the daisy-chain connection of four arbiters. It is assumed that each processor

has its own bus arbiter logic with priority-in and priority-out lines.

COMPUTER ORGANIZATION-UNIT5
—>The priority out (PO) of each arbiter is connected to the priority in (PI) of the next-lower-priority

arbiter.

—>The Pl of the highest-priority unit is maintained at logic 1 value. The highest-priority unit in the
system will always receive access to the system bus when it requests it. The PO output for a
particular arbiter is equal to 1 if its Pl input is equal to 1 and the processor associated with the arbiter
logic is not requesting control of the bus. Thisisthe way that priority is passed to the next unit in the
chain. If the processor regquests control of the bus and the corresponding arbiter finds its Pl input
equal to 1, it setsits PO output to 0. Lower-priority arbiters receive a0 in Pl and generate a0 in PO.

Thus the processor whose arbiter has a Pl = 1 and PO = 0 is the one that is given control of the

system bus.
Highest Lowest
priority priority
To next
Bus Bus Bus Bus arbiter
| mem—p| P PO e P PO jei=i Pl PO ! P 0
arbiter | arbiter 2 arbiter 3 arbiter 4

Bus busy line

Figure 13-10 Serial (daisy-chain) arbitration.

—-> The bus busy line shown in Fig. 13-10 provides a mechanism for an orderly transfer of control.
The busy line comes from open-collector circuits in each unit and provides a wired-OR logic
connection.

—>If the arbiter finds the busy line active, it means that another processor is currently using the bus.
The arbiter keeps examining the busy line while the lower-priority processor that lost control of the
bus completes its operation. When the bus busy line returns to its inactive state, the higher-priority
arbiter enables the busy line, and its corresponding processor can then conduct the required bus

transfers.

COMPUTER ORGANIZATION-UNITS

Parallel Arbitration Logic:

—>The parallel bus arbitration technique uses an external priority encoder and a decoder as shown in
Fig. 13-11. Each bus arbiter in the paralel scheme has a bus request output line and a bus
acknowledge input line. Each arbiter enables the request line when its processor is requesting access
to the system bus. The processor takes control of the bus if its acknowledge input line is enabled.
The bus busy line provides an orderly transfer of control, asin the daisy-chaining case.

—>Figure 13-11 shows the request lines from four arbiters going into a 4 x 2priority encoder. The
output of the encoder generates a 2-bit code which represents the highest-priority unit among those
requesting the bus. The truth table of the priority encoder can be found in Table 11-2 (Sec. 11-5).
The 2-hitcode from the encoder output drives a2 x 4 decoder which enables the proper acknowledge
line to grant bus access to the highest-priority unit.

—>The bus priority-in BPRN and bus priority-out BPRO are used for a daisy-chain connection of bus
arbitration circuits. The bus busy signal BUSY is an open-collector output used to instruct al
arbiters when the bus is busy conducting atransfer. The common bus request CBRQ is also an open-
collector output that serves to instruct the arbiter if there are any other arbiters of lower-priority
requesting use of the system bus. The signals used to construct a parallel arbitration procedure are
bus request BREQ and priority-in BPRN, corresponding to the request and acknowledge signals in
Fig. 13-11. The busclock BCLK is used to synchronize all bus transactions.

COMPUTER ORGANIZATION-UNITS

Bus Bus Bus Bus
arbiter 1 arbiter 2 arbiter 3 arbiter 4
Ack Req Ack Req Ack Req Ack Req
'Y F Y A A

L i 4 Bus busy line

L

4dx2
Priority encoder

L

2x4
Decoder

Figure 13-11 Parallel arbitration.

Dynamic Arbitration Algorithms:

—>The time dice algorithm allocates a fixed-length time slice of bus time that is offered sequentially
to each processor, in round-robin fashion. The service given to each system component with this
scheme is independent of its location along the bus. No preference is given to any particular device
since each is allotted the same amount of time to communicate with the bus.

—>In abus system that uses polling, the bus grant signal is replaced by a set of lines called poll lines
which are connected to all units. These lines are used by the bus controller to define an address for
each device connected to the bus. The bus controller sequences through the addresses in a prescribed
manner. When a processor that requires access recognizes its address, it activates the bus busy line
and then accesses the bus. After a number of bus cycles, the polling process continues by choosing a
different processor. The polling sequence is normally programmable, and as a result, the selection

priority canbe altered under program control.

—>The least recently used(LRU) algorithm gives the highest priority to there questing device that has
not used the bus for the longest interval. The priorities are adjusted after a number of bus cycles
according to the LRU algorithm. With this procedure, no processor is favored over any other since

the priorities are dynamically changed to give every device an opportunity to access the bus.

COMPUTER ORGANIZATION-UNITS

—1n the first-come, first-serve scheme, requests are served in the order received. To implement this
algorithm, the bus controller establishes a queue arranged according to the time that the bus requests
arrive. Each processor must wait for itsturn to use the bus on afirst-in, first-out (FIFO) basis.

—>The rotating daisy-chain procedure is a dynamic extension of the daisychain algorithm. In this
scheme there is no central bus controller, and the priority line is connected from the priority-out of
the last device back to the priority-in of the first device in a closed loop.

5. Parallel Processing:
—>The term parallel processing indicates that the system is able to perform several operationsin a
single time. Now we will elaborate the scenario, in a CPU we will be having only one
Accumulator which will be storing the results obtained from the current operation. Now if we are
giving only one command such that “a+b” then the CPU performs the operation and stores the
result in the accumulator. Now we are talking about paralel processing, therefore we will be
issuing two instructions “a+b” and “c-d” in the same time, now if the result of “a+b” operation is
stored in the accumulator, then “c-d” result cannot be stored in the accumulator in the same time.
Therefore the term parallel processing in not only based on the Arithmetic, logic or shift
operations. The above problem can be solved in the following manner. Consider the registers R1
and R2 which will be storing the operands before operation and R3 is the register which will be
storing the results after the operations. Now the above two instructions “a+b” and “c-d” will be

done in parallel as follows.

. Valuesof “a” and “b” are fetched in to the registers R1 andR2

. The values of R1 and R2 will be sent into the ALU unit to perform the addition

. The result will be stored in the Accumulator

. When the ALU unit is performing the calculation, the next data “c” and “d” are
brought into R1 and R2.

. Finally the value of Accumulator obtained from “a+b” will be transferred into theR3

. Next the values of C and D from R1 and R2 will be brought into the ALU to perform

the “c-d” operation.
. Since the accumulator value of the previous operation is present in R3, the result of “c-

d” can be safely stored in the Accumulator.

COMPUTER ORGANIZATION-UNITS
Thisisthe process of parallel processing of only one CPU. Consider several such CPU performing

the calculations separately. This is the concept of parallel processing.

Concept of Parallel Processing

— Amhmedcunt ™

—» Shit Unit >
Processor | > LogicUnt —™
= -
Registers
i

Floating point

S : o
Lonversion Unit

—>In the above figure we can see that the data stored in the processor registers is being sent to
separate devices basing on the operation needed on the data. If the data inside the processor
registers is requesting for an arithmetic operation, then the data will be sent to the arithmetic unit
and if in the same time another data is requested in the logic unit, then the data will be sent to
logic unit for logical operations. Now in the same time both arithmetic operations and logical

operations are executing in parallel. Thisiscalled as parallel processing.

Instruction Stream: The sequence of instructions read from the memory is called as an Instruction

Stream

Data Stream: The operations performed on the data in the processor is called as a Data Stream.
The computers are classified into 4 types based on the Instruction Stream and Data Stream. They

are called as the Flynn's Classification of computers.

COMPUTER ORGANIZATION-UNIT5
Flynn's Classification of Computers:

+ Single Instruction Stream and Single Data Stream(SISD)

+ Single Instruction Stream and Multiple Data Stream(SIMD)

+ Multiple Instruction Stream and Single Data Stream(MI1SD)

+ Multiple Instruction Stream and Multiple Data Stream(MIMD)

SISD represents the organization of a single computer containing a control unit, a processor unit
and a memory unit. Instructions are executed sequentially and the system may or may not have
internal parallel processing capabilities. Parallel processing in this case may be achieved by means
of multiple functional units or by pipeline processing.

SIMD represents an organization that includes many processing units under the supervision of a
common control unit. All processors receive the same instruction from the control unit but operate
on different items of data. The shared memory unit must contain multiple modules so that it can
communicate with all the processors simultaneously.

MISD structure is only of theoretical interest since no practical system has been constructed using
this organization because multiple instruction streams means more no of instructions, therefore we
have to perform multiple instructions on same data at atime. Thisis practically impossible.

MIMD structure refers to a computer system capable of processing several programs at the same

time operating on different data.

6. Pipelining:

Pipelining is a technique of decomposing a sequential process into sub operations, with each sub
process being executed in a special dedicated segment that operates concurrently with all other
segments. We can consider the pipelining concept as a collection of several segments of data
processing programs which will be processing the data and sending the results to the next segment
until the end of the processing is reached. We can visualize the concept of pipelining in the
example below.
Consider the following operation: Result=(A+B)*C

+ First the A and B values are Fetched which is nothing but a “Fetch Operation”.

+ The result of the Fetch operations is given as input to the Addition operation, which is

an Arithmetic operation.
+ The result of the Arithmetic operation is again given to the Data operand C which is

fetched from the memory and using another arithmetic operation which is

COMPUTER ORGANIZATION-UNIT5
Multiplication in this scenario is executed.

+ Finally the Result is again stored in the “Result” variable.

—>In this process we are using up-to 5 pipelines which are the
— Fetch Operation (A)| Fetch Operation (B)JAddition of (A & B) | Fetch Operation(C) |
Multiplication of ((A+B), C) | Load ((A+B)*C),Result);

Pipelining
A | =3 =
R | | R2
| .
¥ r
| fd Leltipaliesr |
i |
| Ra | R4
l |
¥
B e e
-
| = |

The contents of the Registers in the above pipeline concept are given below. We are considering the

implementation of A[7] array with B[7] array

Clock Segment1 Segment 2 Segment 3
Pulse
Number
R1 R2 R3 R4 R5

1 Al Bl - - -
2 A2 B2 Al1*B1 Cl -
3 A3 B3 A2*B2 c2 A1*B1+C1
4 A4 B4 A3*B3 C3 A2*B2+C2
5 A5 B5 A4*B4 C4 A3*B3+C3
6 A6 B6 A5*B5 C5 A4*B4+C4
7 A7 B7 A6*B6 C6 A5*B5+C5

COMPUTER ORGANIZATION-UNITS

A7*B7 C7

—>1f the above concept is executed without the pipelining, then each data operation will be taking
5 cycles, totally they are 35 cycles of CPU are needed to perform the operation. But if are using
the concept of pipeline, we will be cutting off many cycles. Like given in the table below when the
values of Al and B1 are coming into the registers R1 and R2, the registers R3, R4 and R5 are
empty. Now in the second cycle the multiplication of A1 and B1 is transferred to register R3, now
in this point the contents of the register R1 and R2 are empty. Therefore the next two values A2
and B2 can be brought into the registers. Again in the third cycle after fetching the C1 value the
operation (A1*B1) + C1 will be performed. So in this way we can achieve the total concept in
only 9 cycles. Here we are assuming that the clock cycle timing is fixed. This is the concept of

pipelining.

Below isthe diagram of 4 segment pipeline.

SE‘E ment Representation

A6*B6+C6
A7T*B7+C7

Clock
Signal
— Y| [BLA B B
- 51 - 52 R . 53 w54 R
I/IP

4 Segment pipeling

COMPUTER ORGANIZATION-UNITS

The below table is the space time diagram for the execution of 6 tasks in the 4 segment pipeline.

ARITHMETIC PIPELINING

Exponents Mantissa
A=930.33 3
8=8 3 5 0.93033 083
Sum=A+8 ‘
Al 8B A B
Y Y
R R
Y
Compare 2 Diff
Exponentsby | y
Subtraction ! Align Mantissa | FL
Y After aligning
R A=0.93033
B=0.00830
3— Max L
exponent Add Mantissa
Y Y
R R 0.93863 16
' '
Adust Exponent s+ Normalize Result
v '
Sum= 938.63 R R
) Y

->The above diagram represents the implementation of arithmetic pipeline in the area of floating
point arithmetic operations. In the diagram, we can see that two numbers A and B are added
together. Now the values of A and B are not normalized, therefore we must normalize them before
start to do any operations. The first thing is we have to fetch the values of A and B into the
registers. Here R denote a set of registers. After that the values of A and B are normalized,

therefore the values of the exponents will be compared in the comparator. After that the alignment

COMPUTER ORGANIZATION-UNIT5
of mantissa will be taking place. Finally, we will be performing addition, since an addition is

happening in the adder circuit. The source registers will be free and the second set of values can
be brought. Like wise when the normalizing of the result is taking place, addition of the new
values will be added in the adder circuit and when addition is going on, the new data values will
be brought into the registers in the start of the implementation. We can see how the addition is

being performed in the diagram.

7. Instruction Pipeline:
—>Pipelining concept is not only limited to the data stream, but can also be applied on the
instruction stream. The instruction pipeline execution will be like the queue execution. In the queue
the data that is entered first, will be the data first retrieved. Therefore when an instruction is first
coming, the instruction will be placed in the queue and will be executed in the system. Finally the
results will be passing on to the next instruction in the queue. This scenario is called as Instruction
pipelining. The instruction cycle is given below

+ Fetch the instruction from the memory

+ Decodethe instruction

+ calculate the effective address

+ Fetch the operands from the memory

+ Executethe instruction

+ Storetheresult in the proper place.

In a computer system each and every instruction need not necessary to execute all the above

Instruction pipelining

I Fetch Instruction | Segment 1
From Memory

l
Decode Instruction
And calculate Segment 2
Effective address
|
. 5%

= Branch ==
Fetch Operand Segment 3

From memory

Handle &
-
Interrupt| ‘ Executing the

= Seqgment 4
Instruction

Y

Update PC] -
' ~Interrupf ==
Y - .

Empty PIPE
I

COMPUTER ORGANIZATION-UNIT5
phases. In a Register addressing mode, there is no need of the effective address calculation. Below

is the example of the four segment instruction pipeline.

In the above diagram we can see that the instruction which is first executing has to be fetched
from the memory, there after we are decoding the instruction and we are calculating the effective
address. Now we have two ways to execute the instruction. Suppose we are using a normal
instruction like ADD, then the operands for that instruction will be fetched and the instruction will
be executed. Suppose we are executing an instruction such as Fetch command. The fetch
command itself has internally three more commands which are like ACTDR, ARTDR etc..,
therefore we have to jump to that particular location to execute the command, so we are using the
branch operation. So in a branch operation, again other instructions will be executed. That means
we will be updating the PC value such that the instruction can be executed. Suppose we are
fetching the operands to perform the original operation such as ADD, we need to fetch the data
The data can be fetched in two ways, either from the main memory or else from an input output
devices. Therefore in order to use the input output devices, the devices must generate the
interrupts which should be handled by the CPU. Therefore the handling of interruptsis also akind
of program execution. Therefore we again have to start from the starting of the program and
execute the interrupt cycle.

The different instruction cycles are given below:

+ FI — FI is a segment that fetches an instruction
+ DA — DA is a segment that decodes the instruction and identifies the effective address.
+ FO — FO is a segment that fetches the operand.

+ EX — EXis a segment that executes the instruction with the operand.

Timing of Instruction Pipeline

Fl — Fetch [nstructon Oa — Decode instructon and Fetch Effective Address

FCr = Fetch Cperand EX — Execute the Instruction
<« I F RS- S SR Tl - vl dell e s I - B, {0 7 S - -
1 Fi |D& |FO | EX
2 A |oa|Fo|ex|
3 FI |DAFC) EX
! =l FIl | DA | FG | EX
5 - | | DA | FO | EX
B Fl | DA | FO | EX
T A |DA|FD|EX

COMPUTER ORGANIZATION-UNITS

Pipelining Conflicts: There are different conflicts that are caused by using the pipeline concept.
They are

+ Resource Conflicts: These are caused by access to memory by two or more segments at
the same time. Most of these conflicts can be resolved by using separate instruction
and data memories

+ Data Dependency: These conflicts arise when an instruction depends on the result of a
previous instruction, but thisresult is not yet available.

+ Branch difficulties: These difficulties arise from branch and other instructions that

change the value of PC.

Data Dependency Conflict: The data dependency conflict can be solved by using the following
methods.

+ Hardware Interlocks. The most straight forward method is to insert hardware
interlocks. An interlock is a circuit that detects instructions whose source operands are
destination of instructions farther up in the pipeline. Detection of this situation causes
the instruction whose source is not available to be delayed by enough clock cycles to
resolve the conflict. This approach maintains the program sequence by using hardware
to insert the required delay.

+ Operand Forwarding: Another technique called operand forwarding uses special
hardware to detect a conflict and avoid the conflict path by using a special path to
forward the values between the pipeline segments.

+ Delayed Load: The delayed load operation is nothing but when executing an
instruction in the pipeline, simply delay the execution starting of the instruction such
that all the data that is needed for the instruction can be successfully updated before

execution.

Branch Conflicts:
The following are the solutions for solving the branch conflicts that are obtained in the pipelining
concept.
+ Prefetch Target Instruction: In this the branch instructions which are to be executed

are pre-fetched to detect if any errors are present in the branch before execution.

COMPUTER ORGANIZATION-UNIT5
+ Branch Target Buffer: BTB is the associative memory implementation of the branch

conditions.

+ Loop buffer: The loop buffer is a very high speed memory device. Whenever aloop is
to be executed in the computer. The complete loop will be transferred in to the loop
buffer memory and will be executed as in the cache memory.

+ Branch Prediction: The use of branch prediction is such that, before a branch is to be
executed, the instructions along with the error checking conditions are checked.
Therefore we will not be going into any unnecessary branch loops.

+ Delayed Branch: The delayed branch concept is same as the delayed load process in
which we are delaying the execution of a branch process, before al the data is fetched
by the system for beginning the CPU.

8. RISC Pipdline:

—>The ability to use the instruction pipelining concept in the RISC architecture is very efficient.
The simplicity of the instruction set can be utilized to implement an instruction pipeline using a
small number of sub operations, with each being executed in one clock cycle. Due to fixed length
instruction format, the decoding of the operation can occur at the same time as the register
selection. Since the arithmetic, logic and shift operations are done on register basis, there is no
need for extra fetching or effective address decoding steps to perform the operation. So pipelining
concept can be effectively used in this scenario. Therefore the total operations can be categorized
as one segment will be fetching the instruction from program memory, the other segment executes
the instruction in the ALU and the third segment may be used to store the result of the ALU
operation in a destination register. The data transfer instructions in RISC are limited to only Load
and Store instructions. To prevent conflicts in data transfer, we will be using two separate buses
one for storing the instructions and other for storing the data.

—>Example of three segment instruction pipeline:

We want to perform a operation in which there is some arithmetic, logic or shift operations.

Therefore as per the instruction cycle, we will be having the following steps:

+ I: Instruction Fetch
« A: ALU Operation
+ E: Execute Instruction.
The 1segment will be fetching the instruction from program memory. The instruction is decoded

and an ALU operation is performed in the A segment. In the A segment the ALU operation

COMPUTER ORGANIZATION-UNIT5
instruction will be fetched and the effective address will be retrieved and finally in the E segment

the instruction will be executed.

Delayed Load:

Consider the following instructions:
1. LOAD: R1 « Maddressl]
2. LOAD: R2 <« M[address2]
3. ADD: R3 <RI +R2
4. STORE: M[address 3] «R3

The below tables will be showing the pipelining concept with the data conflict and without conflict.

Pipeline timing with data conflict

ClockCyces | 1 | 2
1.Load R1 | ;
‘2LoadR2 |
3. AddR1+R2 I A E
4. Store R3 | A | E

A= m| e

I

Pipeline timing with delayed load

3
il
o
' 5
L=]
]

Clock Cycles 1
1.Load R1 I A E
2,Load R2 I A E
3. No Operafion
4 Add R1+R2 A E
5, Store R3 I A E

COMPUTER ORGANIZATION-UNIT5
9. Array Processors:

In adistributed computing we will be having several computers working on the same task such that
their processing power will be shared among all the systems so that they can perform the task fast.
But the disadvantage of the distributed computing is that we have to give separate resources for each
system and every system need to be controlled by a task initiating system or can be called as a
central control unit. The management of this kind of systems is very hard. In order to perform a
specific operation involving a large processing there is no need of distributed computing. The
alternate for this kind of scenarios is array processors or attached array processors. The simplest is

the SIMD Attached array processor.

Gereral purpose S | Input output L .l Attached Array
Computer interface | | processor
[}
| i : v
High Speed Memory |
Main Memaory - e - Local Memaory
Memory Bus |

Attached Array processor
-> The above diagram shows that the system is attached a separate processor which will be used for
operation specific purpose. If the array processor is designed for solving floating point arithmetic,
then it will only perform that operation. The detailed figure of the attached array processor is given
in the diagram below. Thiswill be having the SIMD architecture. In this we will be having a master
control unit which will be coordinating all the process in the array processor. Each processing unit
in the array processor is having a local memory unit as in the memory interleaving concept on
which it performs the operations. Finally we will be having a main memory in which the original
source data and the results that are obtained from the array processor will be stored. This is the

working principle of the SIMD array processor technology.

COMPUTER ORGANIZATION-UNIT5

— PE1 |— M1
Master Confral unit
FEZ e
FPE3 W3
‘ Main Memary PE4 4

SIMD Array Processor Technology

COMPUTER ORGANIZATION-UNITS5
IMPORTANT QUESTIONS (UNIT-5)

1. Explain the Flynn’s classification to accomplish parallel processing.
2) a) Define pipelining? Explain the structure of pipelining with an example.
b) Explaining the implementation of four stage pipelining.
3) List out several of characteristics of multi processors.
4) Explain Instruction Pipeline?
5) What is meant by interconnection structure? Mention the various types of interconnection
structures.
6) Explain Inter Process Arbitration
7) What is array processor? Explain the two categories of array processor
8) What is multi processor?
9) What is pipelining?
10) List out the limitations of instruction pipeline.
11) List out the advantages of RISC and CISC

	Differences between Isolated I/O and Memory Mapped I/O.
	Flynn's Classification of Computers:
	Branch Conflicts:
	Attached Array processor
	SIMD Array Processor Technology

