Dr. DEEPAK NEDUNURI
ASSOCIATE PROFESSOR
DEPARTMENT OF CSE

Chapter-1
1. AN OVERVIEW OF DATABASE MANAGEMENT SYSTEMS

1. OVERVIEW OF DATABASE SYSTEM S

Database:

—>A database is a collection of data, typically describing the activities of one or more related

organizations.

—>For example, auniversity database might contain information about the following:

e Entities such as students, faculty, courses, and classrooms.

e Relationships between entities, such as students’ enrollment in courses, faculty teaching
courses, and the use of rooms for courses.

DATABASE MANAGEMENT SYSTEMS (DBMYS):
—A database management system, or DBM S, is software designed to assist in maintaining
and utilizing large collections of data, and the need for such systems, as well as their use, is

growing rapidly.

—>A DBMS is a collection of interrelated data and a set of programs to access those data
DBMS is a system which allows inserting, deleting and updating database. The primary goal
of a DBMS is to provide a way to store and retrieve database information that is both
convenient and efficient.

Database + Management System = DBMS.
—>DBMS is the program that organizes and maintains the information and database

application is the program that makes it possible to view, retrieve and update information
stored inthe DBMS.

—>Oracle, Microsoft Access 2000, FoxPro by Microsoft, dBase V by Borland, Paradox by
Borland etc., are the various DBM S packages.

DATABASE SYSTEM APPLICATIONS:

1. Banking: This application is very useful for maintain customer information, accounts,
loans and banking transactions.

2. Universities. DBMS is used for maintaining student’s records, course registration and
grades in any university.

3. Airlines. DBMS isused for reservation and schedule information.

4. Railway Reservation: DBMS is used for checking the availability of reservation in
different trains, tickets etc.

5. Finance: DBMS is used for storing information about holidays, sales and purchase of
financial instruments.

6. Telecommunication: DBMS is used for keeping records of calls made, generating monthly
bills etc.

7. Sales. DBMS is used for customer, product and purchase information.

8. Credit Card Transaction: DBMS is used for purchases on credit card and generation of
monthly statements.

9. Human Resources. For information about employees, salaries, payroll taxes and benefits
and for generation of paychecks.

2. FILE SYSTEM VS DBMS: (X**#** kst txskkkkt+)

—->DBMS (Database M anagement System) and File System are two ways that could be used
to manage, store, retrieve and manipulate data.

—A File System is a collection of raw data files stored in the hard-drive whereas DBM Sis a
bundle of applications that is dedicated for managing data stored in databases. It is the
integrated system used for managing digital databases, which allows the storage of database
content, creation/ maintenance of data, search and other functionalities. Both systems can be
used to allow the user to work with datain a smilar way. A File System is one of the earliest
ways of managing data. But due the shortcomings present in using a File System to store
electronic data, Database Management Systems came in to use sometime later, as they
provide mechanisms to solve those problems. But it should be noted that, even in a DBMS,
data are eventually (physically) stored in some sort of files.

Differ ences between FSvs DBM S:
(Disadvantages of File system over DBMS)

1. Data Redundancy:

- In FMS, as various copies of same data resides, the same information is duplicated in
several files indicating the redundancy [waste copies| of data, which leads to higher storage
and access cost.

For example: The addresses of customers will be present in the file maintaining information
about customers holding savings account and also the address of the customers will be present
in file maintaining the current account. Even when same customers have a saving account and
current account his address will be present at two places.

- In DBMS, as only one copy of data record resides, the same information may not be
duplicated avoiding the redundancy of data, leading to minimum storage and access cost.

2. Data Inconsistency:

—>In FMS, data redundancy leads to greater problem than just wasting the storage i.e. it may
lead to inconsistent data. Same data which has been repeated at several places may not match
after it has been updated at some places.

For example: Suppose the customer requests to change the address for his account in the
Bank and the Program is executed to update the saving bank account file only but his current
bank account file is not updated. Afterwards the addresses of the same customer present in
saving bank account file and current bank account file will not match. Moreover there will be
no way to find out which address is latest out of these two.

—->In DBMS the related data resides in the same storage location minimizing data
inconsistency.

3. Difficult in Accessing Data:

—>In FMS, for generating ad hoc reports the programs will not already be present and only
options present will to write a new program to generate requested report or to work manually.
Thisis going to take impractical time and will be more expensive.

For example: Suppose all of sudden the administrator gets a request to generate a list of all
the customers holding the saving banks account who lives in particular locality of the city.

Administrator will not have any program already written to generate that list but say he has a
program which can generate a list of all the customers holding the savings account. Then he
can either provide the information by going thru the list manually to select the customers
living in the particular locality or he can write a new program to generate the new list. Both of
these ways will take large time which would generally be impractical.

- In DBMSS, to access the appropriate data, the DBMS consists of one or more programs to
extract the needed information.

4. Data I solation:
- In FM S, as data is scattered in different formats, it is difficult to write new programs to
retrieve the appropriate data.

For example: Suppose the Address in Saving Account file have fields: Add linel, Add line2,
City, State, Pin while the fields in address of Current account are: House No., Street No.,
Locality, City, State, Pin. Administrator is asked to provide the list of customers living in a
particular locality. Providing consolidated list of all the customers will require looking in both
files. But they both have different way of storing the address. Writing a program to generate
such alist will be difficult.

- InDBMS, as dataresides in same storage location i.e., related files in different groups, it is
easy to write new programs to retrieve the appropriate data.

5. Intearity Problems:
- In FM S, to develop the new consistent range in the existing system, the appropriate code
must be added in various application problems.

For example: An account should not have balance less than Rs. 500. To enforce this
constraint appropriate check should be added in the program which add a record and the
program which withdraw from an account. Suppose later on this amount limit is increased
then all those check should be updated to avoid inconsistency. These time to time changes in
the programs will be great headache for the administrator.

—>In DBM S, to develop the new consistent range in the existing system, the appropriate code
must be added in one application program that access all data at one time.

6. Concurrent Access:

—~>In FMS, when more than one users are alowed to process the database. If in that
environment two or more users try to update a shared data element at about the same time
then it may result into inconsistent data.

For example: Suppose Balance of an account is Rs. 500. And User A and B try to withdraw
Rs 100 and Rs 50 respectively at almost the same time using the Update process.

Update:

1. Read the balance amount.

2. Subtract the withdrawn amount from balance.
3. Write updated Balance value.

Suppose A performs Step 1 and 2 on the balance amount i.e., it reads 500 and subtract100
from it. But a the same time B withdraws Rs 50 and he performs the Update process and he
also reads the balance as 500 subtract 50 and writes back 450. User A will also write his
updated Balance amount as 400. They may update the Balance value in any order depending

on various reasons concerning to system being used by both of the users. So finally the
balance will be either equal to 400 or 450. Both of these values are wrong for the updated
balance and so now the balance amount is having inconsistent value forever.

—->In DBMS, to improve the overall performance of the data management, the multiple users
are allowed to update the data concurrently where same data file is accessed by multiple users
and the last change remains permanent.

7. Atomicity:
- In FMS, on subject to the failure of the computer system, it is crucial to ensure that the

processing data are restored to the consistent state that exist prior to the failure or not i.e., the
change must be atomic, it must happen entirely or not at all.

—>In DBMS, on subject to the failure of computer system, the software ensures that the
processing data are restored to the consistent state that exist prior to the failurei.e., the change
does not happen at all.

8. Security and Access Control:

—2>In FMS, database should be protected from unauthorized users. Every user should not be
allowed to access every data. Since application programs are added to the system For
example: The Payroll Personnel in a bank should not be allowed to access accounts
information of the customers.

—>In DBMS, as a security property, every user of DBMS is able to access only needed data
and gtrictly not allowing accessing all the data.

3. ADVANTAGES OF DBM S§(*******)

1. Data Independence: Application programs should be as independent as possible from
details of data representation and storage. The DBMS can provide an abstract view of the data
to insulate application code from such details.

2. Efficient Data Access. A DBMS utilizes a variety of sophisticated techniques to store and
retrieve data efficiently. This feature is especially important if the data is stored on external
storage devices.

3. Data Integrity: Integrity constraints such as unique account number for each person
should be identified. Data may be updated incorrectly, if integrity is not maintained.

There are two types of integrity constraints,

i) Primary integrity or primary key = Not null + Unique values.

i) Referential integrity or Foreign key = Value from the primary key + Duplicate values
may be there.

4. Security: Different constraints can be there for each type of access right to each module of
information in database, thus ensuring that access to database is through proper channel by
proper person.

5. Less Redundancy: Database Administrator (DBA) has the centralized control of the data,
so it will avoid the inconsistency because now we have to make the changes at one place only.

6. Data Sharing: Many application programs use the same data simultaneously and the
referred to as data sharing. Due to this feature of database, the storage capacity is reduced to
minimum. These advantages make database system very popular.

7. Concurrent Access and Crash recovery: Database has backup so that recover of data
from software and hardware failure can be made, such that if system crashes in mid of
transactions database should be restored to the safe state and concurrency is maintained.

8. Reduced Application Development Time: DBMS supports many important functions that
are common to many applications accessing data stored in the DBMS.

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

Chapter-2: Database system architecture, Introduction- The Three Levels
of Architecture-The External Level- the Conceptual Level- the Internal Level-
Mapping- the Database Administrator-The Database Management Systems-
Client/Server Architecture.

1. DATA MODELS: (¥*******%xkxkx*)

—>A data modd is a collection of high level data description constructs that hide many low-
level storage details.

—>A data model is a collection of concepts for describing data.
—>Underlying the structure of a data base is the data model. The collection of conceptual tools
for describing data, data relationships, and data semantics.

—~>Data models define how the logical structure of a database is modelled. Data Models are
fundamental entities to introduce abstraction in a DBMS. Data models define how data is
connected to each other and how they are processed and stored inside the system.

The Relational model:

—A description of data in terms of a data model is called a schema. In the relational model,
the schema for arelation specifies its name, the name of each field (or attribute or column),
and the type of each field.

—>As an example, student information in a university database may be stored in a relation
with the following schema:

Students (sid: string, name: string, login: string, age: integer,
gpa: real)
—>The preceding schema says that each record in the Students relation has five fields, with

field names and types as indicated.2, an example instance of the Students relation appears in
Figure1.1.

TLCETTLE login L
A3d666 | Jones jonestics 182 3.4
53688 | Smith smithiees 1% 3.2
H365H0 Smith smith@math B2 3.8
53831 | Madavan | madayan@music | 11 1.8
53832 | Guldu guldu@@music 12 2.0

—In relational data model, data exists in two dimensional tables known as relations. A
relation (table) consists of unique attributes (columns) and tuples (rows).
- The description of data in terms of tables is called asrelations.

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

= Consider the following relational model shown in tables.

attributes selupnn

!

I

T LU

=]]

B A

e Baria

L i)

table (relation)

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

Relational Data Model

Sid# | Name | Year | GPA -
1 Srmith 3 30 Student Relation
2 |Jones 2 35
3 |Doe 1 1.2
4 |Varda 4 4.0
5 | Carey 4 05
Fldg# E:nmr; E?:;tmn Eﬂ:{)ht Faculty Relation
2 | Jackson | Assist. Prof | Hist
14 | Schuh | Assoc. Prof | Chem
21 | Lerner | Assist. Prof |CS
Course # | Course Name | Cr | Dept Course Relation
223 Calculus 5 | Math
302 Intro Prog 3 |CS
302 Organic Chem | 3 | Chem
542 Asian Hist 2 | Hist
222 Calculus 5 | Math
Taught-By Relation Enrolled Relation
C# | Fid# | Dept Sid# | C# | Dept
223 9 |Math 1 223 | Math
222 9 |Math 4 222 | Math
3021 21 |CS 4 302 | CS
302 | 14 |Chem 3 302 | CS
542 2 |Hist 5 302 | Chem
2 542 | Hist
2 223 | Math

INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

Chapter-2

7439
152
Toee J
Teod MA
7608 B
8y C
1788 S
T83¢

A

7844 TURNER SALESMAN 7638

1876 A
1900
7902

7934 NI

ENP
ENPNO ENAME ~ JOB NGR HIREDATE SAL COMX DEPTNO

1369 SMITH CLERK 7902

LLEN SALESMAN 698

WARD| SALESMAN 7698

ONES MANAGER 7839
RTIN SALESMAN 7698
LAKE MANAGER 7839
LARK MANAGER, T839
(OTT ANALYST 7566
KINGPRESIDE]

DAMS CLERK T78
MES CLERK 769
FORD ANALYST 756
LLER CLERK T78

17-DEC-801 800
20-FEB-81 1600
22-FEB-81 1250
02-APR-81 2975
26-3EP-81 1250
01-MAY-81 2850
09-JUN-81 2450
09-CEC-82 3000
17-N0V-81) 5000
09-SEP-81 1500
12-JA-63 1100

03-CEC-31 950
03-DEC-81 3000

23-JAlI-82 1300

300
500

1400

it TR v N T e N oot TR e TR o e Y i Y e SR e R e O W RO o e N o TR o M
| e D e > 3 e o o D D D O

DEPTNO

DEPT
DNAME

LOC

10
20
30
40

ACCOUNTING
RESEARCH
SALES
OPERATIONS

NEW YORK
DALLAS
CHICAGO
BOSTON

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

Attributes/columns/Fields

"

e N\
—

- Number of
Rows/ o 1000 Kjo Administration I Rows/
Records/ i | Records/
Tuples ' ds ")
‘*. 1001 | Binish i HR " 'ngls?nal'ty of
! i {Largi |
\3 J the Relation)
1002 Meera | Software -

Number of Attributes/columns/Felds
| Degreeof tha relation)

employee_details
table

Employee Year of
Numbes faking Loan Amount
Loan

1000 2000 2342 .23 |
| .|

ni | 2000 2342.23
| \

1002 2010 4341.50
|

1002 2005 5633.10

\

employee_loan_detalls
table

The main highlights of the relational model are:

1. Datais stored in tables called relations.

2. Relations can be normalized.

3. Innormalized relations, values saved are atomic values.

4. Each row in arelation contains a unique value.

5. Each column in arelation contains values from a same domain.

The Network Model:
—>Data in the network model are represented by collection of records and relationships
among data are connected by links. The links can be viewed as pointers.

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

The records in the database are represented in the form of graphs.
2, Network data model

1000 lijo Administration \
. 2000 2342.23

1001 Binish HR

2010 4341.50
1002 Meera Software <
2015 | 5633.10
Hierarchical M odel:
—~>Hierarchical model is same as the network model i.e., data in the hierarchical model also
represented by collection of records and relationships among data are connected by links. The

links can be viewed as pointers. But, the difference from network model is that, the records in
the database are represented in the form of trees.

1. Hierarchical data model

Root
1000 Jijo Administration \
J dddes " 1001 Binish HR
2000 | 2342.23 | 2000 | 2342.23 |
= i : ‘ ! —
1002 | Meers Software
/\ |

2010 4341.50 2015 5633.10

b) VIEW OF DATA:

Levels of Abstraction in a DBM S; (¥***x****%)

—>Data abstraction is a process of representing the essential features without including
implementation details.
Three levels of abstraction are:

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

1. External / View Level (or) External / View Schema.

2. Conceptual / Logical Level (or) Conceptual / Logical
Schema.

3. Physical /Internal Level (or) Physical /Internal Schema.

1. External / View Level:
—>This is the highest level of data abstraction. This level describes the user interaction with
database system.

—>External Level is described by a schema i.e. it consists of definition of logical records and
relationship in the external view. It aso contains the method of deriving the objects in the
external view from the objects in the conceptual view.

2. Conceptual / Logical Level:
->This is the middle level of 3-level data abstraction architecture. It describes what data is
stored in database.

—>Conceptual Level represents the entire database. Conceptual schema describes the records
and relationship included in the Conceptual view. It aso contains the method of deriving the
objects in the conceptual view from the objects in the internal view.

3. Physical /Internal Level:
—>This is the lowest level of data abstraction. It describes how data is actually stored in
database. Y ou can get the complex data structure details at this level.

—>Internal level indicates how the data will be stored and described the data structures and
access method to be used by the database. It contains the definition of stored record and
method of representing the data fields and access aid used.

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

External Schema | External Schema 2 External Schema 3

Coneeptual Schema

Physical Schema

Figure 1.2 Levels of Abstraction in & DBMS

2> Example: Let’s say we are storing customer information in a customer table.
At physical level these records can be described as blocks of storage (bytes, gigabytes,
terabytes etc.) in memory. These details are often hidden from the programmers.

At thelogical level these records can be described as fields and attributes along with their
data types, their relationship among each other can be logically implemented. The

programmers generally work at this level because they are aware of such things about
database systems.

At view level, user just interact with system with the help of GUI and enter the details at the

screen, they are not aware of how the data is stored and what data is stored; such details are
hidden from them.

Data | ndependence (**********************)

The ability to modify a scheme definition in one level without affecting a scheme definition in
a higher level is called data independence.

- Two kinds of data independence:

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

1. Logical Data independence

2, Physical data Independence

1. L ogical Data independence:

—~>Logical data independence is the ability to modify the logical schema i.e., conceptual
schema, which decides what information is to be kept in the database without affecting the
next higher level schemai.e., external schema application program.

- Logical data independence refers to the immunity (protection) of the external schemas to
changes in the conceptual schema. Changes to the conceptual schema such as the addition or
removal of new entities, attributes (or) relationships should be possible without having to
change existing external schemas or having rewrite the application programs.

—~>Logical data independence is a kind of mechanism, which liberalizes itself from actual
data stored on the disk. If we do some changes on table format, it should not change the data
residing on the disk.

2. Physical data Independence:

—~>Physical data independence is the ability to modify the physical schema i.e., internal
schema which describes the physical storage devices or structure to store the data without
affecting the conceptual schema application programs.

—-> Physical data independence refers to the immunity of the conceptual schema to changes in
the internal schema. Changes to the internal schema such as using different file organizations
or storage structures, using different storage devices, modifying indexes or hashing algorithms
should be possible without having to change the conceptual or external schema.

Comparison between L ogical and physical Data | ndependence:

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

S.No| Logical Data Independence Physical Data independence
1. |It 1s a high level of data independence [It 1s low level of data independence.
2. [Itisrelated to conceptual schema |1t is related to external schema
where in different logical view of ~ |where in actual data storage

data are provided to different users. | activities are performed.

3. |The changes are made to the concept- | The changes are made to the exter-
-ual schema without affecting the |-nal schema without affecting

external schema. conceptual schema.

4. |Modifications are done on data struct- Modifications are done on data
-ures such as entities, attributes, structures such as storage devices,
relationships. swifching.

5. [It provides data integrity and data It provides data optimization
data effectiveness. data re-organization.

6. [It defines relationships among data | It defines relationships using
by using simple structures. complex low level data structures.

7. |Application programmer must maint- |Application programmer need not
-ain the information about logical ~ maintain the information about

organization. physical organization,

8. |The implementation details are not | The implementation details are
visible to users. transparent to the users.

9. [t is difficult to maintain. It is easy to maintain.

2. DATABASE LANGUAGES:

Database languages are used for read, update and store data in database. There are several
such languagesthat can be used for this purpose; one of them is SQL (Structured
Query Language).

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

SOL (Structural guery Langquage):

SQL
(Structured
Unery

Language)

pp.. || bvM. | { DR. || beL | [TCL
{Data {Drata {(Data (Drata {Transaction
Definithon Manipulation Retrieval Contral Control
Language) Langnage) Language) Langmage) Language)
L N AL k b _ >, K _ 3
- = - i ™ — o™
L. Create | 1 Tnsert b ' I ' 1. Commit 1
. melect
2. Aliter L. Delete e 1. Grmut 2. Rollback
3. Drop 3, Update 1. Revoke 3. Suve-poini
_ + Rename { #_- \ | B | || 4,%et Transaction

->SQL isagtandard language for accessing databases.
~ltisclassified into five types:-

1). DDL (Data Definition Language):- Create, Alter, Drop
2). DML (Data Manipulation Language): Insert, delete,
Update
3). DCL (Data Control Language):-Grant, Revoke
4). TCL (Transaction Control Language):- Commit, Rollback,
Save- point, Set Transaction

5). DRL (Data Retrieval Language):- Select
Data Definition L anguage (DDL):

-1t is alanguage that allows the users to define data and their relationship to other types of
data. It is mainly used to create files, databases, data dictionary and tables within databases.

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

—It is also used to specify the structure of each table, set of associated values with each
attribute, integrity constraints, security and authorization information for each table and
physical storage structure of each table on disk.

- The following table gives an overview about usage of DDL statementsin SQL:

S.No Need and Usage The SQL DDL Statement
1 Create schema objects CREATE

2 Alter schema objects ALTER

3 Delete schema objects DROP

4 Rename schema objects RENAME

Data M anipulation L anguage (DML):

—>1t is a language that provides a set of operations to support the basic data manipulation
operations on the data held in the databases. It allows users to insert, update, delete and
retrieve data from the database. The part of DML that involves dataretrieval is called a query
language.

—-> The following table gives an overview about the usage of DML statements in SQL:

SNo, Needand Usage The SQL DML Statement

1 Remove rows from tables or views DELETE

2 Add new rows of data into table or view INSERT

3 Change column values in existing rows UPDATE
of a table or view

Data Control L anguage (DCL):

—->DCL statements control access to data and the database using statements such as GRANT
and REVOKE. A privilege can either be granted to a User with the help of GRANT
statement. The privileges assigned can be SELECT, ALTER, DELETE, EXECUTE,
INSERT, INDEX etc. In addition to granting of privileges, you can also revoke (taken back) it
by using REVOKE command.

Chapter-2

INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

—->The following

table gives an overview about the usage of DCL statementsin SQL:

S.No

Need and Usage The SQL DCL Statement

Gives user access privileges to database

GRANT

Take back permissions from user

REVOKE

Transition Control L anqguage (TCL):

—->TCL commands are usedto manage

transactions in database. These are used to

manage the changes made by DML statements. It also allows statements to be grouped
together into logical transactions.

S.No Need and Usage The SQL TCL Statement
1 Save work done COMMIT
2 Identify a point in a transaction to which SAVEPOINT
you can later rollback
3 Restore database to original since the last ROLLBACK
commit
4 Change transition options like isolation SET TRANSITION
level and what rollback segment to use

Data Retrieval Language (DRL) (or) Data Query L anquage (DOL):

—~>DRL will be used for the retrieval of the data from database. In order to see the present in

the database, we will use DRL statement. We have only one DRL statement.
> SELECT isthe only DRL statement in SQL.
—>Select isDRL/DQL i.e., dataretrieval language.

S.No

Need and Usage The SQL DMCL Statement

Retrieve data from one or more tables

SELECT

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

Database Users and ADMINISTRATOR:

Database Users and User Interfaces: (FFHFFHIIA KKK XK
—>Database users are the one who really use and take the benefits of database. There will be
different types of users depending on their need and way of accessing the database.

1. Application Programmers - They are the developers who interact with the database by
means of DML queries. These DML queries are written in the application programs like C,
C++, JAVA, Pascal etc. These queries are converted into object code to communicate with
the database. For example, writing a C program to generate the report of employees who are
working in particular department will involve a query to fetch the data from database. It will
include an embedded SQL query in the C Program.

2. Sophisticated Users - They are database developers, who write SQL queries to
select/insert/delete/update data. They do not use any application or programs to request the
database. They directly interact with the database by means of query language like SQL.
These users will be scientists, engineers, analysts who thoroughly study SQL and DBMS to
apply the concepts in their requirement. In short, we can say this category includes designers
and developers of DBMS and SQL.

3. Specialized Users - These are also sophisticated users, but they write special database
application programs. They are the developers who develop the complex programs to the
requirement.

4. Stand-alone Users - These users will have stand —alone database for their personal use.
These kinds of database will have readymade database packages which will have menus and
graphical interfaces.

5. Native Users - these are the users who use the existing application to interact with the
database. For example, online library system, ticket booking systems, ATMs etc which has
existing application and users use them to interact with the database to fulfill their requests.

Database Administrator (DBA): (F***x**xkkkxri*)

—->DBA is a person having control over data and program. DBA is a person having all
the authorities and responsibilities of database.

—>A Database administrator (DBA) manages a DBMS for an enterprise. The DBA designs
schemas, provide security, restores the system after a failure, and periodically tunes the
database to meet changing user needs. Application programmers develop applications that use
DBMS functionality to access and manipulate data, and end users invoke these applications.
2> The DBA isresponsible for many critical tasks:

1. Ingtalling and upgrading the DBM S Servers: - DBA is responsible for installing a new
DBMS server for the new projects. He is also responsible for upgrading these servers as there
are new versions comes in the market or requirement. If there is any failure in up gradation of
the existing servers, he should be able revert the new changes back to the older version, thus
maintaining the DBMS working. He is also responsible for updating the service packs fixes/
patches to the DBMS servers.

2. Design and implementation: - Designing the database and implementing is also DBA’s
responsibility. He should be able to decide proper memory management, file organizations,
error handling, log maintenance etc for the database.

3. Performance tuning: - Since database is huge and it will have lots of tables, data,
constraints and indices, there will be variations in the performance from time to time. Also,
because of some designing issues or data growth, the database will not work as expected. It is

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

responsibility of the DBA to tune the database performance. He is responsible to make sure
all the queries and programs works in fraction of seconds.

4. Migrate database servers. - Sometimes, users using oracle would like to shift to SQL
server or Netezza. It isthe responsibility of DBA to make sure that migration happens without
any failure, and there is no dataloss.

5. Backup and Recovery: - Proper backup and recovery programs needs to be developed by
DBA and has to be maintained him. This is one of the main responsibilities of DBA.
Data/objects should be backed up regularly so that if there is any crash, it should be recovered
without much effort and data loss.

6. Security: - DBA is responsible for creating various database users and roles, and giving
them different levels of accessrights.

7. Documentation: - DBA should be properly documenting all his activities so that if he quits
or any new DBA comes in, he should be able to understand the database without any effort.
He should basically maintain all his installation, backup, recovery, security methods. He
should keep various reports about database performance.

3. TRANSACTION MANAGEMENT:

—A transaction is a collection of operations that performs a single logical function in a
database application

—A transaction is any one execution of a user program in a DBMS. (Executing the same
program several times will generate several transactions.) This is the basic unit of change as
seen by the DBMS:. Partial transactions are not allowed, and the effect of a group of
transactions is equivalent to some serial execution of all transactions.

Transactions should possesthe following (ACID) properties:

Transactions should possess several properties. These are often called the ACID properties,
and they should be enforced by the concurrency control and recovery methods of the DBMS.
The following are the ACID properties:

1. Atomicity: A transaction is an atomic unit of processing; it is either performed in its
entirety or not performed at all

2. Consistency preservation: A transaction is consistency preserving if its complete
execution take(s) the database from one consistent state to another.

3. Isolation: A transaction should appear as though it is being executed in isolation from
other transactions. That is, the execution of a transaction should not be interfered with by any
other transactions executing concurrently.

4. Durability or permanency: The changes applied to the database by a committed
transaction must persist in the database. These changes must not be lost because of any
failure.

4. DBMSS'rRUCTURE(************************)

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

Sophisticated users, application

Lngophisticated users (customers, ravel agents, etc.) progrmmmers, DB admanistrators
l- Web Forms] l Application From Ends] | SO Interfoce]
e = ; s R e -
S0, O ;1,] ALA MDY shenws command o
i
Plan Execunar Farser TR LT T T (T]
ey
Chperator Evaluator Diptimizer Eval st
Emzine
- | —_— Files and Access Methods e
I mnsactioen
Mamager I ;
Recovery
Bl Buffer Manusger ™" Monoger
Lock
MManager J,
- il -
ConCuTency Dizk Space Manager _
Control RIS
g ==
e
Index Files == shows references
\H Syvstem Calaloe

Ihaia Files -—-""f

DATABASE

Figure 1.3 Architecture of a DBMS

—>Figure 1.3 shows the structure (with some simplification) of a typical DBMS based on the
relational data model.

—>The DBMS accepts SQL commands generated from a variety of user interfaces, produces
guery evaluation plans, executes these plans against the database, and returns the answers.
(This is a simplification: SQL commands can be embedded in host language application
programs, e.g., Java or COBOL programs. We ignore these issues to concentrate on the core
DBMS functionality.)

—->When a user issues aquery, the parsed query is presented to a query optimizer, which uses
information about how the data is stored to produce an efficient execution plan for evaluating
the query. An execution plan is a blueprint for evaluating a query, and is usually represented
as atree of relational operators.

- The code that implements relational operators sits on top of the file and access methods
layer. This layer includes a variety of software for supporting the concept of a file, which, in
a DBMS, is a collection of pages or a collection of records. This layer typically supports a
heap file, or file of unordered pages, as well as indexes.

- The files and access methods layer code sits on top of the buffer manager, which brings
pages in from disk to main memory as needed in response to read requests.

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

—>The lowest layer of the DBMS software deals with management of space on disk, where
the data is stored. Higher layers allocate, de-allocate, read, and write pages through (routines
provided by) this layer, called the disk space manager .

—>The DBMS supports concurrency and crash recovery by carefully scheduling user requests
and maintaining a log of all changes to the database. DBMS components associated with
concurrency control and recovery include the transaction manager, which ensures that
transactions request and release locks according to a suitable locking protocol and schedules
the execution transactions; the lock manager, which keeps track of requests for locks and
grants locks on database objects when they become available; and the recovery manager,
which is responsible for maintaining a log, and restoring the system to a consistent state after
acrash. The disk space manager, buffer manager, and file and access method layer s must
interact with these components.

Client/Server Architecture:

Client/server architecture shares the data processing chores between a server—typically a
high-end workstation—and clients, which are usually PCs. PCs have significant processing
power and are therefore capable of taking raw datareturned by the server and formatting it for
output. Application programs are stored and executed on the PCs. Network traffic is reduced
to data manipulation requests sent from the PC to the database server and raw datareturned as
aresult of that request. The result is significantly less network traffic and theoretically better
performance.

Today's client/server architectures exchange messages over local area networks (LANS).
Although a few older Token Ring LANs are still in use, most of today's LANSs are based on
Ethernet standards. As an example, take alook at the small network in Figure 1-3. The
database runs on its on server (the database server), using additional disk space on

the network attached storage device. Access to the database is controlled not only by the
DBMS itself but by the authentication server.

https://www.sciencedirect.com/topics/computer-science/database-server
https://www.sciencedirect.com/topics/computer-science/local-area-networks
https://www.sciencedirect.com/topics/computer-science/token-ring
https://www.sciencedirect.com/topics/computer-science/network-attached-storage
https://www.sciencedirect.com/topics/computer-science/authentication-server

Chapter-2
INTRODUCTION TO DATABASE SYSTEM ARCHITECTURE

| Wy = Router =
Desktop PC I §

File Server

= =

Desktop PC g

Database
Server

i

Authentication

N W= Server
Desktop PC f____‘ Switch
Switch fosss i
Network Attached

’ I Storage

Desktop PC = =]}
’ - ! i Desktop PC Desktop PC Desktop PC Desktop PC

Desktop PC

= Figure Small LAN with network-accessible database server.

Client/server architecture is similar to the traditional centralized architecture in that the
DBMS resides on a single computer. In fact, many of today's mainframes actually function as
large, fast servers. The need to handle large data sets sill exists, although the location of some
of the processing has changed.

Because client/server architecture uses a centralized database server, it suffers from the same
reliability problems as the traditional centralized architecture: If the server goes down, data
access is cut off. However, because the “terminals” are PCs, any data downloaded to a PC can
be processed without access to the server.

https://www.sciencedirect.com/topics/computer-science/large-data-set

Chapter-3
ENTITY RELATIONSHIP MODEL

UNIT-II:

The E/R Models, The Relational Model, Relational Calculus, Introduction to
Database Design, Database Design and Er Diagrams-Entities Attributes, and
Entity Sets-Relationship and Relationship Sets-Conceptual Design With the Er
Models, The Relational Model Integrity Constraints Over Relations- Key
Constraints —Foreign Key Constraints-General Constraints, Relational Algebra
and Calculus, Relational Algebra- Selection and Projection- Set Operation,
Renaming — Joins- Division- More Examples of Queries, Relational Calculus,
Tuple Relational Calculus- Domain Relational Calculus.

1. OVERVIEW OF DATABASE DESIGN: (******%x%x%%%x)

—>The database design process can be divided into six steps. The ER model is most relevant
to the first three steps:

(1) Requirements Analysis: The very first step in designing a database application is to
understand what data is to be stored in the database, what applications must be built on the
database and what operations must be performed on the database. In other words, we must
find out what the users want from the database. This process involves discussions with user
groups, astudy of the current operating environment, how it is expected to change an analysis
of any available documentation on existing applications and so on.

(2) Conceptual Database Design: The information gathered in the requirements analysis step
is used to develop a high-level description of the datato be stored in the database, along with
the congtraints that are known to hold over this data. The goal is to create a description of the
datathat matches to how both users and developers think of the data. This facilities discussion
among all the people involved in the design process i.e., developers and as well as users who
have no technical background. In simple words, the conceptual database design phase is used
in drawing ER model.

(3) Logical Database Design: We must implement our database design and convert the
conceptual database design into a database schema (a description of data) in the data model
(a collection of high level data description constructs that hide many low level storage details)
of the DBMS. We will consider only consider relational DBMSs, and therefore, the task in
the logical design step is to convert the conceptual database design in the form of an ER
schema (Entity-Relationship schema) into arelational database schema.

(4) Schema Refinement: The fourth step in database design is to analyze the collection of
relations in our relational database schemato identify future problems, and to refine (clear) it.

(5) Physical Database Design:. This step may simply involve building indexes on some
tables and clustering some tables, or it may involve redesign of parts of the database schema
obtained from the earlier design steps.

(6) Application and Security Design: Any software project that involves a DBMS must
consider applications that involve processes and identify the entities.

Example: Users, user groups, departments, etc.

—>We must describe the role of each entity in every process. As a security design, for each
role, we must identify the parts of the database that just not is accessible and we must take
steps to ensure that these access rules are enforced.

Conceptual design:
e What aretheentitiesand relationshipsin the enterprise?

e What information about these entities and relationships should be stored in the
database?

e What aretheintegrity constraintsor businessrulesthat hold?

e A database schema in the ER Mode can be represented pictorially (ER
diagrams)

e An ER diagram can be mapped into arelational schema

E-R MODEL:

—>An entity-relationship model (ER model) is a systematic way of describing and defining
a business process. An ER model istypically implemented as a database.

—>The main components of E-R model are: entity set and relationship set.

—>Here are the geometric shapes and their meaning in an E-R Diagram —

Rectangle: Represents Entity sets.
Ellipses: Attributes
Disnonds: Relationship Set

Lines: They link attributes to Entity Sets and Entity sets to Relationship
Set

Double Ellipses: Multivalued Attributes
Dashed Ellipses: Derived Attributes
NDonble Rectangles: Weak Entity Sets

Donble Lines: Total participation of an entity in a relationship set

Symbols and Notations

Entity

Relationship

Attribute

Weak Entity

Weak Entity relationship

Multivalued Attribute

Key Attribute

vEEE b

* Composite Attribute

%f@@@ ok

PSSR e Derived Attribute

-

1 N Cardinality Ratio 1:N

E1 G E2 | forE1:E2inR
El ——<ij:‘;~..= E> Total Participation

1 AU N Cardinality Ratio
El [«XR,—1]E2 between E1 and E2

in1:R

| N = S 3N Many to One

£ R = Relationship Type

2. ENTITIES ATTRIBUTES, AND ENTITY SETS:

ENTITIES:
An Entity is an object that exists and is distinguishable from other objects.

Example: Specific person, Company, Event, Plant, Building, Room, Chair, Course,
Employee etc.

In E-R Diagram, an entity is represented using rectangles. Name of the Entity is written
inside the rectangle.
—>Examples: STUDENT, EMPLOY EE, ACCOUNT etc.

STUDENT EMPLOYEE ACCOUNT

A Strong entity is represented by simple rectangle as shown above.
—>Consider an example of an Organization. Employee, Manager, Department, Product and
many more can be taken as entities from an Organization.

EMPLOYEE Works DEPARTMENT
for

A Wesak entity is an entity that depends on another entity. Weak entity doesn’t have key
attribute of their own. Double rectangle represents weak entity.

Examples: CLASS _SECTION, DEPENDANT etc.

CLASS_SECTION DEPENDANT

An Entity set isa set of entities of the same type that share the same properties.

- An Entity set isacollection of similar entities.

Examples. set of al persons, companies, Job positions, Courses, Academic staff, Managers,
Employees etc.

—All entities in an entity set have the same set of attributes. (Until we consider ISA
hierarchies, anyway!)

—Each entity set has a key.

—Each attribute has a domain.

—>The Employees entity set with attributes ssn, name, and lot is shown in Figure 2.1. An
entity set is represented by a rectangle, and an attribute is represented by an oval. Each
attribute in the primary key is underlined.

Employess 1

Figure 2.1 The Employvees Entity Set

ATTRIBUTES:

An entity is represented by a set of attributes. Attributes are descriptive properties
possessed by each member of an entity set.

An Attribute describes a property or characteristics of an entity. For example, Name, Age,
Address etc can be attributes of a Student. An attribute is represented using eclipse.

=3

STUDENT

Example:
Customer=(customer_id, customer_name, customer_street, customer_

city)

loan = (loan_number, amount)

Key Attribute:
Key attribute represents the main characteristics of an Entity. It is used to represent Primary

key. Ellipse with underlying lines represents Key Attribute.

Phone
number

STUDENT

Composite Attribute:

An adtribute can aso have their own dtributes. These attributes are known
as Composite attribute.

- Composite attributes can be divided into subparts. For example, an attribute name
could be structured as a composite attribute consisting of first-name, middle-initial, and last-
name.

Attribute Divided into sub parts. Eg. Name (First name, Middle Name, last name)

- —

" T
.:x Auldvess b
-~

—— __:_:'

Multlvalued Attrlbutes (********************)

An attribute that can hold multiple values is known as multivalued attribute. We represent it
with double ellipses in an E-R Diagram. E.g. A person can have more than one phone
numbers so the phone number attribute is multivalued.

There may be instances where an attribute has a set of values for a specific entity. Consider an
employee entity set with the attribute phone-number. An employee may have zero, one, or
several phone numbers, and different employees may have different numbers of phones. This
type of attribute is said to be attribute having more than one values. Eg. Phone Number.

Derived Attribute: A derived attribute is one whose value is dynamic and derived from
another attribute. It is represented by dashed ellipses in an E-R Diagram. E.g. Person age is a
derived attribute as it changes over time and can be derived from another attribute (Date of
birth).

E-R diagram with multivalued and derived attributes:

Student @

Total Participation of an Entity set:

A total participation of an entity set represents that each entity in entity set must have at least
one relationship in a relationship set. For example: In the below diagram each college must
have at least one associated student.

Stu_Id tu_Addr (Col 1D D E€ol_Namg

tudyl

' College

Student

E-R Digram with total participation of College entity set
in StudyIn relationship Set - This indicates that each
college must have atleast one associated Student.

3. RELATIONSHIPS AND RELATIONSHIP SETS: (****)

—>A relationship is an association (connection) among (between) two or more entities.

‘ Employees @ Departments

Figure 2.2 The Works In Relationship Set

Example: We may have the relation Works In among entities, Employees and Departments
i.e., an Employee Works_In a Department.

—A relationship set is a collection of similar relationships or we collect a set of similar
relationships into a relationship set.
A relationship set can be thought of as a set of n-tuples:

{(el, ...,en) |el e E]L, ..., en € En}

Each n-tuple denotes a relationship involving n entities €1 through en, where entity ei is in
entity set Ei. Note that several relationship sets might involve the same entity sets. For
example, we can also have a Manages relationship set involving Employees and Departments.

A relationship can also have descriptive attributes. Descriptive attributes are used to
record information about the relationship, rather than about any one of the participating
entities.

Example: In Works In relationship ‘since’ attribute captures information about participating
entities Employees and Departments.

But, for a given employee-department pair, we cannot have more than one associated ‘since’
attribute value.

—>An instance of a relationship (or) relationship instance set is a set of relationships. An
instance can be thought of as a ‘snapshot’ (a short description) of the relationship set at some
instant in time.

An instance of the Works In relationship set is shown in Figure 2.3. Each Employees entity is
denoted by its ssn, and each Departments entity is denoted by its did, for simplicity.

The ‘since’ value is shown beside each relationship as ‘many-to-many’ relationships and total
participation i.e., the employee with ssn (123-22-3666) Works In did (51) since 1/1/91,
similarly the employee with ssn (231-31-5368) Works In did (51) since 3/3/93 and so on.

— 9L,
i | 23-22: 1668 -\.x_.__ _— ! '.ll '-._____ -_,.-l- o
Pl Moo L) o yams i .4
\ i I o A—— 31 b
| | 231-31-3368 |@=— -I- =3 [22/92 I ' 1
e 2 - \
1 : | !"'---__-__; _—|- ® s
i [131-24-3650 (@__ | 'I [L /
' | 3/1/92) - - f
- .’ i S— S— Y S/
| 223-32-6316 l-.- I,.'l e _---"":-__' T o
™. i Te— i T LR fo i -~
~ " ——_ -_,,-: :
Ty
= e o
EMPLOYEES WORKS M DEPARTMENTS
Total partecipalion Many Lo Many Lozl partie patinen

Flgur{z 2.8 An Instance of the Works _In Relat b L||Hhi_|r St

—>Ternary relationship is an association (connection) between three entities an employee, a

department, and a location.
Example: Each department has offices in several location and we want to record the location

at which each employee works.
G) gy
) (ag) T Gousge)
== ' =

‘ Employees WGFI'EEP_HE[‘L,J —| Departments
i:_;ddf'&ﬁ;;?} Locations Ea paciti)

Figure 2.4 A Ternary Relationship set

—>The entity sets that participate in a relationship set need not be only one. Sometimes a
relationship might involve two entities in the same entity set.

For example, consider the Reports To relationship set that is shown in Figure 2.5. Since
employees report to other employees, every relationship in Reports To is of the form (empl,
emp2), where both empl and emp2 are entities in Employees.

I Employacs ‘

SGLIR WSO Subroarclirsa o

= __ Reports_To =

Fizgure 2.5 The Reports . To Relationship set

However, they play different roles: empl reports to the managing employee emp2, which is
reflected in the role indicators supervisor and subordinate in Figure 2.5.

If an entity set plays more than one role, the role indicator concatenated with an attribute
name from the entity set gives us a unique name for each attribute in the relationship set. For
example, the Reports To relationship set has attributes corresponding to the ssn of the
supervisor and the ssn of the subordinate, and the names of these attributes are supervisor ssn
and subordinate ssn.

4. ADDITIONAL FEATURES OF ER MODEL:

—>Following constructs are the features in the ER Modd that allows us to describe some
common properties of the datain expressing ER Model.

Key Congtraints, (¥****x**x)
Consider the Works _In relationship shown in Figure 2.2.

S since o
. @ame) - l/__F_,D L d@ o

i
lEmpiﬂyees —'%s In_=—" Departments

Figure 2.2 The Works__In Relationship Set

An employee can work in several departments, and a department can have several employees,
asillustrated in the Works_In instance shown in Figure 2.3.

,
-
=
£
e
rd

il Crpm—— b - — - %,
/| 123-22-3606 | @ PR, 7 S et _ .,
..' . i .|__ F, - - 51 3
i | Z31-31-536 -2 s = =
[231-31-536%. | 2292 \
2 . |) — = o 5o
1 | 138-24-3650 (@___ | { |
! L 3| S I
s - ; i - - .- iy | 60 !
: | 223-32-6316 --_.__,- 3 [5L s .
g P I S T - S
3 e ¥ ~
EMPLOYEES WORKS_IMN DEPARTMENTS
Total participalion Many Lo Moy Lotal partie pdieon

Flgllrtjr >3 An Instance of the Works_In Relationship Set

Here, Employee 231-31-5368 has worked in Department 51 since 3/3/93 and in Department
56 since 2/2/92. Department 51 has two employees. Thus one department can have many
employees.

But, if we want to have only one employee in department, then it is an example of Kay
constraint.

Example: Consider another relationship set called Manages between the Employees and
Departments entity setsasin the Figure 2.6.

-~ "
—— since —
- b s A - -,
r Y e Y
METE T iname
—_— —— e e
e ., e S ¥ e ﬂ“‘-\. ..-__.-' -\.,_H'\-\._ = .-____.- e
5 | il | i i | Dieninet
o — - '\"'-_‘_ e \‘\-\.,__ e i 5
— ™ e '.-_-_h._ =
; | .
H""--..H. -.-.__.-' __."'ﬁ""x - < .-.__.-"'
e .. . " "
Employass . Manages I Departmerts
u .-"'-.
. o

Figure 2.6 Kev Constraint on Manages

Here, each department can have only one manager. The restriction that each department can
have only one manager is an example of key constraints. This restriction is indicated in the
above ER diagram by using an arrow from departments to manages, such that a department
can have only one manager.

An instance of the Manages relationship set is shown in Figure 2.7. While this is also a
potential instance for the Works In relationship set, the instance of Works In shown in Figure
2.3 violates the key constraint on Manages.

- b
b —
; ‘ K’"\-\. |'..] I". I = o
__.-'- | 12322 36606 |- i / 3-_ \ # y
{0 [231-31-5380 |IL 2= | | \
o T Pk R ~— | 11292 :
| . ; - B i, O = | | --—I| 45 | .
131-24-3650 ' L T l o {
y | a | L | |I [\
N Toomaas la? Vs A\ —®[0]
J IAFT2-6306 IFi b1 Ay H i P -\,, J
| x ol r—— y i ", s
S ; S T
. ! : - ‘-\.x .-_.-
’ 2 o 5
EMPLOYEES MANAGES DEPARTMEMNTS
Parial partscipation Cin 1o My Total partcrpalon
Figure 2.7

An Instance of the Manages Relationship Sed
Key Constraintsfor Ternary Relationships:

In Figure 2.8, we show aternary relationship with key constraints. Each employee works in
at most one department, and at a single location.

An instance of the Works In3 relationship set is shown in Figure 2.9. Notice that each
department can be associated with several employees and locations, and each location can be

associated with several departments and employees; however, each employee is associated
with a single department and location.

o 'x&ll
— ~—, e - ———
'\-\.I e _____-" :I.-" -
| mame) i dname
e ——— 4 —_ e T e
._.-""-- s :\"‘-\—__ " ey - -\""\-\H _,r'--- --""H.\,\:' e e , I a .
&0 | i \ f
P !.H. laf F L I:|_I:| 4 : ttH}gF!I
S ___.-' o e Sl o o e —
s o B -~
L s e i .-"-r-x"'x h\"'\-\.._\h -
3 i 1 -..-__.-‘ ._x i .
=,
—_— ————— |
Emplyes Works_ind ; i Depariments
oy _.-'""- |

| nddress L Locations |—-’ capastty b
N A | % /

e —— | o, —

Figure 2.8 A Ternary Relationship Set with Key Constraints

DEPARTMENTS - -,

-~

2 EETH
4+ !
, fAsd '-l s6 |
[# = Y .
123223000 | @] \ A
; kxiecs i . J Y P o oo |
§ — ; ! s L . 1 ; et
f 231-31-5368 | @\ | 2mm <t :
l 31-24-36 | | et e .)
i I | _41f1|| - Irl | T Lt - z e
A g [} [~ . b
. * 42E-22-6116 -'. . I.._ i *'-"l.. ’ - B | m'-u.
" 3 - % .--\, el o) F .) I '.I
B ; J
- -_ 7 =4 | Delhi |
o L1 l|I
-, - . » LY
EMPLOYEES WORKS N2 —
Fooy cOnsIran S -

LMo ATIOMS

Figure 2.9 An Instance of Worksa_Ind

Participation Constraints. (*********%x)

The ER diagram in Figure 2.10 shows both the Manages and Works_In relationship sets and
al the given congtraints. If the participation of an entity set in a relationship set is total, the
two are connected by a thick line; independently, the presence of an arrow indicates a key
congtraint. The instances of Works_In and Manages shown in Figures 2.3 and 2.7 satisfy all
the constraints in Figure 2.10.

Employees w Departments

Figure 2.10 Manages and Works In

Weak Entities:

An entity set attributes that does not have a primary key within them, is termed as a weak
entity set. As an example, consider the entity set Dependents, which has the two attributes
pname and age, illustrated with the ER diagram as shown in Figure 2.11

F
(name Sy e e,
L / v
r.fﬁs_;‘_\“‘xl I.' | -ﬂt \ I l:ﬂst _.-"I p“ ame Ill| I'-.
20 \ S il i B9
e S \ ra
~ e N\

S
Employees @ (—lﬂapendents \

Figure 1.11 A Weak Entity Set

A dependent is an example of a weak entity set. A weak entity can be identified uniquely
only by considering some of its attributes in conjunction with the primary key of another
entity, which is called the identifying owner.

The following restrictions must hold:

—>The owner entity set and the weak entity set must participate in a one-to-many relationship
set (one owner entity is associated with one or more weak entities, but each weak entity has a
single owner).

—>This relationship set is called the identifying relationship set of the weak entity set. The
weak entity set must have total participation in the identifying relationship set.

The Dependents weak entity set and its relationship to Employees is shown in Figure 2.11.
The total participation of Dependents in Policy is indicated by linking them with a dark line.
The arrow from Dependents to Policy indicates that each Dependents entity appears in at most
one Policy relationship. To underscore the fact that Dependents is a weak entity and Policy is
its identifying relationship, we draw both with dark lines. To indicate that pname is a partial
key for Dependents, we underline it using a broken line. This means that there may well be
two dependents with the same pname value.

ClassHierarchies.

To classify the entities in an entity set into subclass entity is known as class hierar chies.
Example: we might want to classify Employees entity set into subclass entities Hourly Emps
entity set and a Contract Emps entity set to distinguish the basis on which they are paid.
Then the class hierarchy isillustrated as shown in Figure 2.12.

Employees
Scse b
N @D
/ \

Hourly Emps

Contract_emps

Fignure 2,12 Class hierarchy
This class hierarchy illustrates the inheritance concept. Where, the subclass attributes | SA
(read as: is a) superclass attributes, indicating the “is a” relationship (inheritance concept).
Therefore, the attributes defined for a Hourly Emps entity set are the atributes of
Hourly Emps plus attributes of employees (because subclass can have superclass properties).
Likewise the attributes defined for a Contract_ Emps set are the attributes of Contract Emps
plus attributes of Employees.

—2A class hierarchy can be viewed in one of two ways:

Specialization:

—>An employee is specialized into subclasses. Specialization is the process of identifying
subsets (subclasses) of an entity set (the superclass) that share some distinguishing
characteristics. Here, the superclass (Employees) is defined first, the subclasses
(Hourly_Emps, Contract Emps etc.) are defined next and subclass-specific attributes and
relationship sets are then added.

Generalization:

—>Generalization is the process of identifying(defining) some generalized (common)
characteristics of a collection of (two or more) entity sets and creating a new entity set that
contains entities possessing these common characteristics. Here, the subclasses
(Hourly_Emps, Contract_ Emps, €etc.,) are defined first the superclass (Employees) is defined
next.

In shortly, Hourly Emps and Contract Emps are generalized by Employees.

- The class hierarchy can specify two kinds of constraints. They are

Overlapped Constraints:

Overlap congtraints determine whether two subclasses are allowed to contain the same entity.
Example: can Akbar be both a Hourly Emps entity and a Contract_Emps entity? The answer
is no.

Other example, can Akbar be both a Contract Emps entity and a Senior_ Emps entity (among
them) the answer is, Yes.

Thus, this is a specialization hierarchy property. We denote this by writing “Contract Emps
overlaps Senior Emps”.

Covering Constraints:
Covering constraints determine whether the entities in the subclasses collectively include all
entities in the superclass.

Example: Should every Employees entity be a Hourly_Emps or Contract_ Emps? The answer
is, No. He can be a Daily_Emps.

—>Other example, should every Motor_Vehicle (superclass) be a bike (subclass) or a car
(subclass)? The answer is yes.

Thus generalization hierarchies’ property is that every instance of a superclass is an instance
of a subclass.

We denote this by writing “bikes and cars cover Motor Vehicles”

AGGREGATION (**************************)

- Used when we have to model arelationship involving (entity sets and) arelationship set.
->Aggregation allows us to indicate that a relationship set (identified through a dashed box)
participates in another relationship set.

—>Aggregation alows a relationship set to be treated as an entity set for purposes of
participation in (other) relationship sets.

Thisisillustrated in Figure, with a dashed box around Sponsors (and its participating entity
sets) used to denote aggregation. This effectively allows us to treat Sponsors as an entity set
for purposes of defining the M onitorsrelationship set.

(J,_s?j\xnam) ’,_E—/]

Emplayees

|

@E@;ﬁ) CE"LH @a Eﬂ)

ERAESEE S ER R EEEY

4 "%) hf;”_d_?f_t/ u,___,)
T g il '““‘-H,__ i

‘ Projec §pnn%ﬂapa rtments
H'HH._,.-

I'Il'l‘llIII'I'IIIIIIIIII'IIIII'IIIIIllll'IIII'I"II-I-I'Il'lIIIIIIIIIIIIIIIIIlllll"ll'l"ll'l"ll"‘l‘ll'

Figure. Aggregation

'Illllllllillill

Restaurant Example:

restavrant

‘_.__..]11]}}""‘!— ..___I

supphier | =" supplies > | food |

Note:

—>For Ternary relationship, it can only see which specific restaurant buys what kind food
from which supplier.

—>For Aggregation, you have more information about which supplier supplies a food item.
Any restaurant needs that item can choose from that list.

Uses of Aggregation:
We use an aggregation, when we need to express a relationship among relationships. Thus,
there are really two distinct relationships, sponsors and monitors, each with its own attributes.

Example: The Monitors relationship has an attribute until that records the ending date until
when the employee is appointed as the sponsorship monitoring.

5. CONCEPTUAL DATABASE DESIGN WITH ER-DIAGRAMS
Developing an ER diagram presents several design choices, including the following:

e Should a concept be modeled as an entity or an attribute?

e Should a concept be modeled as an entity or a relationship?

e What are the relationship sets and their participating entity sets? Should we use
binary or ternary relationships?

e Should we use aggregation?

Entity Vs Attributes:
While identifying the attributes of an entity set, it is sometimes not clear, whether a property
should be modeled as an attribute or as an entity set.

—>Should address be an attribute of Employees or an entity (connected to Employees by a
relationship)?
—->Depends upon the use we want to make of address information, and the semantics of the
data
e |f we have several addresses per employee, address must be an entity (since attributes
cannot be set-valued).
e |f the structure (city, Street, etc.,) isimportant, e.g., we want to retrieve employeesin a
given city, address must be modeled as an entity (since attributes values are atomic).

" Works-In4 does not allow an employee to work in a department for two or more
periods. A relationship is uniquely identified by the participating entities.

R = {(€;; +«+:,83)| €; € E4; ..., € E,}

_name ' ___Cf_a_r_'-_amEJ
Cﬁ D W) &/\/ ff:@_:) F Cbudget
IEmpIr&yees = {Myprks ln-i — Departmenls
B S
. Similar to the problem of wanting to record several working periods for an employee

in Work_In4. We want to record several values of the descriptive attributes for each
instance of thisrelationship. Accomplished by introducing new entity set, Duration.

___Cname> ____(dname>
Cﬁ 2 T ‘::":'t - 3 l::l 1 'fhuclget)
-\-"'\-____ .-'- ____,-"---FH-\- -\-\-\"'\-\.____ _
T “-,__
Employees]—aﬂ_ﬂ"i s__l:lﬂ,_-- Departments |

_from > | Duration o D

Entity Vs Relationship:
It is not always clear whether an object is best expressed by an entity set or arelationship set.

Example: If a manager gets a separate discretionary budget (dbudget) for each department he
or she manages.

e =

| Employees

Manages2

‘_‘ Departments ‘

What if a manager gets a discretionary budget that covers all managed departments?
o Redundancy: dbudget stored for each department managed by the manager.
o Mideading: suggests dbudget is associated with department — manager combination.

2 | B e G
IEmpInyEES Es did ’:Dudget:-'
. | i —~= s
‘& = Managagh— Departments I

-‘—\—_:_ _o—"'_
i

e
| e

Managers —@

Binary versus Ternary Relationships:
It is always possible to replace a non-binary (n-array, for n>2) relationship set by a number of
distinct binary relationship sets.

e A Bad design below if:
Each policy is owned by just 1 employee, and, Dependents is a weak entity set, and each
dependent is tied to the covering policy.

Bad design: Policiesinvolves in two relationships.

&

M\"‘x ‘ o
Employees Dependents

Policies

@ @ Bad design

What are the additional constraintsin 2" diagram?
Better design:

l_,a-""_—_ —
F ame., dame
CEES B P R
= | o=
Employees
s

In this example:

two binary relationships | Policies -
are better than one i '15?“‘._::1 iexteg drargn
ternary relationship policyid > Ccost

Another example: The contract specifies that a supplier will supply some quantity of a part
to a department.

{@;E}ntract:g}-— Departments |
In this example: :
Suppliers |

a ternary relationship is = =
better than three binary ~ ™~ 7 ™
relationships — e

Adaregation Vs Ternary Relationships:

-> The choice between using aggregation or aternary relationship is mainly determined by the
existence of a relationship that relates a relationship set to an entity set (or second relationship
set). The choice may also be guided by certain integrity constraints that we want to express.

- The monitorsisadistinct relationship, with a descriptive attribute. (In Figure)

.-""-P--- -H"\-\. i
- -"\-.__ = r -,
.c:’;@_unrtur}} (:,_P "hldd-)

=

(:'_tartﬁd l:m:!| - Emneﬁh} ﬂnam@ o

Ry | Qew“_‘_t'ﬁu‘g ~ Cbudger)
——— - e f

L]

LRI LLA IRl Rl L]
WEEE FERREERRER

_.-'
-

Projects ~Spo nic’:_ggf:.‘_ue partments

o

Jl FEAREEFRERRES
.I.III EERREEANEN

Figure. Aggregation

—>1If we don’t need to record the until atribute of Monitors, then we might reasonably use a
ternary relationship. (In Figure)
—>Also, it can say that each sponsorship is monitored by at most one employee.

e

(_ 55::-- CHEH'IE' C@

T

Emplwaﬂa

. @:ﬁ_ﬂEd c!':) . C dname,)
Q ‘ EB“"“@D |) “[(budget)

'S pnnsur&“‘ﬂ _Departmants
e
Figure, Uzing Ternary Relationship Instead of Agoregation.

Projects

ER DIAGRAMS EXAMPLES

1) Entity Relationship (ER) Modeling - Learn with a Complete Example

Here we are going to design an Entity Relationship (ER) model for a college database. Say
we have the following statements.

A college contains many departments

Each department can offer any number of courses

Many instructors can work in a department

An instructor can work only in one department

For each department thereisa Head

An instructor can be head of only one department

Each instructor can take any number of courses

A course can be taken by only oneinstructor

A student can enroll for any number of courses
10 Each course can have any number of students

Step 1: Identify the Entities

What are the entities here?

WCoNU~WNE

From the statements given, the entities are

1. Department
2. Course
3. Instructor
4. Student
Step 2: Identify therelationships

1. One department offers many courses. But one particular course can be offered by only
one department. hence the cardinality between department and course is One to Many
(:N)

2. One department has multiple instructors. But instructor belongs to only one
department. Hence the cardinality between department and instructor is One to Many
(:N)

3. One department has only one head and one head can be the head of only one
department. Hence the cardinality is oneto one. (1:1)

4. One course can be enrolled by many students and one student can enroll for many
courses. Hence the cardinality between course and student is Many to Many (M:N)

5. One course is taught by only one instructor. But one instructor teaches many courses.
Hence the cardinality between course and instructor is Many to One (N :1)

Step 3: Identify the key attributes

e "Departmen_Name" can identify a department uniquely. Hence
Department_Name is the key attribute for the Entity "Department”.

e Course ID isthekey attribute for "Course" Entity.
e Student_ID isthe key attribute for "Student" Entity.
e Ingructor_ID isthe key attribute for "Instructor" Entity.

Step 4: Identify other relevant attributes

e For the department entity, other attributes are location

e For course entity, other attributes are course_name, duration
e For instructor entity, other attributes are first_name, last_name, phone
e For student entity, first_name, last_name, phone

Step 5: Draw complete ER diagram
By connecting all these details, we can now draw ER diagram as given below.

2) ER DIGRAM FOR COLLEGE DATABSAE
R,

;-"’y__“'“‘m

lf’ Department (Location]

L eNaIE . o
"l__‘_ o

e
Department ‘

o
" N 5y
K/Dﬂerg s ,//Ijle:ld&d ‘HH B Has *
=2 e % \\\ by .__.-'"' g
(e il
4, ﬂ\‘ H .-"’H
Dt NG T
(\ e = Conrse taught \\ Instructor
- Fd N, b e { Tt ¥
N AN L=)
ol ' S name
II: :uars.e:‘\‘:l _J,r“;_a:“‘wﬂﬁ | H“H& e A
N (T (me
B L ﬁhnna R:I =
N
Student
= i [Phone
¢ Fi
(Sudent_ID J' I"_ a:::; ?:; \
\“‘-—_,_ __F,,_,-’x l\\.llta;_ﬂ_i__ﬂ';l

3) ERDIGRAM FOR AIRLINES- RESERVATION SYSTEM

DI HED

E"h
C= D

L o

;

A Nae

Hame

~
H EOIES
BLOMING THKET
(5 "
BOOKING OFFICE

Falis @ canckbon
I
ROUTE FARE

4) ER Diagram for Hospital M anagement System:

E-R Diagram of Hospital Management System

SOCOIOOC

Doctor | M Patient
/
Ph.No

Issued

Assign

Doc_Charges

Room Charges
Room

G

5) ER Diagram for Banking System

6) ER Diagram for College management system

Birthdate (1.4)

° Student (1N) Faculty

StudentlD Designation
o

(11)

(11)

Hostel

(e
NumberOfCredit

7) ER Diagram for Online Book Store

@ address {@ @

@>— author publzsher

> e

@ L
book

(til) ‘.

number

‘
‘

@ >

@D |

customer
basket[D
basket—of
| shopping-basket
warehouse Cid_e_

number

ER Diagram for Online BookStore

TRANSFORM ER DIAGRAM INTO TABLES

There are various steps involved in converting it into tables and columns. Each type of

entity, attribute and relationship in the diagram takes their own depiction here. Consider the

ER diagram below and will see how it is converted into tables, columns and mappings.

P oS

(SWET) [%)
/\vl em "|

(ooom . / S—
\ >/ Cm)
(oo ie) (oo) {/::'_c\)

/’—_\ ‘ /-\
p il A CENE)
/ L

(e)
(' a \
(o ." | SL&'ECT". |

The basic rule for converting the ER diagrams into tablesis

e Convert all the Entitiesin the diagram to tables.

All the entities represented in the rectangular box in the ER diagram become independent
tables in the database. In the below diagram, STUDENT, COURSE, LECTURER and
SUBJECTS forms individual tables.

e All singlevalued attributes of an entity is converted to a column of the table

All the attributes, whose value at any instance of time is unique, are considered as columns of
that table. In the STUDENT Entity, STUDENT _ID, STUDENT_NAME form the columns of
STUDENT table. Similarly, LECTURER _ID, LECTURER_NAME form the columns of
LECTURER table. And so on.

o Key attributein the ER diagram becomesthe Primary key of the table.

In diagram above, STUDENT _ID, LECTURER _ID, COURSE_ID and SUB_ID are the key
attributes of the entities. Hence we consider them as the primary keys of respective table.

o Declaretheforeign key column, if applicable.

In the diagram, attribute COURSE_ID in the STUDENT entity is from COURSE entity.
Hence add COURSE_ID in the STUDENT table and assign it foreign key constraint.
COURSE_ID and SUBJECT_ID in LECTURER table forms the foreign key column. Hence
by declaring the foreign key constraints, mapping between the tables are established.

e Any multi-valued attributes are converted into new table.

A hobby in the Student table is a multi-valued attribute. Any student can have any number of
hobbies. So we cannot represent multiple values in a single column of STUDENT table. We
need to Sore it separately, so that we can store any number of hobbies, adding/ removing /
deleting hobbies should not create any redundancy or anomalies in the system. Hence we
create a separate table STUD_HOBBY with STUDENT _ID and HOBBY as its columns. We
create a composite key using both the columns.

e Any composite attributes are merged into same table as different columns.

In the diagram above, Student Address is a composite attribute. It has Door#, Street, City,
State and Pin. These attributes are merged into STUDENT table as individual columns.

« Onecanignorederived attribute, sinceit can be calculated at any time.

Inthe STUDENT table, Age can be derived at any point of time by calculating the difference
between DateOfBirth and current date. Hence we need not create a column for this attribute.
It reduces the duplicity in the database.

—>These are the very basic rules of converting ER diagram into tables and columns, and
assigning the mapping between the tables. Table structure at this would be as below:

STUDENT LECTURER
STUDENT_ID LECTURER_ID
STUDENT_MNAME LECTURER_MAME
D:o8 COURSE_ID
DOORE
STREET
CiTY
STATE T
i COURSE
COURSE_ 1D - COURSE_ID

COURSE_MNAME
STUD HOBBY
o STUDENT_ID

HOBBY

RELATIONAL MODEL:
—->The Relational Database is a collection of one or more relations, where each relation is a
table with rows and columns.

—>The main construct for representing data in the relational model is a relation (table). A
relation consists of a relation schema and a relation instance. The relation instance is a
table, and the relation schema describes the column heads for the table.

- The schema specifies the relation’s name, the name of each field (or column, or attribute),
and the domain of each field. A domain is referred to in a relation schema by the domain
name and has a set of associated values.

Example of student information in a university database to illustrate the parts of a relation
schema:

Students(sid: string, name: string, login: string, age: integer, gpa: real)

The field named sid has a domain named string. The set of values associated with domain
string isthe set of all character strings.

Example2:

student (studentwName : string,

]' rol INumber : string,
/ phoneNumber ; Tnteger,
Relation vearorAdmission : Tnteger,
name branchofstudy : Erping)

Attribute domains
names

Domain—set of atomic (or indivisible) values —data type

—->An ingtance of a relation is a set of tuples, also called records, in which each tuple has
the same number of fields as the relation schema. A relation instance can be thought of as a
table in which each tuple isarow, and all rows have the same number of fields

An instance of the Students relation appearsin Figure 3.1.
The instance S1 contains six tuples and has, as we expect from the schema, five fields. Note

that no two rows are identical. This is a requirement of the relational model—each relation is
defined to be a set of unique tuples or rows.

FIELDS (ATTRIBUTES, COLUMNS)

|
IIII

\
name logi age | ga

Dave | daveldcs 1913
Jones | ones(@s 1§ | 34
Smith | smithidee 18 | 32
Smith | smuth@math 1% 3.

Madayan | madayan@music | 11 | 18
Guldy | guldu@music | 12 | 20

Figure 3.1 An Instance S1 of the Students Relation

Cardinality = 3, degree = 5, all rows distinct.
—->Domain _constraints are so fundamental in the relational model that we will henceforth
consider only relation instances that satisfy them; therefore, relation instance means relation
instance that satisfies the domain constraints in the relation schema.

—>The degree, also called arity, of arelation is the number of fields. The cardinality of a
relation instance is the number of tuplesinit. In Figure 3.1, the degree of the relation (the
number of columns) isfive, and the cardinality of this instance is six.

—A relation schema specifies the domain of each field or column in the relation instance.
These domain_congtraints in the schema specify an important condition that we want each
instance of the relation to satisfy: The values that appear in a column must be drawn from the
domain associated with that column. Thus, the domain of afield is essentially the type of that
field, in programming language terms, and restricts the values that can appear in the field.

More formally, let R{ f1:D1. ..., f;:Dn) be a relation schema, and for each f;, 1 <1 <n,
let Dom; be the set of values associated with the domain named Di. An instanee of R
that satisfies the domain constraints in the schema 13 a set of tuples with n fields:

fiidy, oo foidy) | dy € Domy, ... ,d, € Dom,,)

Another Example:

st THETTLE login age | gpa
53831 | Madayan | madayan@music | 11 1.8
3532 | Guldu suldu@music 12 |20
3688 | Smith smithee 18 |32
54650 | Smith smith@math 19 | 38
3066 | Jones jones@cs 18 | 3.4
H0000 | Dave dave@ics 19 | 3.3

Figure 3.2 An Alternative Representation of Instance 51 of Students

A relational database is a collection of relations with distinct relation names. The
relational database schema is the collection of schemas for the relations in the database. For
example, University database with relations called Students, Faculty, Courses, Rooms,
Enrolled, Teaches, and Meets In. An instance of a relational database is a collection of
relation instances, one per relation schema in the database schema; of course, each relation
instance must satisfy the domain constraints in its schema.

Creating and M odifying Relations Using SOL -92:

The SQL-92 language standard uses the word table to denote relation. The subset of SQL that
supports the creation, deletion, and modification of tables is called the Data Definition
Language (DDL).

Domain Typesin SOL :
1. char (n): Fixed length character string, with user-specified length n.
2. varchar (n) (or) character varying): Variable length character strings, with user-
specified maximum length n.
3. intor integer: Aninteger (afinite subset of the integersthat is machine dependent).
4. gmallint: asmall integer (a machine-dependent subset of the integer
domain type).
numeric(p,d): Fixed point number, with user-specified precision of
p digits, with n digitsto the right of decimal point.
6. Real (or) double precision: Floating point and double-precision floating point
numbers, with machine-dependent precision.
float (n): Floating point number, with user-specified precision of at least n digits.
date: acalendar date, containing four digit year, month, and day of the month.
time: the time of the day in hours, minutes, and seconds.

© N

—->The CREATE TABLE statement is used to define a new table. To create the Students
relation, we can use the following statement:

CREATE TABLE Students (sid CHAR(20).
name CHAR(30).
login CHAR(20),
age INTEGER,
gpa REAL)

—>Tuples are inserted using the INSERT command. We can insert a single tuple into the
Studentstable as follows:

INSERT

INTO Students (sid, name, login, age, gpa)

VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)
—>We can delete tuples using the DEL ETE command. We can delete all Students tuples with

name equal to Smith using the command:

DELETE
FROM Students S
WHERE S.name = ‘Smith’

->We can modify the column values in an existing row using the UPDATE command. For
example, we can increment the age and decrement the gpa of the student with sid 53688:

UPDATE Students S
SET S.age = S.age + 1, S.gpa = S.gpa - 1
WHERE S.sid = 53688

—->The WHERE clause is applied first and determines which rows are to be modified. The
SET clause then determines how these rows are to be modified.

consider the following variation of the previous query:

UPDATE Students S
S.gpa = S.gpa - (.1
WHERE S.gpa >= 3.3

SET

—1f this query is applied on the instance S1 of Students shown in Figure 3.1, we obtain the
instance shown in Figure 3.3.

—

sid name lagin age 2pa
50000 | Dave daveidcs 19 3.3
53666 | Jones jones(alcs 18 3.4
53688 | Smith smithizzee 18 32
53650 | Smith smithie@math 19 3.8
53831 | Madavan | madayanf@music 11 1.8
53832 | Guldu guldu@music 12 2.0
Figure 3.1 An Instance 51 of the Students Relation
sid name login age | gpa
50000 | Dave dave@cs 19 3.2
53666 | Jones jonesdcs 15 3.3
23688 | Smith smith@ee 18 3:2
53650 | Smith smith@math 19 S
Has3l | Madavan | madayvan@music | 11 1.8
Hh3832 | Guldu guldun@music 12 2.0

Figure 3.3 5Students Instance 51 after Update

2. INTEGRITY CONSTRAINTSOVER RELATIONS: (****)

An integrity constraint (1C) is a condition that ensures the correct insertion of the data and

prevents unauthorized data access thereby preserving the consistency of the data.

For example, the roll number of a student cannot be a decimal value. The database enforces
the constraint that the instance of roll number can have only integer values.

Integrity constraints are specified and enforced at different times:

1. When the DBA or end user defines a database schema, he or she specifies the I Cs that
must hold on any instance of this database.

2. When a database application is run, the DBMS checks for violations and disallows
changes to the data that violate the specified ICs.

There are three types of integrity constraints in addition to domain constraint. They are:
1. KeyConstraints
2, Foreign Key Constraints.
3. General Constraints.

1). KEY CONSTRAINTS:

—>A key constraint is a statement that a certain minimal subset of the fields of arelation isa
unique identifier for atuple.

—>Consider the Students relation and the constraint that no two students have the same
student id. ThisIC is an example of a key constraint.

TYPES OF KEY CONSTRAINTS:

1. Candidate Key
2. Super key
3. Primary key
4. Foreign key
1. CANDIDATEKEY:
—>A candidate key is a collection of fields/columng/attributes that uniquely identifies atuple.

—>Let ustake a closer look at the above definition of a (candidate) key.
- There are two partsto the definition:

1. Two distinct tuples in a legal instance (an instance that satisfies all 1Cs, including the key
constraint) cannot have identical valuesin all the fields of a key.
2. No subset of the set of fields in akey is aunique identifier for atuple.

Example: In “customer” relation the attribute “cid” is a key, it uniquely defines a tuple in a
relation. No two rows in a relation “customer” can have the same “cid” value.

—>The set of atributes that form a candidate key need not be al keys. The attributes may be
treated as candidates to be taken as key.

Example: The set (cid, cname) is a candidate key which means either cid or cname can be
taken as key but not both. Each of them independently and uniquely identifies a particular
row. The alternate keys are candidate keys that are not taken as keys.

2. COMPOSITE KEY:

—>Composite key consist of more than one attribute that uniquely identifies a tuple in a
relation. All the attributes that form a set of keys and all of them taken together determines a
unique row in atable.

Example: The set (cid, accno) is a composite key which maintains the uniqueness of each
row. Both cid, accno are taken as keys.

3. SUPER KEY:
A super key is a combination of both candidate key and composite key. That is a set of
attributes or asingle attribute that uniquely identifies atuple in arelation.

Example: Consider the super key {cid, accno, cname}

Here, al the three attributes taken together can identify a particular record or a combination
of any two attributes can identify a particular record or any one of the attribute can identify a
particular record.

4. PRIMARY KEY:
Only a single attribute can uniquely identify a particular record. More specificaly, it can be
defined as the candidate key, which has been selected as key to identify unique records.

Example: “cid” attribute in “customer” relation can be treated as PRIMARY KEY.

- Summary of Key (With respect to “customers” relation)

1) Super key {cid, cname, accno}

2) Candidate key {cid, cname}

3) Composite key {cid, accno}

4) Primary key {cid}
Specifying Key Constraintsin SQL -92:
—>In SQL, we can eliminate the chances of inserting duplicate data by using a unique
constraint. This constraint helps the user to insert unique values for the columns which have

been declared as unique, forming a candidate key any one of the columns among them can be
declared as primary by using primary key constraints.

> Example, Consider the creation of “Students” table.

CREATE TABLE Students sid CHAR(20).
name CHAR(30),
login CHAR(20).
age INTEGER,
gpa REAL,
UNIQUE (name, age),
CONSTRAINT StudentsKey PRIMARY KEY (sid))

This example shows the creation of Students table with attributes sid, name, login, age, gpa,
unique key is used on columns name and age which ensures that the values inserted in these
columns are unique. The last line of declaration defines a primary key constraint.

- The syntax used for defining constraint is,

CONSTRAINT constraint-name PRIMARY KEY (key)
i.e.,, CONSTRAINT StudentsKey PRIMARY KEY (sid)

The line declares sid as primary key for Students relation. If the user inserts repeated
values for ”’sid” then error occurs and constraint-name is return indicating violation of
congtraint.

2). Foreign Key Constraintg(*******)

—>A foreign key (FK) is a column or combination of columns that is used to establish and
enforce a link between the data in two tables. You can create a foreign key by defining a
FOREIGN KEY constraint when you create or modify atable.

—>In a foreign key reference, a link is created between two tables when the column or
columns that hold the primary key value for one table are referenced by the column or
columns in another table. This column becomes a foreign key in the second table.

-> Suppose that in addition to Students, we have a second relation:

Enrolled (sd: string, cid: string, grade: string)

—>To ensure that only bona fide students can enroll in courses, any value that appears in the
sid field of an instance of the Enrolled relation should also appear in the sid field of some

tuple in the Students relation. The sid field of Enrolled is called a foreign key and refers to
Students. The foreign key in the referencing relation (Enrolled) must match the primary key

of the referenced relation (Students), i.e., it must have the same number of columns and
compatible data types, although the column names can be different.

—>This constraint is illustrated in Figure 3.4. As the figure shows, there may well be some
students who are not referenced from Enrolled (e.g., the student with sid =50000).

—~>However, every sid value that appears in the instance of the Enrolled table appears in the
primary key column of arow in the Students table.

—->A FOREIGN KEY constraint does not have to be linked only to a PRIMARY KEY
constraint in another table; it can also be defined to reference the columns of a UNIQUE
constraint in another table. A FOREIGN KEY constraint can contain null values; however, if
any column of a composite FOREIGN.

Foreign key Primary key
— —

.. cid grade| sid muf © Twid | name login age | gpa
| Camaticl0l | € ;5333I~ 50000 | Dave davelacs 19 | 33
Reggae0d | B 53832 ¢ 53666 Jones | jonesidcs 18 | 34
Topology112 A | 53651 :J:;':._: 53688 | Smith | smithi@ee 18 | 32
Hisoryl0s | B [S3666| ', o|53650|Smith |smih@math | 19 | 38
ﬁ*ﬁ‘ 53831 | Madayan | madavanjgmusic | 11 | 18

Y5383 [Guldy | guldu@music | 12| 20

Enrolled (Referencing relation) Students (Referenced relation)

Figure 3.4 Referential Integrity

Specifying Foreign Key Constraintsin SOL :

Let us define Enrolled(sid: string, cid: string, grade: string):

CREATE TABLE Enrolled (sid CHAR(20).

cid CHAR(20).

grade CHAR(10),

PRIMARY KEY (sid, cid),

FOREIGN KEY (sid) REFERENCES Students)

The statement FOREIGN KEY (sd) REFERENCES Students means that the foreign key
sid uses primary id sid of employee relation as a reference. Every tuple with sid must match a
tuple in Students relation.

The foreign key constraint states that every sid value in Enrolled must also appear in
Students, that is, sid in Enrolled is aforeign key referencing Students.

3). General Constraints:

Domain, primary key, and foreign key constraints are considered to be a fundamental part of
the relational data model and are given special attention in most commercial systems.
Sometimes, however, it is necessary to specify more general constraints.

Example: we may require that student ages be within a certain range of values; given such an
|C specification, the DBMS will reject inserts and updates that violate the constraint. This is
very useful in preventing data entry errors. If we specify that all students must be at least 16
years old, then age are valid casesi.e., legal instance. Rest of all the others having lesser than
16 years are called as invalid casesi.e., illegal instance. Instance of Students shown in Figure
3.1 is illegal because two students are underage. If we disallow the insertion of these two
tuples, we have a legal instance, as shown in Figure 3.5.

sid name login age epa
50000 | Dave daved@cs 19 2 P
53666 | Jones jones(cs 18 3.4
53688 | Smith smith(@ee 18 3.2
53650 | Smith smith@math 19 3.8
53831 | Madayan | madayan@music 11 1.8
53832 | Guldu guldu@music 12 2.0

Figure 3.1 An Instance S1 of the Students Relation

std name | login age | gpa
53666 | Jones | jones@cs 18 | 34
H3688 | Smith | smith@ee 18 | 32
53650 | Smith | smith@math | 19 | 3.8

Figure 3.5 An Instance S2 of the Students Relation

—>The IC that students must be older than 16, is known as an extended domain constraint,
because we are restricting age values more stringently (strictly), than by simply using a
standard domain such as integer.

—>In general, constraints domain, primary and foreign key constraints can also specify the
maximum limit.
Example: we require a student whose age is greater than 18 must have a gpa greater than 3.

- There are two types of general congtraints. They are

1. Table Constraints:. These are applied on a particular table and are checked every table
whenever that specific table is updated.

2. Assertions: These assertions are applied on collection of tables and are checked every time
whenever theses tables are applied.

3. ENFORCING INTEGRITY CONSTRAINTS:

—>Integrity Constraints(IC) are the rules that when applied on relations restricts the
insertion of incorrect data and also helps to prevent deletion and updating of consistent data
that may lead to loss of data integrity. And, therefore one should be very careful when
applying integrity constraints on relations.

The operations such as insertion, deletion and updating must be discarded if they are found to
violate integrity constraints. This section provides a brief on different violations of ICs and
also the solutions to handle these violations.

Consider the instance S1 of Students shown in Figure 3.1. The following insertion violates
the primary key constraint because there is already a tuple with the sid 53688, and it will be
rejected by the DBMS:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Mike’, ‘mike@ee’, 17, 3.4)

- The following insertion violates the constraint that the primary key cannot contain null:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (null, ‘Mike’, ‘mike@ee’, 17, 3.4)

—>Deletion does not cause aviolation of domain, primary key or unique constraints.
—~>However, an update can cause violations, similar to an insertion:

UPDATE Students S
SET S.sid = 50000
WHERE S.sid = 53688

This update violates the primary key constraint because there is aready a tuple with sid
50000.

—>1n addition to the instance S1 of Students, consider the instance of Enrolled shown in
Figure 3.4. Deletions of Enrolled tuples do not violate referential integrity, but insertions of
Enrolled tuples could. The following insertion is illegal because there is no student with sid
51111:

INSERT
INTO Enrolled (cid, grade, sid)
VALUES (‘Hindil01’, ‘B’, 51111)

EXAMPLE:

CREATE TABLE Enrolled (sid CHAR(20).
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (sid, cid),
FOREIGN KEY (sid) REFERENCES Students
ON DELETE CASCADE
ON UPDATE NO ACTION)

—>This example explains the options when delete or update operation are performed. These
options are included as a part of foreign key declaration. No action is the default option which
means both update and delete operations are rejected.

1) On Delete Cascade: Means when a row is deleted from Students relation, then all the
rows referred to this deleted row in Enrolled relation must also be deleted.

2) On Update Cascade: Means when updations are carried in Students relation for the
primary key attribute then all these updations must also be carried out in Enrolled.
3) On Delete Set Default: Means when a row is deleted in Students, then that row in

Enrolled relation can be set to same default value.

4) On Delete Set Null: Means on deleting the row in Students the same row can be
assigned aNULL value in Enrolled relation.

NOTE: SQL even provides the facility to delay the applications of constraints on relation and
aso immediate application of congtraints. This is possible with these two additional
congtraints,

1) Deferred mode
2) Immediate mode

The syntax for this congtraint is,

SET CONSTRAINT Constraint-name DEFERRED
SET CONSTRAINT Constraint-name INNMEDIATE

—>Usually, constraints are checked at the end of SQL statements and if the congtraints are
violated then the statements are rejected. But with differed constraint, constraint checks are
postponed and are checked at the time of commit.

RELATIONAL ALGEBRA:

> Relational algebra is a procedura query language, which takes instances of relations as
input and yields instances of relations as output. It uses operators to perform queries. An
operator can be either unary or binary. They accept relations as their input and yield
relations as their output. Relational algebra is performed recursively on a relation and
intermediate results are also considered relations.

Example schemas:

Sailors (sid: integer, sname: string, rating: integer, age: real)
Boats (bid: integer, bname: string, color: string)

Reserves (sid: integer, bid: integer, day: date)

Example Instances:

R1 |sid |bid day
22 101 [10/10/96
58 103 11/12/96

Figure4.1 Instance S1 of Sailors

<z |sid snaime rating |age
A dustin 27 4 45.0
31 lubber =3 v S |
58 rusty 10 35.0

Figure 4.2 Instance S2 of Sailors

sz |sid |sname rating 'age
28 YUuppy o 25.0
51 lubber 8 o e
4 suppy o 35.0
58 rusty 10 350

Figure 4.3 Instance R1 of Reserves
—>The “Sailors” and “Reserves” relations are our examples. We’ll use positional or named
field notation, assume that names of fields in query results are ‘inherited’ from names of

fields in query input relations.

->The fundamental operations of relational algebra are:

1. Basic operators:
a) Selection
b) Projection

2. Set Operations:
a) Union
b) Intersection
c) Set-difference
d) Cross-product

3. Renaming
4. Joins
a) Condition joins
b) Equijoin
¢) Natural join
5. Division
6. Assigimment operation.

1. Selection and Projection:
—~>Relational algebra includes operators to select rows from a relation (o) and to project
columns (7). These operations allow us to manipulate data in a single relation.

Selection - g Selects a subset of rows from relation.

Projection- /T Deletes unwanted columns from relation.

SELECTION (o):

The selection operation isaunary operation. This is used to find horizontal subset of relation
or tuples of relation.

It selectstuplesthat satisfy the given predicate from arelation. It is denoted by sigma (o).

Notation — op(r)

Where ¢ stands for selection predicate andr stands for relation. pis prepositional logic
formula which may use connectors like and, or, and not. These terms may use relational
operators like —=, #, >, <, >, <

Example: If you want all the Sailor s having rating mor e than 8 from instance S2 of Sailors.
The query is,

Jrafr’ng> 8(52)

Theresult isshown in Figure 4.4

sid STLATTLE ratirg age
28 VIIPPY 9 35.0
58 Rusty 10 35.0

Fig'l_lri::‘.. 4-‘1 ﬂ_'i'"-fl-f'f.?'t-_i:} e = (L':;E)

PROJECTION (7):

The projection operation is a unary operation which applies only on a single relation at a
time. Thisisused to select vertical subset of relation (i.e., columns of table)

It projects column(s) that satisfy a given predicate. It is denoted by pi (7).

Notation — [Ja1, A2, an ()
Where A1, Az, An are attribute names of relationr.

Duplicate rows are automatically eliminated, as relation is a set.

Example: If you can find out all sailors names and ratings from instance S2 of Sailors. The
query is,

T g
Msname. ratir 1g ("‘c} 2)

Theresult isshown in Figure 4.5

sname rating

yuppy | 9
Lubber | 8
guppy | 9
Rusty 10

Figure 4.5 TTSﬂ,amE,rating(Sz}

—> Suppose that we wanted to find out only the ages of sailors. The expression
T
Herpye)
evaluates to the relation shown in Figure 4.6.
(Lije

3.0

55.5

Figure 4.6 m,,.(52)

- For example, we can compute the names and ratings of highly rated sailors by
combining two of the preceding queries. The expression

Nsname.,rating (g-r*ati'rlg}ﬁ (SZ))

produces the result shown in Figure 4.7. It is obtained by applying the selection to S2 (to get
the relation shown in Figure 4.4) and then applying the projection.

sname | rating

yvuppy | 9
Rusty | 10

Figlll‘E 4.7 Maname,rating {ﬂ_r'u!ﬂiny =8 {SQ]]

2. SET OPERATIONS:
The relational algebraic operations can be divided into basic set oriented operations (Union,
Intersection, Set difference and Cartesian product).

X Cross-prroduet Allows us to combine two relations,

T — Sef-difference luples are in relation. 1, but not in relation. 2.
U Lirion I l_'llq_-f\. are in relation. 1 or in relation. 2

m [ntersection Tuples are in relation. 1 and in relation. 2.

The UNION (V) Operation:

—~>RUS returns a relation instance containing all tuples that occur in either relation instance R
or relation instance S (or both). R and S must be union-compatible, and the schema of the
result is defined to be identical to the schema of R.

Notation—R U S

->Two relation instances are said to be union-compatible if the following conditions hold:

e They have the same number of the fields, and
e Corresponding fields, taken in order from left to right, have the same domains.
e Duplicate tuples are automatically eliminated.

Note that field names are not used in defining union-compatibility. For convenience, we will
assume that the fields of R U Sinherit names from R, if the fields of R have names.

—>The union of S1 and S2 is shown in Figure 4.8. Fields are listed in order; field names are
also inherited from S1. S2 has the same field names, of course, since it is also an instance of
Sailors. In general, fields of S2 may have different names; recall that we require only domains
to match. Note that the result is a set of tuples. Tuples that appear in both S1 and S2 appear

only oncein S1 U S2. Also, S1 U R1 is not avalid operation because the two relations are not
union-compatible.

sid isnan1e 'rating 'age
22 |dustin |7 145.0

31 |lubber |8 55.5
58 |rusty 10 35.0
44 |guppy |9 25.0

28 |yuppy |9 35.0

Figure4.8 Sl1uUS2

The INTERSECTION (N) Operation:
—->RNS returns a relation instance containing all tuples that occur in both R and S. The

relations R and S must be union-compatible, and the schema of the result is defined to be
identical to the schema of R.

Notation—R N S

If the relations contain nothing as common then the result will be an empty relation. Rules of
set union operations are also applicable here.

—>The intersection of S1 and S2 isshown in Figure 4.9.

sid |sname rating |age
31 lubber 8 DD
58 rusty 10 39.0

Figure4.9 S1NS2

The SET-DIFFERENCE (-) Operation:

—->R-S returns a relation instance containing all tuples that occur in R but not in S. The

relations R and S must be union-compatible, and the schema of the result is defined to be
identical to the schema of R.

The result of set difference operation is tuples, which are present in one relation but are not
in the second relation. It removes the common tuples of two relations and produces a new
relation having rest of the tuples of first relation.

Notation —R—S

-> It finds all the tuples that are present in R but not in S.

- The set-difference S1 — S2 is shown in Figure 4.10.

sid |sname ':rating 'age
22 |dustin |7 45.0

Figure4.10 S1-S2

The CROSS-PRODUCT (x) Operation:

—->R XS returns a relation instance whose schema contains all the fields of R (in the same
order as they appear in R) followed by all the fields of S (in the same order as they appear in
S). The result of R x S contains one tuple hr, si (the concatenation of tuplesr and s) for each
pair of tuplesr € R, s € S. The cross-product operation is sometimes called Cartesian
product.

—->We will use the convention that the fields of R x S inherit names from the corresponding
fieldsof Rand S. It is possible for both R and S to contain one or more fields having the same
name; this situation creates a naming conflict. The corresponding fields in R x S are unnamed
and are referred to solely by position.

- |t combines information of two different relations into one.

Notation —R X S

—>The result of the cross-product S1 x R1 is shown in Figure 4.11. Because R1 and S1 both
have a field named sid, by our convention on field names, the corresponding two fields in S1
x R1 are unnamed, and referred to solely by the position in which they appear in Figure 4.11.
The fields in S1 x R1 have the same domains as the corresponding fields in R1 and S1. In
Figure 4.11 sid is listed in parentheses to emphasize that it is not an inherited field name;
only the corresponding domain is inherited.

(sid) sname rating lage |(sid) bid day
22 |dustin | 7 45.0 | 22 101 [10/10/96
22 |dustin | 7 |45.0 | 58 (103 |11/12/96
31 |lubber | 8 [555 | 22 |101 |10/10/96
31 [lubber | & [555 | 58 |103 [11/12/96
58 rusty 10 350 | 22 |101 |10/10/96
58 rusty 10 |35.0 [58 |103 |11/12/96

Figure4.11 S1xR1
3. Renaming (p); (¥***%%%*)
The rename (p) operation is a unary operation which is used to give names to relational
algebra expressions.

The results of relational algebra are also relations but without any name. The rename
operation allows us to rename the output relation. '‘Rename’ operation is denoted with small
Greek letter rho p.

Suppose, you want to find Cartesian product of a relation with itself then by using rename
operator we give an alias name to that relation. Now, you can easily multiply that relation
with its alias. It is helpful in removing ambiguity.

Notation — p x (E)

—~>Where the result of expression E is saved with name of x.

For example, the expression p(C (1 — sidl, 5 — sid2), S1 x R1) returns a relation that
contains the tuples shown in Figure 4.11 and has the following schema:

C (dd1: integer, sname: string, rating: integer, age: real, sd2: integer, bid: integer, day:
dates).

4- JOlnS: (********)
The join operation is one of the most useful operations in relational algebra and is the most
commonly used way to combine information from two or more relations.

The join operation denoted by “join” or “>4”, is a relational algebra operation, which is used to combine (join)
two rdations like Catesan-produat but findly removes duplicate dtributes (same column to only one
column) and mekes the operations (selection, projection etc.,) very smple. In Smple words we can say thet
join connectsrdations on columns containing comperable informetion.

There are three types of joins. Namely, they are

1. Condition Joins
2. Equi Join and
3. Natural join.

1. Condition Joins:

—>The most general version of the join operation accepts a join condition ¢ and a pair of
relation instances as arguments, and returns a relation instance. The join condition is identical
to a selection condition in form. The operation is defined as follows:

R .5 = o . (Rx.S5)

Thus ™ is defined to be a cross-product followed by a selection. Note that the condition ¢ can
(and typically does) refer to attributes of both R and S. The reference to an attribute of a
relation, say R, can be by position (of the form R.i) or by name (of the form R.name).

—>Example: theresult of Sl Sl.si di&sm[g'p(ﬂiﬁ]e 4.12. Because
sid appearsin both S1 and R1, the corresponding fields in the result of the cross-product S1 x
R1 (and therefore in the result

of Sle< Slsid<Rlsid Rlare unnamed. Domains are inherited from the
corresponding fields 0?81 and R1.

sid) ‘sname _rating 'age (sid) [bid .da}’
2 dustn |7 450 58 103 |11/12/%
31 [lubber § 125.5 8 (103 [11/12/9%

Figure4.12 AS] -Svl.\S'i(-/ - Rl.b‘i(l Rl

* Reault schema same as that of cross-product.
» Fewer tuples than cross-product, might be able to compute more efficiently
« Sometimes called atheta-join.

2. Equijoin:
—> It isaspecial case of condition join where the condition ¢ contains only equalities.

—Equijoin is same as condition join, the only difference is that, equijoin uses equity ‘=’
operator to join the two relations.

The schema of the result of an equijoin contains the fields of R (with the same names and
domains as in R) followed by the fields of S that do not appear in the join conditions. If this
set of fields in the result relation includes two fields that inherit the same name from R and S,
they are unnamed in the result relation.

We illustrate SJ- m!ﬂ.-‘.!i{f:f}‘,ﬁ'ﬁr’f
only one field called sid appears in the result.

in Figure 4.13. Notice that

sid | sname | rating | age | bid | day

22 | Dustin | 7 15.0 | 101 [10/10/96

58 | Rusty | 10 35.0 | 103 | 11/12/96

Figure 4.13 51 dp sid=5.sid Al

—~>Result schema similar to cross-product, but only one copy of fields for which equality is
specified.

3. Natural Join:

—“>Natural join does not use any comparison operator. It does not concatenate the way a
Cartesian product does. We can perform a Natural Join only if there is at least one common
attribute that exists between two relations. In addition, the attributes must have the same

name and domain.

—~>Natural join acts on those matching attributes where the values of attributes in both the
relations are same.

-> Special case of the join operation R pa S is an equijoin in which equalities are specified on
al fields having the same name in R and S. In this case, we can simply omit the join
condition; the default is that the join condition is a collection of equalities on all common
fields. This special case a natural join, and with this result is guaranteed not to have two
fields with the same name.

The equijoin expression S1 bR sid=S.sid {21 is actually a natural

join and can simply be denoted as S1x R1, since the only common field is sid. If the two
relations have no attributes in common, S1 »« R1 is simply the cross-product.

sid) ‘sname _rating 'age (sid) [bid “da}’
2 dustn |7 450 58 103 |11/12/%
31 [lubber § 125.5 8 (103 [11/12/9%

Figure. SIxR1

L.

5. Division:
—>The division operator is useful for expressing certain kinds of queries that include the
phrase “for all’. It is denoted by (/). It isalike the inverse of Cartesian product.

Consider two relation instances A and B in which A has (exactly) two fields x and y and B
has just one field y, with the same domain as in A. We define the division operation A/B as
the set of all x values (in the form of unary tuples) such that for every y value in (a tuple of)
B, thereisatuple<x, y>in A.

Another way to understand division is as follows. For each x value in (the first column of) A,
consider the set of y values that appear in (the second field of) tuples of A with that x value. If
this set contains (all y valuesin) B, the x value is in the result of A/B.

An analogy with integer division may also help to understand division. For integers A and B,
A/B isthe largest integer Q such that Q = B < A. For relation instances A and B, A/B is the
largest relation instance Q such that Q x B € A.

Divisionisillustrated in Figure 4.14.

A sho | pho Bl oo A/B1 | SHO
sl | pl p2 sl
sl | p2 52
sl | p3 By | pno 83
s; pﬂl'r p? s4
5 P P4
2 | p2 A/B) | SN0
$3 P2 B3 | pno s
s4 4

P 0
P‘l' A/B3 SHo
sl

Figure 4.14 Examples Illustrating Division

Expressng A/B Using Basic Operators:
« Divisionisnot essential op; just a useful shorthand.
— (Also true of joins, but joins are so common that systems implement joins
specially.)
« ldea: For A/B, compute all x values that are not "disqualified” by some y value in B.
— xvalue is disqualified if by attaching y value from B, we obtain an xy tuple that is
not in A.

[Disgualified x values :’TI {(;'TI(A)EB)_A]

A/B: 7T - (A) — all disqualified tuples

Examples of Relational Algebra Queries:

sid | sname | rohing | age s | nd | doy

22 | Dustin | 7 420 22 | 101 | 10/10/98
29 | Brutus | 1 33 22 [102 | 10/10/98
31 | Lubber | 8 30 20 | 103 | 10/8/98
32 | Andy |8 0.5 22 | 104 | 10,7/98
M [Rusty |10 | 350 31| 102 | 11/10/98
(4 | Horatio | 7 Ja) 301103 | 11/6/98
1 | Zotha | 10 16.0 3| 104 | 11/12/98
74 | Horatio | 9 Ja.) 64 | 101 | 9/5/98
85 | Art J 20.0 64 | 102 | 9,8/98
9% |Bob |3 .0 T4 [105 | 9/8/98

Figure 415 An Instance 53 of Sailors Figure 4.16 An Instance 2 of Reserves

bid | bname | color

101 | Interlake | blue
102 | Interlake | red
103 | Clipper | green
104 | Marine | red

Figure 417 An Instance Bl of Boats

(Q1) Find names of sailorswho have reserved boat 103.

Solution 1:
- This query can be written as follows,

i Reserves) > Sailors)

snane 7 g1

—>First, we compute the set of tuples in Reserves with bid = 103 and then take the natural join
of this set with Sailors. This expression can be evaluated on instances of Reserves and Sailors.
Evaluated on the instances R2 and S3, it yields a relation that contains just one field, called
sname, and three tuples <Dustin>, <Horatio>, and <Lubber>. (Observe that there are two
sailors called Horatio, and only one of them has reserved ared boat.)

—>We can break this query into smaller pieces using the renaming operator p:

Solution 2:

o (Templ, o Reserves)

bid =103
o (Temp2, Templ ><a Sailors)
T (Temp?2)

SHRdme

—>Because we are only using p to give names to intermediate relations, the renaming list is
optional and is omitted. Templ denotes an intermediate relation that identifies reservations of
boat 103. Temp2 is another intermediate relation, and it denotes sailors who have made a
reservation in the set Templ. The instances of these relations when evaluating this query on
the instances R2 and S3 are illustrated in Figures 4.18 and 4.19. Finally, we extract the
sname column from Temp2.

sl | bid | doy sul | sname | rafing | oge | bid | day

22 1103 | 10/8/9 2 | Dustin |7 | 450103 10/8/9%
31 | 103 | 11/6/98 | 3L | Lubber |8 | 555 | 103 | 11)6/%
4103 | 9/8/%8 T4 | Horatio |9 | 350 | 103 | 9/8/%

Figure 4.18 Instance of Templ Figure 419 Instance of Temp!

Solution 3:

7 nam e(ﬂ_ b UB(RESEWESM Sailors))

(Q2) Find the names of sailorswho have reserved ared boat.

—->This query can be written as follows,

T Boats) =<4 Reserves<a Sailors)

SHﬂmE{{gﬂﬂfﬂr = red'

—>This query involves a series of two joins. First we choose (tuples describing) red boats.
Then we join this set with Reserves (natural join, with equality specified on the bid column)
to identify reservations of red boats. Next we join the resulting intermediate relation with
Sailors (natural join, with equality specified on the sid column) to retrieve the names of
sailors who have made reservations of red boats. Finally, we project the sailors’ names. The
answer, when evaluated on the instances B1, R2 and S3, contains the names Dustin, Horatio,
and Lubber.

—>An equivalent expression is:

Tsname| Tsid((ThidTcotor="redr Boats) X1 Reserves) 1 Sailors)

(Q3) Find the colors of boats reserved by Lubber.

Meolo r'{.{{T.w:r.u:'rrlL‘f:"f.m.-hhf::"' "STMHE}T'H:I 1 Reserves i Bﬂﬂt‘ij

—>This query is very similar to the query we used to compute sailors who reserved red boats.
Oninstances B1, R2, and S3, the query will return the colors green and red.

(Q4) Find the names of sailorswho havereserved at least one boat.
MenamelOatlors a Reserves)

—>The join of Sailors and Reserves creates an intermediate relation in which tuples consist of
a Sailors tuple ‘attached to’ a Reserves tuple. A Sailors tuple appears in (some tuple of) this
intermediate relation only if at least one Reserves tuple has the same sid value, that is, the
sailor has made some reservation. The answer, when evaluated on the instances B1, R2 and
S3, contains the three tuples <Dustin>, <Horatio>, and <Lubber>. Even though there are
two sailors called Horatio who have reserved a boat, the answer contains only one copy of the
tuple <Horatio>, because the answer isarelation, i.e., a set of tuples, without any duplicates.

(Q5) Find the names of sailorswho havereserved ared or a green boat.

(J(TETﬂpbﬂﬂf& {gfﬂ{ﬂ-f‘:'l]"ﬂd'r Bﬂﬂ-tﬂj L_i { U[-ﬂfﬂf-zfgrﬂgﬂ’BGﬂtS}}
Tsname |1 empboats 1 Reserves 1 Sailors)

—>We identify the set of all boats that are either red or green (Tempboats, which contains
boats with the bids 102, 103, and 104 on instances B1, R2, and S3). Then we join with
Reserves to identify sids of sailors who have reserved one of these boats; this gives us sids
22, 31, 64, and 74 over our example instances. Finally, we join (an intermediate relation
containing this set of sids) with Sailors to find the names of Sailors with these sids. This gives
us the names Dustin, Horatio, and Lubber on theinstances B1, R2, and S3.

—>Another equivalent definition is the following:

ﬂ(TEm;UE?E*HTS : (':TE.'GED?‘= red' veolor="'green’ BﬂﬂtS} }

Tsname | L empboats 1 Reserves 1 Satlors)

(Q6) Find the names of sailorswho havereserved ared and a green boat.

It istempting to try to do this by simply replacing U by N in the definition of Tempboats:

p(Tempboats2, (0 copr=tred Boats) N (Geotor="green Boals))

Tenamel 1 empboats2 <1 Reserves < Sailors)

—>However, this solution is incorrect—it instead tries to compute sailors who have reserved
aboat that is both red and green.

—>The correct approach is to find sailors who have reserved a red boat, then sailors who
havereserved a green boat, and then take the intersection of these two sets;

p(Tempred, m.iq((Ceolor=reqr Boats) <1 Reserves))
Jf*i{ Ler NPYreeTt, Msid I: { Teolor="green’ Boats J > Reserves })

Tenamel (Tempred N Tempgreen) e Sailors)

—>The two temporary relations compute the sids of sailors, and their intersection identifies
sailors who have reserved both red and green boats. On instances B1, R2, and S3, the sids of
sailorswho have reserved ared boat are 22, 31, and 64. The sids of sailors who have reserved
agreen boat are 22, 31, and 74. Thus, sailors 22 and 31 have reserved both a red boat and a
green boat; their names are Dustin and Lubber.

—>This formulation of Query Q6 can easily be adapted to_find sailors who have reserved red

or green boats (Query Q5); just replace N by U:

plTempred, Ted((Teolor=red Boats) 1 Reserves))
p(Tempgreen, Tsid((color=green Boals) a1 Reserves))

&

Tsname 1 empred U Tempgreen) 0a Sailors)
(Q7) Find the names of sailorswho have reserved at least two boats.

pl Reservations. Teid sname pid| Sailors <t Reserves))
pl Reservationpairs(l — sidl, 2 — snamel. 3 — bidl. 4 — sid?2,
o — sname2, 6 — bid2), Reservations x Reservations)

Manamel T{sidl=sid2)A(bid1# bid2) Reservaty OTLPRLT 5

—>First we compute tuples of the form < sid, sname, bid>, where sailor sid has made a
reservation for boat bid; this set of tuples is the temporary relation Reservations. Next we find
all pairs of Reservations tuples where the same sailor has made both reservations and the

boats involved are distinct. Here is the central idea: In order to show that a sailor has reserved
two boats, we must find two Reservations tuples involving the same sailor but distinct boats.
Over instances B1, R2, and S3, the sailors with sids 22, 31, and 64 have each reserved at least
two boats. Finally, we project the names of such sailors to obtain the answer, containing the
names Dustin, Horatio, and L ubber.

(Q8) Find the sids of sailorswith age over 20 who have not reserved ared boat.

Tsid(Oa ge so09ailors) —

Tsid((Teotor=treqr Boats) 1 Reserves 1 Sailors)

—>This query illustrates the use of the set-difference operator. Again, we use the fact that sid
is the key for Sailors. We first identify sailors aged over 20 (over instances B1, R2, and S3,
sids 22, 29, 31, 32, 58, 64, 74, 85, and 95) and then discard those who have reserved a red
boat (sids 22, 31, and 64), to obtain the answer (sids 29, 32, 58, 74, 85, and 95). If we want to
compute the names of such sailors, we must first compute their sids (as shown above), and
then join with Sailors and project the sname values.

(Q9) Find the names of sailorswho have reserved all boats.

—>The use of the word all (or every) is a good indication that the division operation might be
applicable:

p(Tempsids, (7sid pigReserves) [(mpiqBoats))

’Fi‘.u-”,r_;.m_p{'TE‘H’?.}}S?H-‘.-? [>] S:‘fr.'i-fﬂ'rﬁ)

—>The intermediate relation Tempsids is defined using division, and computes the set of sids
of sailors who have reserved every boat (over instances B1, R2, and S3, this is just sid 22).
Notice how we define the two relations that the division operator (/) is applied to—the first
relation has the schema (sid, bid) and the second has the schema (bid). Division then returns
al sids such that there is a tuple <sid, bid> in the first relation for each bid in the second.
Joining Tempsids with Sailors is necessary to associate names with the selected sids; for
sailor 22, the name is Dustin.

(Q10) Find the names of sailorswho have reserved all boats called Interlake.

.- 4 . _.
p |-.Tfm'p sids, \Tsid bid Reserves) ! [_” bid [ﬂh?m-;lmz:’f nterlake’ Boats) /)

Tenamel L empsids X Sailors)

—>The only difference with respect to the previous query is that now we apply a selection to
Boats, to ensure that we compute only bids of boats named Interlake in defining the second
argument to the division operator. Over instances B1, R2, and S3, Tempsids evaluates to sids
22 and 64, and the answer contains their names, Dustin and Horatio.

2. RELATIONAL CALCULUS:

—~>Rédational calculus is an alternative to relational algebra. In contrast to the algebra, which
is procedural, the calculus is nonprocedural, or declarative, in that it allows us to describe the
set of answers without being explicit about how they should be computed.

—~>Rédational calculus has had a big influence on the design of commercial query languages
such as SQL and, especially, Query-by-Example (QBE).

—>Relational calculusis of two types.

1. Tuplerelational calculus (TRC)
2. Domain relational calculus (DRC)

Calculus has variables, constants, comparison ops,
logical connectives and quantifiers.
TREC Variables range over (i.e., get bound to] fuples.

- DRC Variables range over domain elements (= field
values).

~ Both TRC and DEC are simple subsets of first-order
logic,

1. Tuple Relational Calculus:

—>A tuple variable is a variable that takes on tuples of a particular relation schema as values.
That is, every value assigned to agiven tuple variable has the same number and type of fields.
—>A tuplerelational calculus query hasthe form {T | p (T)}, where T is atuple variable and
p(T) denotes a formula that describes T; we will shortly define formulas and queries
rigorously. The result of this query is the set of all tuples t for which the formula p(T)
evaluates to true with T = t. The language for writing formulas p(T) is thus at the heart of
TRC and is essentially a simple subset of first-order logic.

—>Asa simple example, consider the following query:

(Q11) Find all sailorswith arating above 7.

{5 | & € Sailors / S.rating > 7T}

—->When this query is evaluated on an instance of the Sailors relation, the tuple variable S is
instantiated successively with each tuple, and the test S.rating>7 is applied. The answer
contains those instances of Sthat passthistest. On instance S3 of Sailors, the answer contains
Sailors tuples with sid 31, 32, 58, 71, and 74.

Syntax of TRC Queries:

—~>Let Rel be a relation name, R and S be tuple variables, a an attribute of R, and b an
attribute of S. Let op denote an operator in the set {, =, <, >, 6=}.

—>An atomic formula is one of the following:

i R £ Rel
= R.a op S.b
= R.a op constant. or constant op R.a

—>A formula is recursively defined to be one of the following, where p and q are themselves
formulas, and p(R) denotes aformulain which the variable R appears:

@ any atomic formula
] -, pAQG, PV G, OT p = q
] JR(p(R)), where R is a tuple variable

= vH(p(R)), where R is a tuple variable

—>1In the last two clauses above, the quantifiers 3 and V are said to bind the variable R. A
variable is said to be free in a formula or subformula (a formula contained in a larger
formula) if the (sub) formula does not contain an occurrence of a quantifier that binds it.

A TRC query is defined to be expression of the form {T | p (T)}, where T is the only free
variable in the formula p.

Semantics of TRC Queries:

—>A query is evaluated on a given instance of the database. Let each free variable in a
formula F be bound to a tuple value. For the given assignment of tuples to variables, with
respect to the given database instance, F evaluates to (or simply ‘is’) true if one of the
following holds:

1. Fisan atomic formulaR € Rel, and R is assigned atuple in the instance of relation Rel.

2. F is a comparison R.a op S.b, R.a op congtant, or constant op R.a, and the tuples assigned
to R and S have field values R.a and S.b that make the comparison true.

3. Fisof the form —p, and p is not true; or of the form p A q, and both p and g are true; or of
the form p v g, and one of them istrue, or of the form p = q and g istrue whenever4 p istrue.
4. F is of the form 3R(p(R)), and there is some assignment of tuples to the free variables in
p(R), including the variable R, 5 that makes the formula p(R) true.

5. Fis of the form YR(p(R)), and there is some assignment of tuples to the free variables in
p(R) that makes the formula p(R) true no matter what tuple is assigned to R.

Examples of TRC Queries:

(Q12) Find the names and ages of sailorswith arating above 7.

{P | 35 € Sailors|S.rating > 7 A Pname = S.sname A Page = S.age) |

—>This query illustrates that P is considered to be a tuple variable with two fields required,
name and age. That is the result of this query is arelation with two fields, name and age. The
atomic formulas P.name = S.sname and P.age = S.age give values to the fields of an answer
tuple P.

—->0n instances B1, R2, and S3, the answer is the set of tuples <Lubber, 55.5>, <Andy,
25.5>, <Rusty, 35.0>, <Zorba, 16.0>, and <Horatio, 35.0>.

(Q13) Find the sailor name, boat id, and reservation date for each reservation.

{P | 3R € Reserves 45 € Sailors
(R.std = S.sid A P.hid = R.bid A Pday = R.day A P.sname = S.sname) }

—>For each Reserves tuple, we look for atuple in Sailors with the same sid. Given a pair of
such tuples, we construct an answer tuple P with field’s sname, bid, and day by copying the
corresponding fields from these two tuples. This query illustrates how we can combine values
from different relations in each answer tuple. The answer to this query on instances B1, R2,
and S3 is shown in Figure 4.20.

snaime bid | day

Dustin | 101 | 10/10/98
Dustin | 102 | 10/10/98
Dustin | 103 | 10/8/98
Dustin | 104 | 10/7/98
Lubber | 102 | 11/10/98
Lubber | 103 | 11/6/98
Lubber | 104 | 11/12/98
Horatio | 101 | 9/5/98
Horatio | 102 | 9/8/98
Horatio | 103 | 9/8/98

Figure 4.20 Answer to Query Q13

(Q1) Find the names of sailorswho have reserved boat 103.

P35 ¢ Sailors 3R € Reserves(R.sid = S.sidhR.bid = 103P.sname = S.sname)}

—>This query can be read as follows: “Retrieve all sailor tuples for which there exists a tuple
in Reserves, having the same value in the sid field, and with bid = 103.” That is, for each
sailor tuple, we look for atuple in Reserves that shows that this sailor has reserved boat 103.
The answer tuple P contains just one field, sname.

(Q2) Find the names of sailors who have reserved ared boat.

{P | 35 € Sailors 3R € Reserves(R.sid = S.sid A P.sname = §.sname
/3B € Boats(B.bid = R.bid A B.color ='red’ 1}

This query can be read as follows: “Retrieve all sailor tuples S for which there exist tuples R
in Reserves and B in Boats such that S.sid = R.sid, R.bid = B.bid, and B.color =’red’. Another
way to write this query, which corresponds more closely to thisreading, is as follows:

[P | d8 € Sailors dR € Reserves 1B € Boats
(R sid = S.sid A Bbid = R.bid A B.eolor ="red’ A Psname = 8. sname)}

(Q7) Find the names of sailors who have reserved at least two boats.

1P | 35 € Sailors K1 € Reserves dH2 € Reserves
(S.aid = Rl.sid A Rl.sid = R2.sid A RLbid # R2.bid A P.sname = S.sname) }

(Q9) Find the names of sailors who have reserved all boats.

{P| d5 € Sailors VB € Boais
(AR € Reserves(S.sid = R.sid A Rbid = B.bid A Psname = S.sname)) }

This query was expressed using the division operator in relational algebra. Notice how easily
it is expressed in the calculus. “Find sailors S such that for all boats B there is a Reserves
tuple showing that sailor S has reserved boat B.”

(Q14) Find sailors who have reserved al red boats.

15 | § € Sailors AN¥B € Boats
(B.color ="red’ =+ (AR € Reserves(S.sid = R.sid /. R.bid = B.bid)))}

This query can be read as follows: For each candidate (sailor), if a boat is red, the sailor must
have reserved it. That is, for a candidate sailor, aboat being red must imply the sailor having
reserved it. Observe that since we can return an entire sailor tuple as the answer instead of
just the sailor’s name, we have avoided introducing a new free variable (e.g., the variable P in
the previous example) to hold the answer values. On instances B1, R2, and S3, the answer
contains the Sailors tuples with sids 22 and 31.

We can write this query without using implication, by observing that an expression of the
formp = qislogically equivalentto -p Vv q:

{8 | § € Sailors n%¥B € Boats
(B.color #£'red’ vV (3R € Reserves(S.sid = R.sid A R.bid = B.bid)))}

This query should be read as follows: “Find sailors S such that for all boats B, either the boat
is not red or a Reserves tuple shows that sailor S has reserved boat B.”

2. Domain Relational Calculus:

—>A domain variable is avariable that ranges over the values in the domain of some attribute
(e.g., the variable can be assigned an integer if it appears in an attribute whose domain is the
set of integers). A DRC query has the form {<x1, x2,...,xn> | p(<x1, X2,...,xn>)}, where each

Xi is either a domain variable or a constant and p(<x1, x2,...,xn>) denotes a DRC formula
whose only free variables are the variables among the xi, 1 <1< n. The result of this query is
the set of all tuples <x1, x2,...,xn> for which the formula evaluatesto true.

—->A DRC formula is defined in a manner that is very similar to the definition of a TRC
formula. The main difference is that the variables are now domain variables. Let op denote an

operator in the set {, =, <, >, 6=} and let X and Y be domain variables.
—>An atomic formulain DRC is one of the following:

m (g, Xe,..., 3y € Rel, where Rel is a relation with n attributes; each &, 1 <i<n
15 either a variable or a constant.

" Xoept

® X op constant, or constant op X

—>A formula is recursively defined to be one of the following, where p and q are themselves
formulas, and p(X) denotes a formula in which the variable X appears:

- any atomic formula

| =P, PG, PPN g, O P =

- JX (p(X)), where X is a domain variable
- YX(p(X)), where X is a domain variable

Examples of DRC Queries:

(Q11) Find all sailors with arating above 7.

{({I,N,T,A) | (I, N,T,A) € Sailors AT > 7}

This differs from the TRC version in giving each attribute a (variable) name. The condition
<I, N, T, A> € Sailors ensures that the domain variables I, N, T, and A are restricted to be
fields of the same tuple. In comparison with the TRC query, we can say T > 7 instead of
S.rating > 7, but we must specify the tuple <I, N, T, A> in the result, rather than just S.

(Q1) Find the names of sailors who have reserved boat 103.

{{N} | AI,T,A{{I,N,T, A) € Sailors
A3, Br, D((I'r, Br,)) € Reserves A Ir = I A Br = 103))}

—>0Only the sname field is retained in the answer and that only N is a free variable. We use the
notation 3lr, Br, D(...) as a shorthand for 31r(3Br(3D(...))). Very often, all the quantified
variables appear in a single relation, as in this example. An even more compact notation in
this case is 3hir, Br, Di € Reserves. With this notation, which we will use henceforth, the
above query would be as follows:

{(N) | 3I,T,A({I,N,T, A) € Sailors
AI(Ir, Br, D) € Reserves(Ir =1 A Br = 103))}

The comparison with the corresponding TRC formula should now be straightforward. This
guery can also be written as follows; notice the repetition of variable | and the use of the
constant 103:

{(N) | I, T, A({I, N, T, A) € Sailors
NIAD((I.103, D) € Reserves)) }

(Q2) Find the names of sailors who have reserved ared boat.

HN) | LT, A((I,N, T, A) € Sailors
NI, Br, D) € Reserves A 3(Br, BN,red') € Boats)}

(Q7) Find the names of sailors who have reserved at least two boats.

PNy | AL T AN, T, A} € Sailors A
dBrl, Br2, D1, D2((J, Brl, D1) € Reservezs AT, Br2, D2} € Reserves A Brl # Bri|

(Q9) Find the names of sailors who have reserved all boats.

{(N) | I, T,A(I,N,T,A) € Sailors A\
vB,BN,C(—~((B,BN,C) € Boats) V
(I(Ir, Br, D) € Reserves(I = Ir A Br = B)}))}

This query can be read as follows: “Find all values of N such that there is some tuple < I, N,
T, A> in Sailors satisfying the following condition: for every <B,BN,C>, ether thisis not a

tuple in Boats or there is some tuple < Ir, Br, D> in Reserves that proves that Sailor | has
reserved boat B.” The V quantifier allows the domain variables B, BN, and C to range over al
values in their respective attribute domains, and the pattern ‘~(<B,BN,C> € Boats)Vv’ is
necessary to restrict attention to those values that appear in tuples of Boats. This pattern is
common in DRC formulas, and the notation ¥<B,BN,C> € Boats can be used as a shorthand
instead. This is similar to the notation introduced earlier for 3. With this notation the query
would be written as follows:

{(NY | I, T, A({I,N,T, A) € Sailors AV{B, BN,C") € Boats
(IIr, Br, D) € Reserves(! = Ir A Br = B)))}

(Q14) Find sailors who have reserved al red boats.

{{I,.N,T,A) | (I.N,T,A) € Sailors A\V(B, BN.C) € Boats
(C' ="red’ == A(Ir, Br, D) € Reserves(I = Ir A Br = B))}

Chapter-4
4. Queries, Congtraints, Triggers

Queries, Constraints, Triggers: The Form of Basic SQL Query, Union,
Intersect, and Except, Nested Queries, Aggregate Operators, Null Values,
Complex Integrity Constraints in SQL, Triggers and Active Database.

1. Basic SOL, Query:

—>Structured Query Language (SQL) is the most widely used commercial relational database
language. It was originally developed a IBM in the SEQUEL-XRM and System-R projects
(1974-1977).

The SOL language has several aspectsto it:

1. The Data Definition Language (DDL): This subset of SQL supports the creation, deletion,
and modification of definitions for tables and views. Integrity constraints can be defined on
tables, either when the table is created or later. The DDL also provides commands for specifying
access rights or privileges to tables and views. Although the standard does not discuss indexes,
commercial implementations also provide commands for creating and deleting indexes.

2. The Data M anipulation L anguage (DML): This subset of SQL allows users to pose queries
and to insert, delete, and modify rows.

3. Embedded and dynamic SOL : Embedded SQL features allow SQL code to be called from a
host language such as C or COBOL. Dynamic SQL features allow a query to be constructed (and
executed) a run-time.

4. Triggers. The new SQL:1999 standard includes support for triggers, which are actions
executed by the DBMS whenever changes to the database meet conditions specified in the
trigger.

5. Security: SQL provides mechanisms to control users’ access to data objects such as tables and
views.

6. Transaction management: Various commands allow a user to explicitly control aspects of
how atransaction is to be executed.

7. Client-server execution and remote database access: These commands control how a client
application program can connect to an SQL database server, or access data from a database over a
network.

2. THE FORM OF A BASIC SOL QUERY:

- The basic form of an SQL query is as follows:

SELECT [DISTINCT] select-list
FROM from-list

WHERE cualification

2>Such a query intuitively corresponds to a relational algebra expression involving
selections, projections, and cross-products.

—~>Every query must have a SELECT clause, which specifies columns to be retained in the
result, and a FROM clause, which specifies a cross-product of tables. The optional WHERE
clause specifies selection conditions on the tables mentioned in the FROM clause.

sid | sname | roting | age st | bad | day
22 | Dustin | T 400 22 | 101 | 10/10/98
29 | Brutus | 1 33.0 22 | 102 | 10/10,98
31 | Lubber | 8 55.5 22 | 103 | 10/8/938
32 | Andy i g0 22 | 104 | 10,7/98
a8 | Ruosty | 10 30.0 31 | 102 | 11/10/98
64 | Horatio | 7 45.0 31 | 103 | 11,/6/98
71 | Zorba | 10 16.0 31 | 104 | 11/12/98
74 | Horatio | 9 Ju. 64 | 101 | 9/5/98
85 | Art 3 255 64 | 102 | 9/8/98
9 | Bob 4 3.5 74 | 103 | 9/8/98
Figure 5.1 An lnstance 53 of Sailors Figure 5.2 An Instance K2 of Heserves

hid | bpame color

101 | Interlake | blue
102 | Interlake | red

103 | Clipper | green |
104 | Marine red

Figure 5.3 An Instance H1 of Boats

e The from-list in the FROM clause is a list of table names. A table name can be followed
by a range variable; a range variable is particularly useful when the same table name
appears more than once in the from-list.

e The select-list is a list of (expressions involving) column names of tables named in the
from-list. Column names can be prefixed by arange variable.

e The qualification in the WHERE clause is a Boolean combination (i.e., an expression
using the logical connectives AND, OR, and NOT) of conditions of the form expression
op expression, where op is one of the comparison operators {<=, =, <>, >=, >}. 2 An
expression is a column name, a constant, or an (arithmetic or string) expression.

e TheDISTINCT keyword is optional. It indicates that the table computed as an answer to
this query should not contain duplicates, that is, two copies of the same row. The default
isthat duplicates are not eliminated.

SELECT Clause:
—>Let usconsider asimple query:

(Q15) Find the names and ages of all sailors.

SELECT DISTINCT S.Sname, S.ELgE‘
FROM Sailors S

—->The answer is a set of rows, each of which is a pair <sname, age>. If two or more sailors
have the same name and age, the answer till contains just one pair with that name and age.
This query is equivalent to applying the projection operator of relational algebra.

—>The answer to this query with and without the keyword DISTINCT on instance S3 of
Sailors is shown in Figures 5.4 and 5.5. The only difference is that the tuple for Horatio
appearstwice if DISTINCT is omitted; this is because there are two sailors called Horatio and
age 35

STUATRE age
I spame | age Dustin | 45.0
Dustin | 45.0 Brutus | 33.0
Brutus | 33.0 Lubber | 55.5
Lubber | 55.5 Andy 25.5
Andy 20.0 Rusty 35.0
Rusty 35.0 Horatio | 35.0
Horatio | 35.0 Lorba 16.0)
Zorba 16.0 Horatio | 35.0
Art 25.5 Art 25.5
Boh (3.5 Bob (.5

Figure 5.4 Answer to 015 Figure 5.5 Answer to (315 without DIETINCT

(Q11) Find all sailorswith arating above 7.

SELECT S.sid, S.sname, S.rating, S.age
FROM Sailors AS S
WHERE S.rating > 7

—>This query uses the optional keyword AS to introduce a range variable. Incidentally, when
we want to retrieve all columns, as in this query, SQL provides convenient shorthand: We can
simply write SELECT *. This notation is useful for interactive querying, but it is poor style
for queriesthat are intended to be reused and maintained.

Conceptual evaluation strategy:

1. Compute the cross-product of the tables in the from-list.

2. Delete those rows in the cross-product that fail the qualification conditions.
3. Delete all columnsthat do not appear in the select-list.

4. If DISTINCT is specified, eliminate duplicate rows.

We illustrate the conceptua evaluation strategy using the following query:

(Q1) Find the names of sailorswho have reserved boat number 103.

It can be expressed in SQL as follows.
SELECT S.snamme
FROM Sailors S, RHeserves R
WHERE 5S.sid = R.sid AND R.bid=103

std | smame | rating | age

sid | bid | doy 22 | dustin | 7 45.0

22 | 101 | 10/10/96 31 | lubber | 8 55.5

58 | 103 | 11/12/96 58 | rusty | 10 35.0
Figure 5.6 [Instance 3 of Reserves Figure 5.7 Instance 54 of Sailors

—>Thefirst step isto construct the cross-product $4 x R3, which is shown in Figure 5.8.

sid | sname | rating | age | sid | bid | day

22 | dustin | 7 45.0 | 22 | 101 | 10/10/96
22 | dustin | 7 45.0 | 58 | 103 | 11/12/96
31 | lubber | 8 55.5 | 22 | 101 | 10/10/96
31 | lubber | 8 55.5 | 58 | 103 | 11/12/96
58 | rusty 10 35.0 | 22 | 101 | 10/10/96
& | rusty 10 35.0 | 58 | 103 | 11/12/96

Figure 5.8 §{ x R3

—>The second step is to apply the qualification S.sid = R.sid AND R.bid=103. This step
eliminates all but the last row from the instance shown in Figure 5.8.

—>The third step is to eliminate unwanted columns; only sname appears in the SELECT
clause. This step leaves us with the result shown in Figure 5.9, which is a table with a single
column and, as it happens, just one row.

ST

rusty

Figure 5.9 Answer to Query 01 on R3 and 5S4

Examples of Basic SOL Queries:

(Q16) Find thesids of sailorswho havereserved ared boat.

SELECT R.sid
FROM Boats B, Reserves R
WHERE B.bid = R.bid AND B.color = ‘red’

(Q2) Find the names of sailorswho have reserved a red boat.

SELECT S.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

(Q3) Find the colors of boats reserved by Lubber.

SELECT B.color
FROM Sailors 5, Reserves R, Boats B
WHERE S.sid = R.sid AND R.hid = B.bid AND S.sname = ‘Lubber’

(Q4) Find the names of sailorswho havereserved at least one boat.

SELECT S.sname
FROM Sailors S. Reserves R
WHERE S.sid = R.sid

Expressions and Stringsin the SELECT Command:

(Q17) Compute increments for the ratings of persons who have sailed two different
boats on the same day.

SELECT S.sname, S.rating+1 AS rating
FROM Sailors S, Reserves R1, Reserves R2
WHERE 5.sid = Rl.sid AND S.sid = R2.s1d
AND Rl.dayv = R2.day AND Rl.bid <> R2.bid

—>Also, each item in a qualification can be as general as expressionl = expression2.

SELECT Sl.sname AS namel, S2.sname AS name?
FROM Sailors S1, Sailors 52
WHERE 2*S1.rating = 52.rating-1

(Q18) Find the ages of sailorswhose name begins and ends with B and has at least three
characters.

SELECT S.age
FROM Sailors S
WHERE S.sname LIKE ‘B_% B’

The only such sailor is Bob. and his age is 63.5.

3. UNION, INTERSECT, AND EXCEPT:

—>The UNION operation combines two relations and automatically eliminates the duplicate
tuples.

—->The INTERSECT operation finds the common tuples of two relations and eliminates the
duplicate tuples.

—->The EXCEPT operation finds the tuples which are in one relation but not in the other
relation and automatically eliminates duplicate tuples.

(Q5) Find the names of sailorswho have reserved ared or a green boat.

SELECT S.sname
FROM Sailors 5. Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid
AND ([-i.(:r::rhjn' = ‘red” OR B.color = ‘green’)

2>The OR query (Query Q5) can berewritten asfollows:

SELECT b.sname

FROM Sailors 5, Reserves R, Boats B

WHERE 5.sid = H.sid AND R.bid = B.bid AND B.color = ‘red’

UNION

SELECT S52.sname

FROM Sailors 52, Boats B2, Reserves R2

WHERE B52.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

(Q6) Find the names of sailors who have reserved both ared and a green boat.

SELECT S.sname
FROM Sailors 5, Reserves R1, Boats Bl. Reserves R2, Boats B2
WHERE S.sid = Rl.sid AND Rl.bid = Bl.bid

AND S.sid = R2.sid AND R2.bid = B2.bid

AND Bl.color='‘red’ AND B2.color = ‘green’

-2 AND query (Query Q6) can berewritten asfollows:

SELECT S.sname

FROM Sailors 5. Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = *red’
INTERSECT

SELECT 52.sname

FROM Sailors 52, Boats B2, Reserves R2

WHERE S2.sid = R2.sid AND R2.bid = B2 bid AND B2.color = ‘green’

(Q19) Find the sids of all sailorswho have reserved red boats but not green boats.

SELECT S.sid

FROM Sailors 5, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.hid AND B.color = ‘red’
EXCEPT

SELECT S2.sid

FROM Sailors 52, Reserves R2, Boats B2

WHERE 52.sid = R2.sid AND R2.bid = B2.bid AND B2.color = ‘green’

SELECT R.sid

FROM Boats B, Reserves R

WHERE R.bid = B.bid AND B.color = ‘red’
EXCEPT

SELECT R2.sid

FROM Boats B2, Reserves R2

WHERE R2.hid = B2.bid AND B2.color = ‘green’

(Q20) Find all sids of sailorswho have arating of 10 or havereserved boat 104.
SELECT 5.sid
FROM Sailors S

WHERE S.rating — 10
TUNION

SELECT R.sid

FROM RHescerves 1
WHERE R._bid = 104

4. NESTED QUERIES:

Introduction to Nested Queries:

(Q1) Find the names of sailorswho have reserved boat 103.
SELECT 5S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid = 103)

(Q2) Find the names of sailorswho have reserved ared boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.bid IN (SELECT B.bid
FROM DBoats B
WHERE B.color = ‘red’)

(Q21) Find the names of sailorswho have not reserved ared boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT Rusid
FROM Reserves R
WHERE R.bid IN (SELECT B.bid
FROM Boats B
WHERE B.color = ‘red’)

Correlated Nested Queries:

(Q1) Find the names of sailorswho have reserved boat number 103,

SELECT S.sname
FROM Sailors 5
WHERE EXISTS (SELECT *
FROM Reserves R

WHERE R.bid = 103
AND R.sid = S.sid)

Set-Comparison Operators:
(Q22) Find sailorswhose rating is better than some sailor called Horatio.

SELECT S.sid
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname = ‘Horatio’)

(Q23) Find sailorswhose rating is better than every sailor called Horatio.

—>We can obtain all such queries with a simple modification to Query Q22: just replace ANY
with ALL inthe WHERE clause of the outer query.

(Q24) Find the sailorswith the highest rating.

SELECT S.sid

FROM Sailors S

WHERE S.rating >= ALL (SELECT S2.rating
FROM Sailors S2)

M ore Examples of Nested Queries:

(Q6) Find the names of sailorswho have reserved both ared and a green boat.
SELECT S.sname
FROM Sailors 5, Reserves B, Boats B
WHERE S.zid = R.sid AND R.bid = B.bid AND B.color = ‘red’
AND S.sid IN (SELECT $2.sid
FROM Sailors 52, Boats B2, Reserves R2
WHERE S2.sid = R2.sid AND R2.bid = B2 bid
AND B2.color = ‘green’)

SELECT S3.sname
FROM Sailors 53
WHERE S3.sid IN ((SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid = B.hid AND B.color = ‘red’)
INTERSECT
(SELECT R2.sid
FROM Boats B2, Reserves R2
WHERE R2.hid = B2.bid AND B2.color = ‘green’ })

(Q9) Find the names of sailorswho have reserved all boats.

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS [(SELECT B.bid
FROM Boats B)
EXCEPT
(SELECT R.bid
FROM Reserves R
WHERE R.sid = S.sid))

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid
FROM Reserves R

WHERE R.bid = B.bid
AND R.sid = 5.s1d))

5. AGGREGATE OPERATORS:

—>Aggregate functions operate on a multiset of values and return a single value. Typical
aggregate functions are min, max, sum, count, and avg.

- These features represent a significant extension of relational algebra.

- SQL supports five aggregate operations, which can be applied on any column, say A, of a
relation:

1. COUNT ([DISTINCT] A): The number of (unique) valuesin the A column.

2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) valuesin the A column.

4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

Examples:

(Q25) Find the average age of all sailors
SELECT AVG (S.age)
FROM Sailors S

On instance S3, the average age is 37.4.

(Q26) Find the average age of sailorswith a rating of 10.
SELECT AVG (S.age)

FROM Sailors S

WHERE bS.rating = 10

There are two such sailors, and their average age is 25.5. MIN (or MAX) can be used instead
of AVG in the above queriesto find the age of the youngest (oldest) sailor.

(Q27) Find the name and age of the oldest sailor.

Consider the following attempt to answer this query:

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age

FROM Sailors S

WHERE S.age = (SELECT MAX (S2.age)
FROM Sailors 52)

SELECT S.sname, S.age

FROM sailors S

WHERE (SELECT MAX (S2Z2.age)
FROM Sailors S2) = S.age

(Q28) Count the number of sailors.

SELECT COUNT (*)
FROM Sailors S

(Q29) Count the number of different sailor names.

SELECT COUNT (DISTIHET S.Hﬂalue}
FROM Sailors S

(Q30) Find the names of sailorswho are older than the oldest sailor with arating of 10.

SELECT S.sname

FROM Sailors S

WHERE S.age > (SELECT MAX (S2.age)
FROM Sallors 52
WHERE S2.rating = 10)

SELECT S.sname
FROM Sailors S
WHERE S.age = ALL (SELECT S2.ape

FROM Sailors 52
WHERE S2.rating = 1())

The GROUP BY and HAVING Clauses:;

—>Group by clause is used to group the results of a SELECT query based on one or more
columns. It isalso used with SQL functions to group the result from one or more tables.
- Syntax for using Group by clause is as follows,

SELECT | DISTINCT | select-list
FROM from-list

WHERE qgualification

GROUP BY grouping-list

HAVING group-qualification

The select-list in the SELECT clause consists of (1) alist of column names and (2) a list
of terms having the form aggop (column-name) AS new-name. The optional AS new-
name term gives this column a name in the table that is the result of the query. Any of the
aggregation operators can be used for aggop.

Every column that appears in (1) must also appear in grouping-list. The reason is that
each row in the result of the query corresponds to one group, which is a collection of rows
that agree on the values of columns in grouping-list. If a column appears in list (1), but
not in grouping-list, it isnot clear what value should be assigned to it in an answer row.

The expressions appearing in the group-qualification in the HAVING clause must have a
single value per group. The intuition is that the HAVING clause determines whether an
answer row is to be generated for a given group. Therefore, a column appearing in the
group-qualification must appear as the argument to an aggregation operator, or it must
also appear in grouping-list.

If the GROUP BY clause is omitted, the entire table is regarded as a single group.

For example, consider the following query.

(Q31) Find the age of theyoungest sailor for each rating level.

SELECT S.rating, MIN (S.age)
FROM Sailors S
GROUP BY S.rating

(Q32) Find the age of the youngest sailor who is eligible to vote (i.e, is at least 18 years
old) for each rating level with at least two such sailors.

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) =1

sid | steame rating | age

22 Dustin T 45.0
20 Brutus 1 33.0
31 Lubber | 8 55.0
32 Andy = 25.5
i5ts Rusty 10 35.0
641 Horatio | 7 35.0
71 Zorba 10) 16.0
T4 Horatio | 9 35.0
S0 Art 3 2.0
95 Bob 3 63.5

Figure 5.10 Instance 53 of Sailors

: rating | age]
rating | age | 1 3.0 1
]T ;g_f: : 3 25.5 |
e T |450]
10 35.0 | 7 35.0 |
- ar l ot 29,0
9 35.0 | 8 25,5
3 255 | 9 | denl) |
3 63.5 | 10 | 350

Figurae 5.11 After Evaluation Step 3 Figure 5.12 After Evalustion Step 4

rating | rminage
3 25.5
7 30.0
& 25.5
Figure 5.13 Final Result in Sample Evaluation

M ore Examples of Aqgaregate Queries:

(Q33) For each red boat, find the number of reservationsfor thisboat.

SELECT B.bid, COUNT (*) AS sailorcount
FROM Boats B. Reserves R

WHERE R.bid = B.bid AND B.color = ‘red’
GROUP BY B.bid

SELECT B.bid, COUNT (*) AS sailorcount

FROM Boats B. Reserves R
WHERE R.bid = B.bhid
GROUFP BY B.bid

HAVING B.color = ‘red’

(Q34) Find the average age of sailorsfor each rating level that has at least two sailors.
SELECT S.rating., AVG (S.age) AS avgage
FROM Sallors S
GROUFP BY S.rating
HAVING COUNT {"“} = 1

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors 5
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (™)
FROM Sailors 52
WHERE S.rating = S2.rating)

—>After identifying groups based on rating, we retain only groups with at least two sailors.
The answer to this query on instance S3 is shown in Figure 5.14.

rufing | avgage rating | avgage

R RTY I |45 riing | avgage
T 40.0 T 400 3 4h.5

8 40.5 3 .5 f 400
EE 0|30 5 [405

Figure 514 O3 Answer Figure 515 Q35 Answer Figure 5.16 ()36 Answer

(Q35) Find the average age of sailorswho are of voting age (i.e., at least 18 yearsold) for
each rating level that has at least two sailors.

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
WHERE S. age >= 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (™)
FROM Sailors 52
WHERE S.rating = S2.rating)

(Q36) Find the average age of sailorswho are of voting age (i.e, at least 18 yearsold) for
each rating level that has at least two such sailors.

SELECT S.rating, AVG (S.age) AS avpage
FROM Sailors 5

WHERE 5. age > 18

GROUP BY S.rating

HAVING 1 < (SELECT COUNT (*)

FROM Sailors 52
WHERE S.rating = S2.rating AND S52.age >= 18)

SELECT S.rating, AWVEG { S.apEe) AS auwpmagses
FRrRoOM Sailora 5
WHERE S, o apge = 18

SROUP BY S.ratins
HAWT M3 COUNT (™) = 1

SELECT Temp.rating, Temp avgaoe

FROM (BELECT S.rating, AVG (S.age) AS avgage,
COUNT (¥*) AS ratingcount
FROM Snilors S
WHERE S. age = 18

GROUFP BY S.rating } AS Temp
WHERE Teomp.ratingeount = 1

(Q37) Find those ratings for which the average age of sailors is the minimum overall
ratings.

SELECT S.rating

FROM Sailors S

WHERE AVG (S.age) = (SELECT MIN (AVG (S2.agze))
FROM =ailors 52
GROUP BY S2.rating)

SELECT Temp.rating, Temp aveage
FROM (SELECT S.rating, AVG (S.age) AS avgage,
FROM sailors 5
GROUP BY S.rating) A8 Temp
WHERE Temp.aveage = (SELECT MIN |Temp.avgage| FROM Temp)

The answer to this query on instance 53 is (10, 25.5).

As an exercise, the reader should consider whether the following query computes the
same answer, and if not, why:

SELECT Temp.rating, MIN | Temp.avgage)

FROM (SELECT S.rating, AVG (S.age) AS avpage,
FROM Sailors §
GROUP BY S.rating | &S Temp

GROUP EY Temp.rating

5. NULL VALUES:
—>The SQL NULL isthe term used to represent a missing value. A NULL value in atable is
avalue in afield that appearsto be blank.
—>A field withaNULL value is a field with no value. It is very important to understand that a
NULL value is different than a zero value or afield that contains spaces.
—>The basic syntax of NUL L while creating atable:

SQL> CTREATETABLE CUSTOMERS (

I INT NOTNULL,
NAME VARCHAR=2 (20) NOTNULL,
AGE IN'T NOTNULL,
ADDRESS CHARI(25),
SATARY DECIMATL (18, =),

PRIMAFRY KEY (ID)

—->Here, NOT NULL signifies that column should always accept an explicit value of the
given data type. There are two columns, where we did not use NOT NULL, which means
these columns could be NULL.

—>A field withaNULL value is one that has been left blank during record creation.

Example

The NULL value can cause problems when selecting data, however, —>because when
comparing an unknown value to any other value, the result is always unknown and not
included in the final results.

2>You must use thelS NULL or IS NOT NULL operators in order to check for a NULL
value.

- Consider the following table, CUSTOMERS having the following records:

1D NAME AGE ADDRESS SALARY

1 ANUPAMA 52 Ahmadabad 2000.00
2 ABEELA 49 Delhi 1500.00
3 RANIA 45 Kota 2000.00
4 KAVYA 47 Mumbai 6500.00
5 NAGINA 41 Bhopal 8500.00
6 NAJAH 48 Jaipur

~ RAMEESHA 50 Indore

—~>Now, following isthe usage of ISNOT NULL operator:

SQL>SELECT ID, NAME, AGE, ADDRESS, SALARY

FROM CUSTOMERS
WHERESALARYISNOTNULL;
—> Thiswould produce the following result:
ID NAME AGE ADDRESS SALARY

1 ANUPAMA 52 Ahmadabad 2000.00
2 ABEELA 49 Delhi 1500.00
3 RANIA 45 Kota 2000.00
4 KAVYA a7 Mumbai 6500.00
5 NAGINA 41 Bhopal 8500.00

->Now, following is the usage of IS NUL L operator:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY
FROM CUSTOMERS
WHERESALARYIS NULL;

- Thiswould produce the following result:

ID NAME AGE ADDRESS SALARY
6 NAJAH 48 Jaipur
m RAMEESHA 50 Indore

1. Comparison Using Null Values

—Itisdifficult to perform comparison of valid values with NULL values if two valued Logic
TRUE or FALSE isused. Therefore to avoid this issue three valued logic TRUE, FAL SE or
UNKNOWN must be used with NULL value.

—>Consider a comparison such as rating = 8. If this is applied to the row for Dan, is this
condition TRUE or FALSE? Since Dan’s rating is UNKNOWN, it is reasonable to say that
this comparison should evaluate to the value UNKNOWN. In fact, this is the case for the
comparisons rating > 8 and rating < 8 as well. If we compare two null values using <, <, =,
<> and so on, the result is always UNK NOWN.

—>For example, if we have null in two distinct rows of the sailor relation, any comparison
returns UNKNOWN.

—>SQL provides a special comparison operator IS NULL to test whether a column value is
null; for example, we can say rating 1S NULL, which would evaluate to TRUE on the row
representing Dan. We can also say rating IS NOT NULL, which would evaluate to FAL SE
on the row for Dan.

2. L ogical ConnectivesAND, OR, and NOT:
—>Logical connectives with NULL values must be defined using three valued logic wherein
expressions evaluates to three values (i.e., to TRUE, FAL SE, or UNKNOWN).
—>Now, the Boolean expressions such as rating = 8 OR age < 40 and rating = 8 AND age <
40. Considering the row for Dan age < 40, the first expression evaluates to TRUE the value
of rating; the second can only say UNKNOWN.
—>The given table will give you a better understanding of logical operators when used with
NULL values. Point to note here is that we are using a three valued logic TRUE, FAL SE or
UNKNOWN i.e, the logical condition applied may evaluate to any one of them
(UNKNOWN isused in case of NULL values).

S Mol Operation Fosalt Heason

1] X oand Y TRHRITE If hoth X and Y are TRIUTE

FALSE IT either X orY is FALSE

UNKNOWN | Ifeither X or Y is UNKNOWN
R LA o

2 MNoory TELUE If either of them { X or Y)is TRUE

“ALSE If baoth of them are FALSE

LINENOWT [f one of the arguments 15 FALSE
and other is UUNENOWIN

3l NOYT X TRITE If X is FALSE
FALSE If X is TRLUE

UNENOWIN If X is UNEKENOWT
Talle. Logical Chprerators

3. Impact on SQL Constructs:
—>As many Boolean expressions are used in SQL, it is necessary to understand the impact of

NULL values on these constructs.

STUDENT ID| STD NAME COURSE_ID CLASS GROUP
1 A 101 2 B
2 B 102 3 B
3 C 103 2 B
1 D 104 4 B
5 E 103 5 B
6 F 1086 3 B
7 G 107 & B

Table. Student Table

2> Example:
List all names of students who belongs to group ‘B’

SELECT *
FROM STUDENT S
WHERE S.group = ‘B’;

- This solution will result in the set of tuples that satisfies the “WHERE’ condition and all
other tuples that does not satisfy this condition are ignored in addition to these tuples. Tuples
with NULL values are also ignored because for them the condition evaluates to FAL SE or
UNKNOWN. This elimination of rows that resulted unknown, makes the queries that

involves EXISTS and/or UNIQUE much more simple, easy to understand and makes the
evaluation of these queries (nested queries especially) much easier.

—>We know that the comparison of any two fields with NULL values for equality is an
UNKNOWN value. But when it comes to (=) equality operator, the two NULL value
attributes are treated as equal. If afield contains two NULL values then that is considered as
duplicate values. Two tuples are said to be duplicates if they hold the same value or if they
hold NULL values. So, the comparison of NULL values with the “=" operator always results
in TRUE.

—>The result of al the arithmetic operators (+, -, %, /, *) results in an UNKNOWN value
(NULL) if any one of the argument is a NULL value. Similarly, with all the aggregate
operators the result is NULL if these operators are applied a NULL value. Aggregate
functions simply delete the NULL values and then returns the result of aggregate operators
i.e, SUM, AVG, MIN, MAX, COUNT(DISTICT) i.e, simply delete/ignore the NULL
values and returns the result of other NOT NULL tuples. Only exception in aggregate
operator is COUNT (*) which does not ignore/delete the NULL values, it counts them and
then return the number of tuplesin the table.

4. Outa JOlnS. (*************)

—->We need to use outer joins to include all the tuples from the participating relations in the
resulting relation.

—>This is the special case of “join” operator which considers the NULL values. Generally
“join” operations performs the cross product of two tables and apply certain join condition.
Then it selects those rows from the cross product that satisfied the given condition. But with
outer joins, DBMS allows to us select those rows which are common (satisfies the given) and
even those rows that does not satisfies the given condition.

—>To understand this, consider simple instances of Project and Department as shown in
table.

DEPARTMENT D1 PROJECT P1

Dept_id Dept_no|Project_no|Project noProject_name

100001 16 111 444 K
100002 4 222 111 N
100003 14 333 222 R

TABLE . Intances of PROJECT and DEPARTMENT Table.

—>1f we perform join operation on these two tables,
SELECT *D1,* P1

FROM DEPARTMENT D1, PROJECT P1
WHERE D1.Project no= P1.Project_no;
—>Theresult of this statement is shown in Table 1.

Dept_id Dept_no|Project_no|Project_noProject_name

100001 16 111 111 N

100002 4 222 22 R

TABLE 1. Table Showing the Simple Join Operation.

—>The Table 1 shows the simple join operation of two tables, only those rows are selected
that satisfied the condition. However, if we want to include those rows that do not satisfy the
condition, then we can use the concept of OUTER JOINS.

—>There arethree types of OUTER JOINS. They are,

1. LEFT OUTER JOIN
2. RIGHT OUTER JOIN
3. FULLOUTER JOIN

1. LEFT OUTER JOIN:

—>LEFT OUTER JOIN lists all those rows which are common to both the tables and also all
those unmatched rows of the table which is specified at the left hand side.

Example:

SELECT *D1,*P1
FROM DEPARTMENT D1 LEFT OUTER JOIN PROJECT P1
WHERE D21.Project no=P1.Project_no;

->The result of this statement is shown in Table 1A.

DEPARTMENT I PROJECT P4

Dept id |[Dept no Projeclt noProject no [iject_nmue-:
OO0 ih iid 1id N
100002 4 zzz 222 R

i Ly Tatatate 14 333 NULL NULL

TAELE 1A. Table Showing the LEFT OUTER JOIN Operation.
->S0, the LEFT OUTER JOIN resulted in relations that have common rows from both the
tables and also the row which does not have match in the other table. The values of the
attributes corresponding to second table are NUL L values.

2. RIGHT OUTER JOIN:

—2>RIGHT OUTER JOIN issameasthe LEFT OUTER JOIN but the only difference isthe
unmatched rows of second table (specified on the right hand side) are listed along with the
common rows of both the tables.

SELECT *D1,*P1

FROM DEPARTMENT D1 RIGHT OUTER JOIN PROJECT P1

WHERE D21.Project_no= P1.Project_no;

—>Theresult of this statement is shown in Table 2B.

DEPARTMENT D1 PROJECT P1

Dept_id [Dept_no|Project_no/Project_noProject_name

NULL NULL NULL 444 K
100001 16 111 111 N
100002 4 222 222 R

TABLE 2B. Table Showing the RIGHT OUTER JOIN.
->The values of attributes for the first table are declared as NUL L.

3. FULL OUTER JOIN:

—2>FULL OUTER JOIN is same asthe RIGHT OUTER JOIN and LEFT OUTER JOIN
but only difference is unmatched rows of both tables are listed along with the common rows
of the tables.

SELECT *D1,*P1
FROM DEPARTMENT D1 FULL OUTER JOIN PROJECT P1
WHERE D21.Project_no=Pl.Project_no;

—->The result of this statement is shown in Table 2C.

DEPARTMENT D1 PROJECT P1
Dept_id |Dept_no|Project_no/Project_noProject_name|
100001 16 111 111 N
100002 4 222 222 R
100003 14 333 NULL NULL
NULL NULL NULL 444 K

TABLE 3C. Table Showing the FULLOUTERJOIN.

—>In this relation as you can see all the matched and unmatched columns of both the tables
are displayed, the values for the unmatched attributes are entered as NULL.

5. Disallowing Null Values:

—>These fields can take on NULL values, if they are not declared as NOT NULL. We can
restrict the insertion of NULL values for the field by declaring that field as NOT NULL. This
means that the field cannot take NULL values. For the PRIMARY KEY Constraint i.e., the
field which is declared as PRIMARY KEY isalso declared as NOT NULL. Thisdeclaration
isimplicit declaration done by DBMS.

CREATE TABLE STUDENT (Sid INT NOT NULL,
Sname CHAR(10) NOT NULL
Project VARCHAR2 (15),
Class INT,
PRIMARY KEY(Sid));

—In this declaration i.e., creation of STUDENT Table, Sid isthe PRIMARY KEY hence it
must be UNIQUE and it should not be NUL L. Project field indicates the Project taken up by
the student .This field can take NUL L valuesasit is possible

6. Embedded SOL: (****x*kxxkkxxksx)

—->SQL provides a powerful declarative query language. Writing queries in SQL is usually
much easier than coding the same queries in a general - purpose programming language.
However, a programmer must have access to a database from a general purpose programming
language for at least two reasons:

e Not al queries can be expressed in SQL, since SQL does not provide the full expressive
power of a general-purpose language. That is, there exist queries that can be expressed in
a language such as C, Java, or COBOL that cannot be expressed in SQL. To write such
queries, we can embed SQL within a more powerful language.

e Non-declarative actions—such as printing a report, interacting with a user, or sending the
results of a query to a graphical user interface—cannot be done from within SQL.
Applications usually have several components, and querying or updating data is only one
component; other components are written in general-purpose programming languages.
For an integrated application, the programs written in the programming language must be
able to access the database.

1. Declaring Variables and Exceptions:

—>The SQL standard defines embeddings of SQL in a variety of programming languages such
asC, Java, and COBOL.

—A language to which SQL queries are embedded is referred to as a host language, and the
SQL structures permitted in the host language comprise embedded SQL .

—->SQL statements can refer to variables defined in the host program. Such host-language
variables must be prefixed by a colon (:) in SQL statements and must be declared between the
commands EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE
SECTION. The declarations are similar to how they would look in a C program and, as usual
in C, are separated by semicolons.

—>For_example, we can declare variables c_sname, c¢_sid, c_rating, and c_age (with the
initial ¢ used as a naming convention to emphasize that these are host language variables) as
follows:

EXEC SQL BEGIN DECLARE SECTION
char c_sname|20];

long «_sid;

short c_rating;

float c.age;

EXEC EQL END DECLARE SECTION

2. Embedding SOL Statements:

—>All SQL statements that are embedded within a host program must be clearly marked, with
the details dependent on the host language; in C, SQL statements must be pre- fixed by
EXEC SQL. An SQL statement can essentially appear in any place in the host language
program where a host language statement can appear.

—>As a simple example, the following embedded SQL statement inserts a row, whose
column values are based on the values of the host language variables contained in it, into the
Sailorsrelation:

EXEC SQL INSERT INTO Sailors VALUES (:c_sname, :csid, :c.rating, :c.age);

—>The SQLSTATE variable should be checked for errors and exceptions after each
embedded SQL statement. SQL provides the WHENEVER command to simplify this
tedious task:

EXEC SQL WHENEVER | SQLERROR | NOT FOUND | [CONTINUE | GOTO stmt |

—->The intent is that after each embedded SQL statement is executed, the value of
SQLSTATE should be checked. If SQLERROR is specified and the value of SQLSTATE
indicates an exception, control is transferred to stmt, which is presumably responsible for
error/exception handling. Control is also transferred to smt if NOT FOUND is specified and
the value of SQL STATE is 02000, which denotes NO DATA.

7. Dvnam'c SOL (****************)

—>The dynamic SQL component of SQL alows programs to construct and submit SQL
gueries at runtime.

—~>Using dynamic SQL, programs can create SQL queries as strings at run time (perhaps
based on input from the user) and can either have them executed immediately or have they
prepared for subsequent use. Preparing a dynamic SQL statement compiles it, and subsequent
uses of the prepared statement use the compiled version.

- SQL defines standards for embedding dynamic SQL calls in a host language, such as C, as
in the following example.

Char * sglprog =" update account set balance = balance+1.05
where account number =?"

EXEC SQL PREPARE dynprog from: sqlprog;

Char account [10] ="A-101";

EXEC SQL EXECUTE dynprog using: account;

- The dynamic SQL program contains a? which is a place holder for a value that is provided
when the SQL program is executed?

8. CURSORS (************)

—->A major problem in embedding SQL statements in a host language like C is that an
impedance mismatch occurs because SQL operates on sets of records, whereas languages like
C do not cleanly support a set-of-records abstraction. The solution is to essentially provide a
mechanism that allows us to retrieve rows one at a time from a relation. This mechanism is
called acursor.

—A cursor isatemporary work area created in the system memory when a SQL statement is

executed. A cursor contains information on a select statement and the rows of data accessed

by it.

—>This temporary work area is used to store the data retrieved from the database, and

manipulate this data. A cursor can hold more than one row, but can process only one row at a

time. The set of rowsthe cursor holds is called the active set.

- We can declare a cursor on any relation or on any SQL query (because every query

returns a set of rows).

—->0Once a cursor is declared, we can open it (which positions the cursor just before the first

row); fetch the next row; move the cursor (to the next row, to the row after the next n, to the

first row, or to the previous row, etc., by specifying additional parameters for the FETCH

command); or close the cursor.

1. Basic Cursor Definition and Usage:

- Cursors enable us to examine in the host language program a collection of rows computed

by an embedded SQL statement:

e We usually need to open a cursor if the embedded statement isa SELECT (i.e., aquery)..

e |INSERT, DELETE, and UPDATE statements typically don’t require a cursor, although
some variants of DELETE and UPDATE do use a cursor.

- Asan example, we can find the name and age of a sailor, specified by assigning a value
to the host variable ¢_sid as follows:

EXEC SQL SELECT S.sname, 5.age

INTO IC_Sname, C_age
FROM Sailors 5
WHERE 5.sid = :c.sid;

—>The INTO clause alows us to assign the columns of the single answer row to the host
variablesc_sname and c_age.

- Computes the names and ages of all sailors with a rating greater than the current value of
the host variable c_minrating?

SELECT S.sname, S.age
FROM Sailors 5
WHERE S.rating = cominrating

—>This query returns a collection of rows, not just one row. The solution isto use a cursor:

DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age

FROM Sailors S

WHERE S.rating > :c_minrating;

—>This code can be included in a C program, and once it is executed, the cursor sinfo is
defined. Subsequently, we can open the cursor:

OPEN sinfo;

- We can use the FETCH command to read the first row of cursor sinfo into host lanquage
variables:

FETCH sinfo INTO :c_sname, :c_age;

->When we are done with a cursor, we can close it:

CLOSE sinfo:

2. Properties of Cursors:
—->The general form of a cursor declaration is:

DECLARE eursorname [INSENSITIVE] [SCROLL] CURSOR FOR
SOME qUETY
| ORDER BY order-item-list |
| FOR READ ONLY | FOR UPDATE |

- A cursor can be declared to be a read-only cursor (FOR READ ONLY) or, if it isa
cursor on a base relation or an updatable view, to be an updatable cursor (FOR UPDATE).
—>If it is updatable, simple variants of the UPDATE and DELETE commands allow us to
update or delete the row on which the cursor is positioned.

—>For example, if sinfo is an updatable cursor and is open, we can execute the following
statement:

UPDATE Sailors S
SET S.rating = S.rating - 1
WHERE CURRENT of sinfo;

- Thisembedded SQL statement modifies the rating value of the row currently pointed to by
cursor sinfo; similarly, we can delete this row by executing the next statement:

DELETE Sailors S
WHERE CURRENT of sinfo;

—>A cursor is updatable by default unless it is a scrollable or insensitive cursor, in which
case it is read-only by default.

—>1f the keyword SCROLL is specified, the cursor is scrollable, which means that variants of
the FETCH command can be used to position the cursor in very flexible ways; otherwise,
only the basic FETCH command, which retrieves the next row, is allowed

- If the keyword INSENSITIVE is specified, the cursor behaves as if it is ranging over a
private copy of the collection of answer rows.

—>For_example, while we are fetching rows using the sinfo cursor, we might modify rating
values in Sailor rows by concurrently executing the command:

UPDATE Sailors S
SET S.rating = S.rating - 1

—>The order-item-list is a list of order-items; an order-item is a column name, optionally
followed by one of the keywords ASC or DESC.

—> Suppose that a cursor is opened on this query, with the clause:

ORDER BY minage ASC, rating DESC

The answer is sorted first in ascending order by minage, and if several rows have the same
minage value, these rows are sorted further in descending order by rating. The cursor would
fetch the rowsin the order shown in Figure 5.18.

rertiree TILErLagE
= 253.9
3 25.5
ri 35.0

Figure 518 Order in which Tuples Are Fetched

8. ODBC AND JDBC: (******x**kx*)

ODBC and JDBC, short for Open DataBase Connectivity and Java DataBase
Connectivity, also enable the integration of SQL with a general-purpose programming
language. Both ODBC and JDBC expose database capabilities in a standardized way to the
application programmer through an application programming interface (API).

ODBC:

—->The Open Database Connectivity (ODBC) standard defines a way for an application
program to communicate with a database server.

—>ODBC defines an application program interface (API) that applications can use to open a
connection with a database, send queries and updates, and get back results. Applications such
as graphical user interfaces, statistics packages, and spreadsheets can make use of the same
ODBC API to connect to any database server that supports ODBC.

int CDBCexample()
{
RETCODE error,
HEMY &nv: /™~ environment *f
HDBC conn; /™ database connection =/

SQLANOCE vl Seny);

SaLAllocConnect{eny, &conn);

SaLConnect(conn, "aura.bell-labs.com”, SQLNTS, "avi”, SQLNTS,
"avipasswd”, SQL_NTS);

{

char branchname[80];
float balance;

int lenOutd, lenOut2;
HSTMT stmit;

saLallocstmt(conn, &stmt);
char = sglquery = "select branch_name, sum (balance)
from account
group by branch_name”;
error = SQLExXecDirect(stmt, sqlguery, SOLNTS);
if {error == SQL SUCCESS) {
SOLBIndCol{stmt, 1, SQL_C_CHAR, branchname , 80, &lenOutl);
SQLBIndColistmt, 2, SQL_C_FLOAT, &balance, 0, &lenOut2);
while (SQLFetchi{stmt) == SQL SUCCESS) |
printf (" %s %g' n", branchname, balance);
1

}

SOLFreestmtistmt, SQL.DROP);
SOLDisconnecticonn);
SCOLFreeConnect(conn);
SOLFreeEnv(eny);

Figure4.9 ODBC code example.

JDBC:

—>The JDBC (“Java Database Connectivity”) standard defines an API that Java programs
can use to connect to database servers.

—->Java Database Connectivity (JDBC) is an application program interface (API) specification
for connecting programs written in Javato the datain popular databases.

->JDBC supports a variety of features for querying and updating data, and for retrieving
guery results.

—->JDBC also supports metadata retrieval, such as querying about relations present in the
database and the names and types of relation attributes.

—>Figure 4.10 shows an example Java program that uses the JDBC interface.

public static void JDBCexample(String dbid, String userid, String passwd)

{
try
{

Class.forName ("oracle.jdbc.driver.OracleDriver’);

Connection conn = DriverManager.getConnection(
"ldbe:oracle:thin: @ aura.bell-labs.com:2000:bankdb”,
userid, passwd);

Statement stmt = conn.createStatement();

try {

stmt.executeUpdate(
“Insert into account values('A-9732°, 'Perryridge’, 1200)%);
| catch (SQLException sqle)

{
;

ResultSet rset = stmt.executeQuery(
"select branch_name, avg (balance)
from account
group by branch_name™);
while (rset.next()) {
System.out.printin({rset.getString("branch_name”) + " +
rset.getFloat(2));

System.out.printin{"Could not insert tuple. ” + sgle);

}

stmt.close();
conn.close();

}

catch (SQLException sqle)

{
}

1
->The code fragment in Figure 4.11 shows how prepared statements can be used.

FPreparedStatement pStmt = conn.prepareStatement(
"insert into account values(?.,7.7)");

pStmt.setString (1., "A-97327);

pStmt.setString (2, "Perryridge™);

pStmit.setint(3, 1200);

pStmt.execute Update();

pStmt.setString (1, "A-97337);

pStmit.execute Update();

System.out.printin("SQLException : * + sqle);

Figure 4.11 Prepared statements in JDOBC code.

Architecture:

- The architecture of ODBC/JDBC has four main components.
1. Theapplication
2. Thedriver manager

3. Several data source specific drivers, and
4. The corresponding data sour ces.

—>The application initiates and terminates the connection with the data source. It sets
transaction boundaries, submits SQL statements, and retrieves the results—all through a well-
defined interface as specified by the ODBC/JDBC API. The primary goal of the driver
manager is to load ODBC/JDBC drivers and to pass ODBC/JDBC function calls from the
application to the correct driver.

—>The driver manager also handles ODBC/JDBC initialization and information calls from
the applications and can log all function calls. In addition, the driver manager performs some
rudimentary error checking. - The driver establishes the connection with the data source. In
addition to submitting requests and returning request results, the driver translates data, error
formats, and error codes from a form that is specific to the data source into the ODBC/JDBC
standard.

- The data sour ce processes commands from the driver and returns the results.

—>Drivers in JDBC are classified into four types depending on the architectural relationship
between the application and the data source:

1. Type | (bridges): This type of driver translates JDBC function calls into function
calls of another API that is not native to the DBMS. An example is an ODBCJDBC
bridge. In this case the application loads only one driver, namely the bridge.

2. Typell (direct trandation to the native API): This driver translates JDBC function
calls directly into method invocations of the API of one specific data source. The
driver isdynamically linked, and is specific to the data source.

3. Typelll (network bridges): The driver talks over a network to a middle-ware server
that translates the JDBC requests into DBMS-specific method invocations. In this
case, the driver on the client site (i.e., the network bridge) is not DBMS specific.

4. Type IV (direct translation over sockets): Instead of calling the DBMS API
directly, the driver communicates with the DBMS through Java sockets. In this case
the driver on the client side is DBM S-specific.

9. COMPLEX INTEGRITY CONSTRAINTSIN SOL:
Integrity constraints need not only be applied on single columns, they can also be applied on
single table or group of tables (called assertions).

Congtraintsover a Single Table:

We can specify complex constraints over a single table using table constraints, which have
the form CHECK conditional-expression. For example, to ensure that rating must be an
integer in the range 1 to 10, we could use:

CREATE TABLE Sailors (sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL.

PRIMARY KEY (sid).

CHECK (rating >= 1 AND rating <= 10 })
To enforce the constraint that Interlake boats cannot be reserved, we could use:

CREATE TABLE Reserves [sid INTEGER,
bid INTEGER.
day DATE,
FOREIGN KEY (sid) REFERENCES Sailors
FOREIGN KEY (bid) REFERENCES Buoats
CONSTRAINT nolnterlakeRes
CHECK [‘Interlake’ <>
{ SELECT B.bname
FROM Boats B
WHERE B.bid = Reserves.bid)})

When a row is inserted into Reserves or an existing row is modified, the conditional
expression in the CHECK constraint is evaluated. If it evaluates to false, the command is
rejected.

Domain Congtraints: (***x****xxxkkk)
—A user can define a new domain using the CREATE DOMAIN statement, which makes use
of CHECK constraints.

—-> The syntax for creating a new domain is,

CREATE DOMAIN Domain_name Source domain (DEFAULT
value) CHECK (VALUE)

CREATE DOMAIN: A statement or keyword used to define a new domain.

Domain_name : Name of the new domain.

Source_domain: Name of the source domain from which new domain is derived.

DEFAULT value: We can also provide default values for the domains.

CHECK: This option is used to restrict the values in the particular field (for which a new
domain is specified). This option provides a condition that must be checked by all the tuples
of the column.

VALUE: The key word is used to provide a value to a domain variable.

Example:

CREATE DOMAIN ratingval INTEGER DEFAULT (
CHECK (VALUE >=1 AND VALUE <= 10 |

INTEGER is the base type for the domain ratingval, and every ratingval value must be of
thistype. Valuesin ratingval are further restricted by using a CHECK constraint; in defining
this constraint, we use the keyword VAL UE to refer to avalue in the domain.

Assertions. ICsover Several Tables:

—>Assertions are group of tables on which a constraint is applied. Unlike table constraints
which are applied on single table, assertions are applied on multiple tables.

Example:
As an example, suppose that we wish to enforce the constraint that the number of boats plus
the number of sailors should be less than 100. We could try the following table constraint:

(REATE TABLE bailors | sid INTEGER,

sname CHAR(10),

ratmg INTEGER,

age REAL.

PRIMARY KEY (sid).

CHECK | rating >= 1 AND rating <= 10)

CHECK | (SELECT COUNT (S.sid) FROM Sailors § |
+ (SELECT COUNT (B.bid) FROM Boats B |
<100)]

—>This solution suffers from two drawbacks. It is associated with Sailors, although it
involves Boats in a completely symmetric way. More important, if the Sailors table is empty,
this constraint is defined (as per the semantics of table constraints) to always hold, even if we
have more than 100 rows in Boats! We could extend this constraint specification to check
that Sailors is nonempty, but this approach becomes very cumbersome. The best solution isto
create an assertion, asfollows:

CREATE ASSERTION smallClub

CHECK ((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B)
< 100)

10. TRIGGERS AND ACTIVE DATABASES: (*****)

—>A trigger is a procedure that is automatically invoked by the DBMS in response to
specified changes to the database, and istypically specified by the DBA.

- A database that has a set of associated triggers is called an active database.

—>A trigger description contains three parts:

1. Event

2. Condition
3. Action

1. Event: A change to the database that activates the trigger.
—>Event describes the modifications done to the database which lead to the activation of
trigger. The following are fall under the category of events,
i) Inserting, updating, deleting columns of the tables or rows of tables may activate the
trigger.
ii) Creating, altering or dropping any database object may also lead to activation of
triggers.
iii)An error message or user log-on or log-off may also activate the trigger.
2. Condition: A query or test that is run when the trigger is activated.
—>Conditions are used to specify whether the particular action must be performed or not. If
the condition is evaluated to true then the respective action is taken otherwise the action is
rejected.
3. Action: A procedure that is executed when the trigger is activated and its condition is
true.

- The examples shown in Figure 5.19

—>The trigger called init_count initializes a counter variable before every execution of an
INSERT statement that adds tuples to the Students relation.

—>The trigger called incr_count increments the counter for each inserted tuple that satisfies
the condition age < 18.

CREATE TRIGGER init.count BEFORE INSERT ON Students {* Event */
DECLARE
count INTEGER.
BEGIN /* Action */
count ;= [
END
CREATE TRIGGER incr.count AFTER INSERT ON Students {* Event */
WHEN (new.age < 18] /¥ Condition; ‘new’ is just-inserted tuple */
FOR EACH ROW
BEGIN * Action; a procedure in Oracle’s PL/SQL syntax */
count = count + 1;
END

Figare 518 Examples [llustrating Trigeers

—->A row-level trigger is activated for each modified record, a statement-level trigger is
activated only once per INSERT command.

Advantages of trigger:

1) Triggers can be used as an alternative method for implementing referential integrity
constraints.

2) By using triggers, business rules and transactions are easy to store in database and can be
used consistently even if there are future updates to the database.

3) It controls on which updates are allowed in a database.

4) When a change happens in a database a trigger can adjust the change to the entire database.
5) Triggers are used for calling stored procedures.

10. DESIGNING ACTIVE DATABASES:

—>Active database contains a set of triggers and therefore it becomes quite difficult to
maintain active database.

—>What triggers are activated in what order can be hard to understand because a statement
can activate more than one trigger and the action of one trigger can activate other triggers.

Why Triggers Can BeHard to Understand:

—1n an active database system, when the DBMS is about to execute a statement that modifies
the database, it checks whether some trigger is activated by the statement. If so, the DBMS
processes the trigger by evaluating its condition part, and then (if the condition evaluates to
true) executing its action part.

—>|f astatement activates more than one trigger, the DBM S typically processes all of them, in
some arbitrary order. The execution of this action part of a trigger may in turn activate
another trigger. In particular, the execution of the action part of a trigger could again activate
the same trigger; such triggers are called recursive triggers. The potential for such chain
activations, and the unpredictable order in which a DBMS processes activated triggers, can
make it difficult to understand the effect of a collection of triggers.

Constraintsversus Triggers:
—>Triggers are more flexible than integrity constraints and the potential uses of triggers go
beyond maintaining database integrity.
—>Triggers are used to maintain the data integrity in the database. Whenever a change
(update, insert or delete) is done in a database, a trigger can be used to indicate that change.
There are several uses of triggers.

e To maintain dataintegrity.

e Toidentity the unusual eventsthat occursin a database.

e For security checks and also for auditing.

Chapter-5
5. SCHEMA REFINEMENT(NORMAL FORMYS)

Schema Refinement (Normalization) : Purpose of Normalization or schema
refinement, concept of functional dependency, normal forms based on
functional dependency(1NF, 2NF and 3 NF), concept of surrogate key, Boyce-
codd normal form(BCNF), Lossless join and dependency preserving
decomposition, Fourth normal form(4NF).

1. SCHEMA REFINEMENT (*****#kxxkkx)

—>A schema can be defined as a complete description of database. The specifications for
database schema are provided during the database design stage and this schema does not
change frequently.

- Schema Refinement is a technique of organizing the data in the database. Itis a
systematic approach of decomposing tables to eliminate data redundancy and undesirable
characteristics like Insertion, Update and Deletion Anomalies.

- Schema refinement is the process that re-defines (refining) the schema of a relation so as
to solve the problems caused by redundantly storing the information.

—~>Redundancy refers to repetition of same data or duplicate copies of same data sored in
different locations.

—>The Schema Refinement refers to refine the schema by using some technique. The best
technique of schema refinement is decomposition.

—>Decomposition can eliminate the redundancy.

1. Problems Caused by Redundancy : ((**********%)

—>Redundancy is a data organization issue. It allows unnecessary duplication of data to be
stored within the database. If modifications are performed to redundant data, then it is
necessary to perform the same modification in multiple fields of database.

-> Storing the same information redundantly, that is, in more than one place within a database,
can lead to several problems:

1. Redundant storage.
2. Update anomalies.
3. Insertion anomalies.
4. Deletion anomalies.

-> Schema diagram for Employee database is as follows,
2>Example:

Employee Emp_id, Emp_ name, Emp_section_id, Job_section, grade.

Emp_id | Emp_ nameEmp_section_id|Job_section grade
100001 | ANUPAMA 111 CLERK D
100002 | RAMEESHA 222 Secretary B
100002 | RAMEESHA 222 Secretary B
100002 | RAMEESHA 222 Secretary B
100003 | NAGINA 233 MANAGER | A
100001 | ANUPAMA 111 CLERK D
100004 KAVYA 444 Asst.Managery C

TABLE. An Instance of the Employee relation.

- Consider the above database table. The three tuples with Emp_id 100002 and two tuples
with Emp_id 100001 repeat the same name and same job section information. The repetition
wastes space as well as causes data inconsistency i.e., this redundant data may lead to loss of
data integrity.

—~>For example, some update operation is being carried out, entering new record for an
employee with id 100002. This must be done multiple time i.e., it must be done for each file
witch stores the employees details. This leads to redundant storage i.e., the same information
is stored multiple times.

1. Redundant storage: Some information is stored repeatedly.

2. Update anomalies: If one copy of such repeated data is updated, an inconsistency is
created unless all copies are similarly updated.

—If the update operation is performed, for example, the Emp_section_id 268 is updated to
520 and this correction is made only to the first record of the database, then this may lead to
inconsistent data unless all the copies in the database are updated. Thisisreferred to as update
anomalies. The changes must be done to all the copies of data.

3. Insertion anomalies: It may not be possible to store some information unless some other
information is stored as well.

—>For example, if a new employee record is being entered, who has not yet assigned an
Emp_id, now if we assume that the null values are not allowed, then it impossible to enter the
new record unless the new employee has been assigned an Emp_id. This is called insertion
anomalies.

4. Deletion anomalies: It may not be possible to delete some information without losing
some other information as well.

—>For example, if we want to delete the grade entries where grade is equal to ‘A’ then all the
information of Emp_section_id 268 will be deleted/loss.

2. Use of Decompositions:

—~>Decomposion is the solution to the problem caused by data redundancy. Decomposition
means breaking up the large schema into smaller multiple Schemas. Decomposition helps to
remove all the anomalies and helps to maintain data integrity.

—>We can restrict redundancy in Employee database by dividing it into two smaller
relations/Schemas as in tablelR and Table2R.

—>Now we can easily update Emp_section_id in the Schema Section without bothering
about the updations in the other tuples. To insert a new tuple, we can directly insert the new
record in the Schema section (With the help of Emp_section-id) even if the new employee
has not yet been assigned the Emp_id. To delete the entry with the grade equal to ‘A’, we
can do it directly on the Section schema which does not lead to loss of other information.
Thus, decomposion eliminates the Problems caused by different anomalies.

Emp_id| Emp_ name Job_section grade
100001 | ANUPAMA CLERK D
100002 | RAMEESHA Secretary B
100002 | RAMEESHA Secretary B
100002 | RAMEESHA Secretary B
100003 NAGINA MANAGER A
100001 | ANUPAMA CLERK D

100004 KAVYA Asst.Manager C

TABLE1R. An Instance of the Employee relation.

Emp_section_id| grade
100001 D
100002 B
100003 A
100004 C

TABLE 2R. An Instance of the Section Relation
2. FUNCTIONAL DEPENDENCIES :(********%x%)

—>FD is defined as the attributes of a table is said to be dependent on each other when an
attribute of atable uniquely identifies another atribute of the same table.

—>A functional dependency (FD) is akind of IC (Integrity Constraints) that generalizes the
concept of akey. Let R be arelation schemaand let X and Y be nonempty sets of attributes in
R. We say that an instance r of R satisfiesthe FD X — Y if the following holds for every pair

of tuplestland t2inr:

Ift1.X =t2.X, thentlyY =t2.Y

—2>That is, an FD X — Y says that is two tuples values in attributes X, must be in association
with two tuples values in attributes Y.

—2If column X of a table uniquely identifies the column Y of same table then it can
represented as X — Y (Attribute Y is functionally dependent on attribute X).

—>Consider the relation Employee in which Emp_id and Social_securiy_number are the
two attributes. Here, if the value of Social_securiy_number is used to determine the value of
Emp_id then Emp_id is said to be functionally dependent on Social_securiy_number. This
dependency can be diagrammatically shown as,

Emp_id = Social_securiy_number

Examples:

1. The Table illustrates the meaning of the FD AB — C by showing an instance that satisfies
this dependency.

—>Here, the first two tuples shows that an FD is not the same as a key constraint, although the
FD is not violated, AB is clearly not a key for the relation. The third and fourth tuples
illustrate that if two tuples differ in either the A field or the B field, they can differ in the C
field without violating the FD.

- Suppose, if we add atupple (al, b1, c3, d2) to the resulting instance would violate FD.

TABLE. An Instance that satisfies AR = (.

A B C [B
al ba c1 da
ail ba ci dz=
al bz 2 o
ail i e di

2. Let us consider the following relation r to see which functional dependencies are satisfied.

A B C »
al 1 ol di
mi bz Ch | oz
az= b= o= d=
a= Iz I d=z
as Ixz o g

TABLE1. Sample relation.

—>Observethat FD A->C is satisfied. Because, there are two tuples that have an A value as al
and these tuples have the same C value as c1. Similarly, the other two tuples with an A value
of a2 have the same C value c2. But, there are no tuples of A attribute having same value in A
tuples as well as in corresponding B tuples or D tuples. Thus, the FD A->B and A->D are not
satisfied.

—>Moreover, the functional dependency C-> A is not satisfied. Because, consider the last two
tuplestl = (a2, b3, c2, d3) and t2 = (a3, b3, c2, d4). These two tuples have the same C value
c2, but they have different A values, a2 and a3, respectively.

Trivial Functional Dependency:
—>Some functional dependencies are said to be trivial functional dependencies because
they are satisfied by all relations.

Example. FD A->A is satisfied by all relations involving attribute A. By reading the
definition of functional dependency once again, we see that, for al tuples t1 and t2 such that
t1[A] =t2[A], it isthe casethat t1 [A] =t2[A].

Student_Id - Student_Id &
Student_Name = Student_Name are trivial dependencies.

3. REASONING ABOUT FD’s:

—>If aset of FDs are given over arelation R, then several additional FDs satisfies over R, but
whenever al of the given set of FDs are satisfied.

Example: Consider the following relation,

Employees (Eno, Ename, Salary, Rating, Did, Since);
With thisrelation, the given FDs are,

1) FD Eno—>Did should satisfy and
2) FD Did - Rating should satisfy.

Therefore, if two tuples have the same Eno value, they must have the same Did value (from
the first FD), and because they have the same Did value, they must also have the same Rating
value (from the second FD).Therefore, the FD Eno> Rating also satisfies on Employees.

As aresult, we say that FD f is implied by a given set F of FDs, if f holds on every

relation instance that satisfies all dependenciesin F.

1. Closure of a Set of FDs:

—>The set of al FDs implied by a given set F of FDs is called the closure of F and is denoted
as F+.

—>The following three rules, called Armstrong’s Axioms, can be applied repeatedly to
compute all FDs implied by a set F of FDs. Here, we use X, Y, and Z to denote sets of
attributes over arelation schemaR:

Rule 1:

Reflexivity: If X 2Y,thenX — Y.

Rule 2:

Augmentation: If X — Y, then XZ — YZ for any Z.
Rule 3:

Trangtivity: If X ->YandY — Z,thenX — Z.

-1t is convenient to use some additional rules while reasoning about F.

- Armstrong’s axioms are said to be complete because all the FDs in closure F* are
computed by the repeated application of all these rules.

- Armstrong’s Axioms are ‘sound’ because they do not generate wrong dependencies

because they generate only ‘dependencies which are in the closure of F*
—>n addition to the above rules some other rules and also applied.

Rule 4:

Union: If X—>Yand X — Z, thenX — YZ.

Rule5:

Decomposition: If X — YZ, thenX — Y and X — Z.
Rule6:

Pseudo-trangitivity: If X =2 Y and Y=>P,then XZ 2> P
Example: Consider the following relation,

Sale (Productid, Date, Customer, Vender, Street)

—>Now, the Schema for this Particular relation can be represented as PDCV S which implies
the sale of product with Product with Production (P), on Date (D) to the Customer (C) is
done by the Vendor (V), who resides in the Street(S).

—>The following I C (Integrity Constraints) are applied to this relation,

1 Productid P isakey. All the attributes are dependent on key.

P - PDCVS.

A Vendor Purchases agiven Product on asingle date. VP = D.

The Customer purchases almost one Product from the Vendor. VC->P.
Every Vendor is associated with their own Street. V->S.

Every Product belongs to one of the Vendor. P>V.

abrwd

—>1In addition to these FDs, several other Fds also hold in the Closure of given FDs.

1) FromP->V, V->Sand transivity rule, we get P> S.
2) FromV->S and augmentation rule, we get VP> PS.
3) FromVP-> PS, VP - D and transitivity rule, we get VP - PDS.
4) FromVC - P, P> PDCVS and transitivity rule, we get, VC - PDCVS.
—>Decomposition can be applied so as to compute many other FD’s like. From
P->PDCV S and decomposition, we get the following FDs.
P> D,P>P, P> C,P>V, P>S

2. Closure of Attribute Sets:

—>1f we want to check whether a given dependency, say, X — Y, isin the closure of a set F
of FDs. Then we have to compute the attribute closure X+ with respect to F, which is the set
of attributes A such that

X — A can be computed using the Armstrong Axioms. The algorithm for computing the
attribute closure of aset X of attributes is shown in Figure 15.6.

closure = X;
repeat until there is no change: {
if there is an FD U — Vin F such that U C closure,

then set closure = closure U V

Figure 15.6 Computing the Attribute Closure of Attribute Set X

—>This algorithm can be modified to find keys by starting with set X containing a single

attribute and stopping as soon as closure contains all attributes in the relation schema.
—>By varying the starting attribute and the order in which the algorithm considers FDs, we
can obtain all candidate keys.

4. NORMAL FORM S (****************)

—~>Normal Form is a state of a relation that results by decomposing that relation for a good
design to avoid redundancy.

—~>Normalization is a process of deciding which attributes should be grouped together in
decomposing a given relation into smaller relations.

—>Normalization is a process of decomposing relations to produce smaller, “well-structured
relations.

—~>Normalization is atool to validate and improve a logical design, so that it satisfies certain
constraints that avoid unnecessary duplication of data.

—~>Normalization technique involves a sequence of rules that are employed to test individual
relations so that the database can be normalized to any degree. The main objective of
normalization is to refine the design of database in order to remove data maintaining
anomalies, reduce data redundancy and to eliminate data inconsistency.

—>The process of Normalization is based on the concept of Normal forms. Each and every
normal form has its own set of properties and constraints. A relation is said to be in particular
normal form only if it satisfies all the properties of normal form associated with that normal
form. These properties are usually applied on the attributes of the relation and also on the
relationship that exist between these relations.

Different types of Normal Forms are as follows,

1. First Normal Form
2. Second Normal Form
3. Third Normal Form
4. Bovece-Codd Normal form
5. Fourth Normal Form
1. First Normal Form (INF)(*x*******xxxxx+)

->”Any multi-valued attributes (also called repeating groups) have been removed, so thereis
a single value at the intersection of each row and column of the table”.

Emp_id Emp nameEmp_section idEmp_address| Dependents

100001 | ANUPAMA 401 Rajahmundry| Mother, Father
100002 | ABEELA 402 Nandigama |Father, Mother, Sister
100003 | RANIA 403 Kovwuru |Brother, Sister
100004 | KAVYA 404 Vijayawada Father,Mother, Sister
100005 | NAGINA 405 Kakinada |Mother, Brother

TABLE 11R. An Instance of the Employee relation.

Emp_id Emp_ nameEmp_section idEmp address| Dependents
100001 (ANUPAMA 401 Rajahmundry Mother
100001 ANUPAMA 401 Rajahmundry | Father
100002 | ABEELA 402 Nandigama Father
100002 | ABEELA 402 Nandigama | Mother
100002 | ABEELA 402 Nandigama Sister
100003 | RANIA 403 Kovvuru Brother
100003 | RANIA 403 Kovvuru Sister
100004 | KAVYA 404 Vijayawada | Father
100004 | KAVYA 404 Vijayawada | Mother
100004 | KAVYA 404 Vijayawada | Sister
100005 | NAGINA 405 Kakinada Mother
100005, NAGINA 405 Kakinada Brother

TABLE 22R. An Instance of the Employee in 1NF.

—A relation schema is said to be in first normal form if the attributes values in the relation
are atomic, i.e., there should be no repeated values in a particular column. A attribute is said
to be value atomic value if it contains only a single, unique value. A relation is said to contain
atomic values, if there is an unique value of data item for any given row and column
intersection.

Example: Consider an Employee relation with the additional attribute dependents as shown

in Table. 11R.

—>Here, the column dependents have non atomic values. In order to convert this relation into
INF, we have to convert these non atomic values to atomic values.

—>The Table. 22R shows the relation “Employee” in INF.

—->Now therelation Employee isin INF since the column dependents have atomic value. But
other attributes i.e., Emp_id, Emp_section_id, Emp_name, and Emp_address are all
repeating and forming a group called repeated groups. That is, for each value of attribute
‘dependents’ the values are repeating. However, the rule of INF says that any repeated group
in arelation must be eliminated as it gives rise to data redundancy. So, in order to delete the
repeated groups from the table, the table must be decomposed into other smaller tables by
providing a link to the decomposed table (link specifies the parent table which is which is
decomposed into child tables).

—>For example, the above relation “Employee” can be decomposed into two tables namely,

1. Emp
2. Emp_dependents.

—>Each of these tables do have their own primary keys. For table “Emp”

the primary keys are Emp_id and for table “Emp_dependents” primary key is S.no.
Attribute ‘Emp_id’ is present in both tables which specify the link between two tables and the
original table from which the tables are derived.

- The most important point to remember is that arelation in database must always be in first
normal form.

Drawbacks of INF: The main drawback of INF is redundancy of data.

Emp_ id [Emp_ name Emp_ section_id| Emp_ address
100001 ANUPAMA 401 Rajahmundry
100002 ABEELA 402 Nandigama
100003 RANIA 403 Kovvuru
100004 KAVYA 404 Vijayawada
100005 NAGINA 405 Kakinada

TABLE 33R. An Instance ofthe Emp relation.

S.No Emp_id | Dependents
1. 100001 Mother
2. 100001 Father
2. 100002 Father
LR 100002 Mother
5. 100002 Sister
6. 100003 Brother
. 100002 Sister
8. 100004 Father
9. 100004 Mother
10, 100004 Sister
11, 100005 Mother
12, 100005 Brother

TABLE 44R. An Instance of the Emp_dependents.

2. Second Normal Form (2NF): (¥ ******x%x)

-”Any partial functional dependencies have been removed”.

—A relation is said to be 2NF if it isin INF and every non key attribute is fully functionally
dependent on primary key attributes.

—>1f any one of the following condition is satisfied, then a relation (which is in INF) is in
2NF:

1). There should be only one attribute associated with the primary key.

2). There must be no non-key attributes in the relation.

—>Non-key attribute must be functionally dependent on the set of primary key attributes i.e.,
partial dependencies must not exist.

Example: Consider an example of Student Relation.

Student (Student id, Class id, Student name, Course_id, Time)

(Student_id, Class-id) isthe PRIMARY KEY.

Student id |Class id|Student name Course id| Time
00011 502 ANUPAMA 2A 10/10
00012 503 ABEELA 3A 10/07
00013 502 KAVYA 2A 10/15
00014 504 NAGINA 4A 10/08
00014 505 NAGINA 5A 10/17

TABLE 55R. An Instance of the Student relation.

- An instance of Student Relation as shown in Table 55R.
- A student can attend different course in different classes at different times.

—>The above relation is not in 2NF, as the name of the student can be determined by
Student_id. Therefore a non key attribute (name) is functionally dependent on a part of key
(Student_id) i.e., partial dependency exist due to which of the following problems are
encountered.

1). Data Redundancy: The name of the student is repeated every time he/she takes a
different course due to which loss of data integrity occurs. This is because the relation will
show different rows of information for the same student.

2). Update Anomalies. If name of the student is updated, then the entire tuple of the student
must be updated. Thus, giving rise due to update anomalies.

3). Insertion Anomalies. This also leads to insertion anomalies because if the student is not
attending any classes then there will be no rows in which to keep the student’s name.

- Therefore, to solve these problems, the Student relation is broken down into two sub tables
(child) both of which are in 2NF.

1) Student (Student_id, Class_id, Course id, Time)
2) Student1 (Student_id, Student name)

Where,
(Student_id, Class id) isthe COMPOSITE KEY.

Student id [Class id| Course id Time
00011 502 2A 10/10
00012 503 3A 10/07
00013 502 2A 10/15
00014 504 4A 10/08
00014 505 5A 10/17

TABLE R1. Student1 Relation whichisin 2NF.

These two relations (TABLE R1 and TABLE R2) are called projections of the original
relation. A projection in a relation selects certain attributes from the original relation and
presents them in a new relation. These two projections are in 2NF and also solve all the
problems listed above.

Student _id| Student name
00011 ANUPAMA
00012 ABEELA
00013 KAVYA

00014 NAGINA

TABLE Rz. Student2 Relation which is in 2NF.

- The following steps are considered for decomposing a non-2NF relation into 2NF
relation

1) Create anew relation by using the attributes from the offending FD as the attributes of
the new relation (i.e., eliminate “Student name” from the original table).

Student_id = Student_name (Name is now fully functionally dependant on key).

2) Make determinant (left hand side of the equation) i.e., Student_id as the PRIMARY
(determinant) KEY of the new relation.

3) Delete the attribute on the right hand side (Student_name) from the original relation.

4) Repeat the steps (1, 2, 3) if more than one FD prevents the relation from being in 2NF.
5) Place all the attributes functionally dependent on the determinant (if it is appearing in
more than one FD) as non key attributes in arelation having deter minant key.

3. Third Normal Form (3NE): (******x%x*)

—”Any transitive dependencies have been removed”.

—>A relation issaid to be 3NF if it isin 2NF and does not have transitivity dependencies.

—>A relation is said to be in 3NF if every determinant is a key i.e., for each and every
functional dependency FD: A - B, A isaKey.

—>I1f any relation is in 3NF, then the default that relation isin 2NF.

—>Consider the same relation “Student” as discussed before but with additional attribute
“Fee” [For a particular course].

Student (Student_id, Student name, Course id, Fee)

Student id|Student name |Course id Fee
00011 ANUPAMA 2A 5,000
00012 ABEELA 3A 3,500
00013 KAVYA 2A 5,000
00014 NAGINA 4A 4,500

TABLE R11. An Instance of Student relation.

Consider the following FDs,
FD : Student id 2 Course id

FD : Student id = Fee

These two FDs are in 3NF since both of them satisfies the 3NF criterion i.e., the determinant
should be a PRIMARY KEY. These two FDs are in 3NF, which also concludes that these
FDs are in 2NF.

Now consider an another FD,

FD : Course id = Fee

—2>”Fee” attribute is functionally dependent upon the Course id but this Course id is not
PRIMARY KEY and hence this FD violates the 3NF criterion and therefore the relation
“Student” is not in 3NF (because according to the definition of 3NF for every FD : A = B,
A should beaPRIMARY KEY).

—>The following isthe list of problems which arises when arelation is not in 3NF form,

1) The attribute “Fe€” is repeated for every row where the Course_id is same. This
leads to data redundancy and also wastage of storage space.
2) If the “Fee” of the course is updated, then every such row must be updated leading to

update anomalies. If we delete the attribute Fee then we may lose the data giving rise to delete
anomalies.

3) If there are no Course_ids to be entered then there are no rows in which to keep the
attribute “Fee” leading to insertion anomalies.

—All the problems discussed above are similar to the problems of 2NF. In order to solve
these problems, the relation must be converted to 3NF form. The following are the steps

involved in the process of conversion

Student (Student_id, Student name, Course_id, Fee)

FD : Student_id = Course_id
FD : Student id = Fee

FD : Student_id
FD : Course id = Fee

—>The last FD is also called as Transitivity Dependency which occurs when a non key
attribute [(Course_id) atribute which is not a PRIMARY KEY] is functionally dependent
upon the other non key attributes (Fee).

1) The first step towards the conversion is the removal of the attribute, which is on the
right hand side of the FD, violates the conditions of 3NF i.e., eliminating “Fee” attribute from
original relation which gives rise to relation — StudentlRR Course id is the FOREIGN
KEY references Student2RR.

StudentiRR (Student id, Student name, Course_id).

2) From another relation, Student2RR, which consist of attributes of the following FD.
FD : Course id = Fee.
The determinant of this FD isthe PRIMARY KEY of the new relation.

StudenzRR (Course id, Fee)

Student id|Student name |Course id
00011 ANUPAMA 2A
00012 ABEELA 2A
00013 KAVYA 2A
00014 NAGINA JA

TABLE. StudentiRR Relation whichis in 3NF.

Course 1id Fee

2A 5,000
3A 3,500
4A 4,500

TABLE. Student2RR Relation whichisin gNF.

—>To Summarize, We Can Say that if arelation isin 3NF then it follows that it isalso in 2NF
and also in INF.

3NF > 2NF S INF

4. Boyce-Codd Normal Form (BCNFE): (*******x**x)
—>Any remaining anomalies that result from functional dependencies have been removed.

- Let R be arelation schema, X be a subset of the attributes of R, and let A be an attribute
of R. Risin Boyce-Codd normal form if for every FD X — A that holds over R, one of the
following statementsistrue:

A € X; that is, it isatrivial FD, or

X isasuperkey.

—>In Boyce Codd’s normal form the attributes on the left hand side of functional
dependency must be a candidate key (A candidate key is a minimal set of attributes whose
values uniquely identify an entity in the set, we designate one of them as the primary key. In
simple words, two or more primary keys together form a composite key/candidate key).
—>According to Codd’s rules, a relation schema R is in BCNF if it is satisfies 3NF. But,
when a relation has more than one candidate key, anomalies may result even though that
relation isin 3NF.

Example: Consider the Student_advisor relation, which is in 3NF but not in BCNF as
shown in Table.

The Student_advisor relation holds following functional dependencies,

FD: (Sid, Major) 2 Advisor, Major_gpa.....(1) FD
FD : Advisor 2 Major (2) FD

Sid Major Advisor Major_gpa
100001 Electricals ANUPAMA 9.0
100002 Computers ABEELA 9.5
100003 Electronics KAVYA 10.0
100004 Information NAGINA 9.6

TABLE. The Student_Advisor Relation.

1) FD satisfies BCNF because the above relation has (Sid, Major) asa PRIMARY KEY
i.e., the primary key for this relation is composite primary key. Whereas, the Advisor and
Major_gpa are functionally dependent on the above composite primary key. The above
relation also contains the constraint that a given student can have more than one major, where
for each Major a student has exactly one Advisor and one M ajor_gpa.

2) FD satisfies BCNF because Major is functionally dependent on Advisor. That is, each
Advisor advises exactly one major.

Therefore, by observing carefully the following FD’s,

FD : (Sid, Major) - Advisor, Major_gpa.....(1) FD

FD : Advisor 2 Major.............(2) FD
We conclude that, the above relation isin 3NF but not in BCNF.

Converting a Relation to BCNF:
A relation that is in 3NF (but not in BCNF) can be converted to relations in BCNF using a
simple two step process as follows,

Stepl: The given relation is modified so that the determinant (left hand attribute) in the
relation which is not a candidate key becomes a component of the primary key of the new
modified relation. The attribute that is functionally dependent on that determinant becomes a
non-key attribute. The result is as follows,

FD : (Sid, Advisor) = Major, Major_gpa(1) FD
FD : Advisor & Major........ (2) FD

Observe that the determinant Advisor becomes part of the composite primary key instead of
major in (1) FD. And the attribute Major which is functionally dependent on Advisor,
becomes a non-key attribute in (2) FD.

Step2: In the above (1) FD and (2) FD, there is a partial dependency and conversion process
of step2 is to decompose the relation with new FD’s to eliminate the partial functional
dependency.

—->Thus, the Student_advisor relation is decomposed into smaller relations as shown in
following two tables.

Sid Advisor Major_gpa
100001 ANUPAMA 9.0
100002 ABEELA Q.5
100003 KAVYA 10.0
100004 NAGINA 9.6

TABLE. The Student AdvisoriRelation.

Advisor Major
ANUPAMA Electricals
ABEELA Computers
KAVYA Electronics
NAGINA Information

TABLE. The Student Advisor2 Relation.

—“>Where Sid, Advisor is the composite primary key of Student_advisorl relation and
Advisor isthe primary key of Student_advisor2.

5. PROPERTIES OF DECOMPOSITIONS:

1) Lossless-Join Decomposition

2) Dependency-Preserving Decomposition

1. L osdess Join decomposition: (******x)

Lossless join decomposition is one of the properties of decompositions. This is dependency
also called as non-additive or non-less join dependency. In a more specific way, lossless
join dependency can be defined as the one which generates no additional tuples when the
natural ‘join” operation is performed on the decomposed relation schemas.

Example: Consider the Student Relation.

Student (Sudent id, Student name, Location)

Thisrelation can be broken down into two relations as follows,

1) Loecation (Student id, Location) and
2)Name (Student_id, Student name)

—->When we perform a natural join operation on these two schemas, the original “Student”
relation is sustained i.e.,

Location IB<d Name = Student

Sid Location Student name

100001 Rajahmundry| ANUPAMA

100002 Nandigama ABEELA
100003 Kovvuru KAVYA
100004 Vijayawada NAGINA

TABLE. An instance of Student relation.

Sid Location Sid Student name
100001 Rajahmundry 100001 ANUPAMA
100002 Nandigama 100002 ABEELA
100003 Kovvuru 100003 KAVYA
100004 Vijayawada 100004 NAGINA

TABLE. Combination of Location and Name Relation.

Location B><1 Name = Student

Sid Location Student name

100001 Rajahmundry| ANUPAMA

100002 Nandigama ABEELA

100003 Kovvuru KAVYA

100004 Vijayawada NAGINA

TABLE. After performingJoinoperation
Location and Name Relation.

—~>No additional tuples are generated and neither data is duplicated nor is data lost. Therefore
the relation Student is lossless.

2. Dependency Preserving Decomposition:

—~>Risarelational schemathat is decomposed into Schemes R1, Rz, Ry with Attributes, A,
B, C....by applying all the steps of normalization. Let F be the set of functional dependencies
that hold over R and F1, F», Fs.....be the set of functional dependencies that hold over Ry, R2
...., Rn respectively. Fi refersto the attributes of Ri wherei =1, 2, 3.....

—21f R is decomposed into two relations R1 and R2 with an attribute set of S1 and S2. Then
the projection of R on R1 can be defined as a set of functional dependencies in the closure of
F* consisting of the attributes present in R1. The notation for representation of a Projection of
Fon Slin Fs. Similarly, the projection of F on S2in Fe.

—~>Now , the relation R with a set of FDs F is decomposed into two relations R1 and Rz with
an attribute set of S1 and S2 is said to be dependency Preserving if, (Fsa U Fso)" =F".

—>The union of Closure Set of two projections must be equal to the Closure Set of
dependencies of the original relation.

—>In other words, it can be said that relation R is decomposed into projections Ri, Rz, Rz in
such away that the enforcement of constraint to set of Fi, F,, Fi

is altogether equal to enforcing the constraint on the original set F. Thus, the decomposition
is said to be “dependency preserving”.

EXAMPLE: Consider an example where the relation Z is decomposed into relations. The
attribute set of Z consist of PRQ and the attribute set of decomposed relations consist of PQ
and QR. The set of FDsthat hold over Z includesP=> Q, Q> RandR => P.

Fpo - Set of attributes of the relation containsP 2> Q and Q = P.

For - ContainsQ 2> Rand R 2> Q.

Now, the original set of functional dependencies consist of,

1) F

2 P2>Q
3 Q2R
4 RDP

—~>Now, the union of closure of Fpg and Fgr includesFpq U For
P2>Q,Q2>P Q>R R20Q

WithR = Q, Q = P and Transitivity

Weget, R> P

Thus, the decomposition is said to preserve the dependency.

6. OTHER KINDS OF DEPENDENCIES:

1. Multivalued Dependencies (¥******x*kxx%*)
To understand the concept of multivalued dependencies, consider the following relation.

Course Student Text book
Chemistry JACK Principles of Science
Chemistry JACK ABC of Chemistry
Chemistry JOHN Principles of Science
Chemistry JOHN ABC of Chemistry

Physics JACK Principles of Science
Physics JACK Optics
Physics JACK Optical Physics

TABLE. BCNF Relation with Redundancy.

—>Here, each of the tuple means that the Course ‘C’ is taken by the Student ‘S’ and the text
book ‘T’ is the one which is recommended. The attributes Student and Text book are
independent of each other. Any number of students can refer any Text book and take any
Course. The composite key for thisrelation consist of (CST).

- Since all the attributes are part of key, this relation is in BCNF and therefore, there is no
use of decomposing it further. We can also notice that much of the data is being repeated.
That is, the Text book for chemistry is ABC of chemistry is repeated for each student.

- This redundancy again gives rise to update anomalies. By decomposing this relation into
two schemas with attributes CS and CT, we can deal with redundancy.

- It isworth noticing that the redundancy is due to the fact that Students and Text books are
independent of each other. Such type of constraint is an example of multivalued dependency
of MVD.

CS CT

Course |Student| Course Text book

Chemistry| JACK |Chemistry] ABC of Chemistry

Chemistry|JOHN |Chemistry|Principles of Science

Physics | JACK Physics |Principles of Science

Physics | Optics

Physics |Optical Physics

TABLE. Decomposing CST Relation as CS and CT.

- By decomposing the relation we can eliminate the update anomalies. For example, if we
want to enter the data that a new Student is taking Chemistry Course then we needs to enter
asingle tuple in the relation CS.

MV Ds are generalization of functional dependencies. They can be represented as,

Course> > Student

Course> > Text book

This read as “Student is multi dependent on course” or “Course multi determines Text
book™.

The meaning of MVD Course> - Student is,

There exists a set of Students corresponding to each Course Ci.e., for a Course C and a Text
book B, the set of Students matching the pair (C, B) in CST depends on the value of C only,
it is independent of the value B. A multivalued dependency can be defined as, if X, Y, Z are
the attribute sub sets of attribute set of relation A then Y is said to be multi dependent on X
if for every instance of A, aset of Y values matching a given pair (X value, Z value) depends
only on the X value and does not depend on Z value.

X2>=2>Y

—~>Every FD isanM VD,
i.e, X > 2> YthismeansX 2> 2> Y
Five rules are used to compute additional FDsand MV Ds. They are

1) MVD Complementation: f A 2 2 B_then A> 5 R -AB.
2)MVD Augmentation: If A 2 =2 Band C C D then AD = = BC.
3) MVD Transitivity: If A=> = B and B> —2>C then A> =2 (C-B)

4) Replication: If A>-2>B, then A>->B

5) Coalescence: If A= -2 B and there is a C such than CI B is empty.

C>Dand D € B. then A>D.

Fourth Normal Form:
Fourth Normal form isadirect generalization of BCNF. Let R be arelation schema, A and B
be attributes of R, and F be a set of dependencies that includes both FDs and MVDs. Then R

is said to be in Fourth Normal Form (4NF) if for every MVD A-> - B that holds over R,
one of the following statements is true,

1) BSAor AB=R,0r

2) Alisasuper key.

Example: Consider a relation schema ABCD and suppose that the FD A->BCD and the
MVD B->->C are given as shown in Figure 15.5

Bl€ |4 | D |

f i i1y ey —_— lllIrll" L

b ca | s | day | — tuple ts

b 1 | aa | da | — tuple iq

Figure 15.15 Three Tuples from a Legal Instance of ARCD
—>Figure 15.15 shows three tuples from relation ABCD that satisfies the given MVD B
—— C. From the definition of an MVD, given tuples t1 and t2, it follows that tuple t3 must
also be included in the above relation. Now, consider tuples t2 and t3. From the given FD A
— BCD and the fact that these tuples have the same A-value, we can compute that c1 = c2.
Therefore, we see that the FD B — C must hold over ABCD whenever the FD A — BCD
and the MVD B —— C holds. If B — C holds, the relation ABCD is not in BCNF but the
relation is indNF.

Uses of 4NF: The Fourth normal form is useful because it overcomes the problems of
various approaches in which it represents the multivalued attributes in a single relation.

Join DependenCIes :(************)

A join dependency refers to a constraint that is provided on a group of relations over a
database schema

A join dependency is a further generalization of MV Ds. A join dependency (JD) x {R1, ...
, Rn} is said to hold over arelation R if R1, ... , Rn is a lossless-join decomposition of R.
An MVD X —— Y over a relation R can be expressed as the join dependency™ {XY, X
(R-Y)}. As an example, in the CTB relation, the MVD C —— T can be expressed as the
join dependency» {CT, CB}.

Example: Consider a schema table called Project with the three attributes i.e., Studentid,
Studentname, Projectname and Proj ecttype. With this information, it can be clearly noted
that the following relations can be derived.

1) Studentname depends on Studentid
2) Projectname dependson Studentid
3) Projectname depends on Studentid.

Thus, these three relations can be expressed by using a join dependency relationship, which
isasfollows,

*((Studentid, Studentname), (Studentid, Projectname), (Studentid, Proj ecttype))

If every Student does a different Project i.e., every Student deals with a different Projecttype
then there exists a Join dependency, which is as follows,

*((Studentid, Studentname), (Studentid, Projecttype), (Studentname, Projecttype),
(Studentid, Projectname))

(OR)

*((Studentid, Studentname, Projecttype), (Studentid, Projectname)).

Fifth Normal Form:

A relation schema R is said to be in fifth normal form (5NF) if for every JD x{R1, ...,
Rn} that holds over R, one of the following statementsistrue: Ri = R for some i, or The JD
isimplied by the set of those FDs over R in which the left side isakey for R.

—Intuitively, we must be able to show that the decomposition of R into {R1, ... , Rn} is
lossless-join whenever the key dependencies (FDs in which the left side is a key for R) hold.
 {R1, ..., Rn}isatrivial JD if Ri = R for somei; such a JD always holds.

The following result helps us to safely ignore join dependency information.

“If arelation schemaisin 3NF and each of its keys consists of a single attribute, it isalso in
SNF”.

The conditions identified in this result are sufficient for a relation to be in 5NF, but not
necessary.

Chapter-6
6. TRANSACTION MANAGEMENT

1. TRANSACTION CONCEPT:

—>A Transaction is a set of changes that must all be made together. It is a collection of
operations that form a single logical unit of work. It must be either completed or entirely
apported to ensure the consistency and integrity of database.

—>A Transaction is an execution of a user program and is seen by the DBMS as a series or list
of actions i.e., the actions that can be executed by a transaction includes the read and write
operations of database.

For Example - A transfer of money from one bank account to another requires two changesto
the database both must succeed or fail together.

Consider the example - Y ou are working on a system for a bank. A customer goes to the ATM
and instructs it to transfer RS 1000 from saving to a checking account. This simple transaction
requires 2 steps.

1). Subtracting the money from the savings account balance.
2). Adding the money to the checking account balance.

The code to create this transaction will require two updates to the database. There will be two
SQL statements-one UPDATE command to decrease the balance in savings and a second
UPDATE command to increase the balance in the checking account. Both changes must be
made successfully. Thus a transaction is defined as a set of changes that must be made
together.

PROCESS OF TRANSACTION:

—>The transaction is executed as a series of reads and writes of database objects.

1). READ OPERATION: To read adatabase object, it is first brought into main memory from
disk and then its value is copied into a program variable.

2).WRITE OPERATION: To write a database object, memory copy of the object is first
modified and then written to disk.

Example: Let T1 be a transaction that transfers $100 from account A to account B. This
transaction can be illustrated as follows,

T1 :read (A);
A = A-100;
write (A);
read (B);

B :=B+100;
write (B);

PROPERTIES OF TRANSACTION (ACID PROPERTIES):

(*************************************)

—->ACID (Atomicity, Consistency, Isolation, and Durability) is a set of properties that
guarantee that database transactions are processed reliably.

—> There are four important properties of transactions that a DBMS must ensure to maintain
data in the face of concurrent access and system failures:

A - Atomicity

C - Consistency
I - Isolation

D - Durability

1. Atomicity-(all or nothing):

—>Users should be able to regard the execution of each transaction as atomic: either all actions
are carried out or none are. Users should not have to worry about the effect of incomplete
transactions (say, when a system crash occurs).

—A transaction is said to be atomic if a transaction always executes all its action in one step or
not executes any action at all.

Example: Suppose Anupama Parameswaran had Rs50000 in her account and Red Queen
has Rs20000 in her account. Now Anupama transfers a amount of Rs5000 to Red Queen. A
transaction debits the amount from Anupama’s account, but before it could be credited to Red
Queen, if there is afailure then transaction would result in loss of Rs5000.

—>Because, the amount is deducted from Anupama’s account but it is not added to Red
Queen’s account. This leaves the data in an inconsistent state.

—1f there is failure during transaction execution, then measures taken to get back the datain a
form which was in, before transaction. This istaken care of by management component.

2. Consistency (No violation of Integrity Constraints):

—~>Each transaction, run by itself with no concurrent execution of other transactions, must
preserve the consistency of the database. This property is called consistency, and the DBMS
assumes that it holds for each transaction. Ensuring this property of a transaction is the
responsibility of the user.

—A transaction must preserve the consistency of a database.

Example: Consider a transaction that involves transfer of amount. If amount is debited from
account ‘Anupama’ and credited to account ‘Red Queen’, after the transaction the sum
Anupama + Red Queen should be the same as it was before transaction. However at an
intermediate stage, where the amount is deducted from Anupama but not yet credited to Red
Queen, the sum Anupama + Red Queen would not be same and it need not be.

—> 1t isthe responsibility of application program to ensure consistency.

3. Isolation-(concurrent changesinvisibles):

—>Users should be able to understand a transaction without considering the effect of other
concurrently executing transactions, even if the DBMS interleaves the actions of several
transactions for performance reasons. This property is sometimes referred to as isolation:
Transactions are isolated, or protected, from the effects of concurrently scheduling other
transactions.

—->The transaction must behave as if they are executed in isolation. In other words if
transaction are executed concurrently the result must be same.

T1 Subtracts 500 from Anupama
T1Adds 100 to Red Queen

T2 Subtracts 500 from Red Queen
T2 Adds 100 to Anupama

—>|f these operations are performed in order, isolation is maintained otherwise there will be an
error.

4. Durability-(committed update persist):

—>0Once the DBMS informs the user that a transaction has been successfully completed, its
effects should persist even if the system crashes before all its changes are reflected on disk.
This property is called durability.

- The effect of complete or committed transaction should persist even after a crash.

—>The recovery-management component of database systems ensures the durability of
transaction.

STATES OF TRANSACTION:

partially

cormmitted
cormamitited

I--.'.I Il It"L‘.' ..'ll'll"}rt ._.1|_-|

2>A transaction must be in one of the following states.
1. Active-In this state, the transaction is being executed. This is the initial state of every
transaction.
2. Partially committed- When a transaction executes its final operation, it is said to be in a
partially committed state.
3. Failed-A transaction is said to be in a failed state if any of the checks made by the database
recovery system fails. A failed transaction can no longer proceed further.
4. Aborted-If any of the checks fails and the transaction has reached a failed state, then the
recovery manager rolls back all its write operations on the database to bring the database back
to its original state where it was prior to the execution of the transaction. Transactions in this
state are called aborted. The database recovery module can select one of the two operations
after atransaction aborts

e Re-start the transaction

e Kill thetransaction

5. Committed-If a transaction executes all its operations successfully, it is said to be
committed. All its effects are now permanently established on the database system.

2. TRANSACTIONSAND SCHEDULES:

—A transaction is seen by the DBMS as a series, or list, of actions. The actions that can be
executed by a transaction include reads and writes of database objects. A transaction can also
be defined as a set of actions that are partially ordered. That is, the relative order of some of the

actions may not be important. In order to concentrate on the main issues, we will trest
transactions (and later, schedules) as alist of actions.

—>A schedule is a list of actions (reading, writing, aborting, or committing) from a set of
transactions, and the order in which two actions of atransaction T appear in a schedule must be
the same as the order in which they appear in T. In short, a schedule represents an actual or
potential execution sequence.

->Consider the schedule of an execution order for actions of two transactions T1 and T2 as
shown in Figure 18.1.

/i T2
R(A)
W(A)
R(B)
W (B)
R(C)
W(C)

Figure 18.1 A Schedule Involving Two Transactions

- We must forward in a schedule as row-wise, i.e., from one row to the next row and so on.
Thus, a schedule describes the actions of transactions performed by the DBMS. In addition to
these actions, a transaction may carry out other actions, such as reading or writing from
operating system files, evaluating arithmetic expressions, and so on. Note that the schedule in
Figure 18.1 does not contain an abort commit action for either transaction because it is not a
complete schedule.

—>A schedule that contains either an abort or a commit for each transaction whose actions are
listed in it is called a complete schedule. A complete schedule must contain all the actions of
every transaction that appearsin it.

Serial Schedule:

—>Serial Schedule is a Schedule wherein the transactions are executed one after another
sequentially. All the instructions belonging to atransaction appears together in Serial Schedule.
The number of Serial Schedules generated for a given Schedule depends on the number of
transactions (i.e., if there are K-transactions, then K! serial schedules are generated).

T1 T2

Read (Anu)
Wrtite (Anu)
Read (Red)
Write (Red)
Read (Anu)
Wrtite (Anu)
Read (Red)
Write (Red

TABLE. Serial schedule

Non-Serial Schedule:

—>If multiple transactions are executed concurrently, then the schedule is not a Serial
Schedule. In concurrent execution, the operating system initially executes few instructions of
first transaction and then CPU performs Context Switching and executes the instructions of
second transaction. Later it switches back to first transaction and instructions of second
transaction. Later it switches back to first transaction and executes the remaining instructions
and so on. If several transactions are executed concurrently, then CPU time is shared
synchronously between all these transactions.

—>In concurrent execution, transactions may be interleaved. Due to this, there is a possibility
that more than one execution sequence may exist. However, it is not possible to know the
number of instructions that are executed in a transaction before CPU switches to another
transaction.

-1t is not always true that concurrent execution leads to consistent state i.e., they may be
schedules that may leads to incorrect result.

—>Example of one such Schedule is given in atable.

T1 T2

Read (Anu)

Anu: = Anu-200

Read (Anu)

Anu: = Anu - (Anu*20/100)

Write (Anu)

Read (Red)

Write (Anu)

Read (Red)

Read: = Red+200

Write (Red)

Red: =Red*(Red*20/100)

Write (Red)

TABLE. Serial S1

->Since, the execution of above Schedule results in incorrect state, therefore the sum of both
accountsis not stored.

3. CONCURRENT EXECUTION OF TRANSACTIONS(**)

->The DBMS interleaves the actions of different transactions to improve performance, in terms
of increased throughput or improved response times for short transactions, but not all
interleaving should be allowed.

1. Motivation for Concurrent Execution:

—->The schedule shown in Figure 18.1 represents an interleaved execution of the two
transactions. Ensuring transaction isolation while permitting such concurrent execution is
difficult, but is necessary for performance reasons.

Advantages of Concurrent Execution of Transaction:

The DBMS interleaves the actions of different transactions to improve performance of system
as discussed below:

1). Improved Throughput: Consider that transaction are performed in serial order and active
transaction is waiting for a page to be read in from disk, then instead of CPU waiting for a
page, it can process another transaction. This is because I nput/output activity can be done in
parallel with the CPU activity. The overlapping of Input/output activities of CPU reduces the
amount of time disks and processors are idle and increases system throughput (the average
number of transaction completed in a given time.)

2). Reduced Waiting time: Interleaved execution of a short transaction with a long transaction
usually allows the short transaction to complete quickly. In serial execution a short transaction
could get stuck behind a long transaction leading to unpredictable delays in response time or
average time taken to complete a transaction.

Serializability:

—->A Schedule ‘S’ of ‘n’ transactions is serializable if it is equivalent to some serial schedule
of the same ‘n’ transactions. A serializable schedule contains the correctness of serial
schedule while ascertaining better CPU utilization of parallel schedule.

—>Serializability is a widely accepted standard that ensures the consistency of a schedule. A
schedule is consistent if and only if it is serializable. A schedule is said to be serializable if the
interleaved transactions produces the result, which is equivalent to the result produced by
executing individual transactions separately (i.e., a schedule is serializable, if it produces the
same result asthat of a serial schedule).

T1 T2 Ty Ta
Read (X) Read (X)
Write (X) Write (X)
Read (Y) Read (X)
Write (X)
Write (Y)
Read (X) Read (Y)
Write (Y)
Write (X) Read (Y)
Read ﬁ,} Write (Y}
Write (Y)

; Table. Schedule for the two transactions
Table, Serial Schedule when interleaved.

- The above two schedules produce the same result, these schedules are said to be serializable.
The transaction may be interleaved in any order and DBMS doesn’t provide any guarantee
about the order in which they are executed.

- The two different types of serializability are

1) Conflict Serializability
2) View Serializability

1. Conflict Serializability:
—2>Any qgiven concurrent schedule is said to be Conflict serializable if and only if it is
CONFLICT EQUALENT to one of the possible serial schedule.

—>Consider a schedule S1, consisting of two successive instructions A and IB belonging to
transactions TA and TB refer to different data items then it is very easy to swap these
instructions.

—>The result of swapping these instructions doesn’t have any impact on the remaining
instructions in the schedule. If A and IB refers to same data item then the following four cases
must be considered,

Casel : Ia=read(x), Is~=read(x),
Case2 : 1Ia=read(x), Ip=write(x),
Case 3 [a = wrnite(x), Ip = read(x).
Case 4 : Ia=write(x), In = write(x),

Case 1. Here, both 1a and Ig are read instructions. In this case, the execution order of the
instructions is not considered since the same data item X is read by both the transactions T o and
Te.

Case 2: Here, 14 and Ig are read and write instructions respectively. If the execution order of
instructions is Ia = Ig, then transaction Ta cannot read the value written by transaction TB in
instruction I1B. but order is Iz = la, then transaction Ta can read the value written by
transaction Ts. Therefore in this case, the execution order of the instructions is important.

Case 3: Here, 1a and Ig are write and read instructions respectively. If the execution order of
instructions is Ia = |g, then transaction Tg can read the value written by transaction Ta, but
order isls = la, then transaction Tg cannot read the value written by transaction Ts. Therefore
in this case, the execution order of the instructions is important.

Case 4. Here, both 14 and Ig are write instructions. In this case, the execution order of the
instructions doesn’t matter. |If a read operation is performed before the write operation, then the
data item which was already stored in the database is read.

->Two instructions | o and | g are said to be conflicting if and only if,

1) They represent the operations performed by two different transactions on the same data
item.

2) Atleast one (among | A and Ig) is awrite operation.

—>Let us consider the following Schedule S,.

Here, the write(x) operation of Ty conflicts with read(x) operation of T,. But the write(x)
operation of T2 doesn’t conflict with read(y) operation of T2, since these instructions perform
their operations on two different data items.

Ty Ts
Read (x)
Write(x)
Read(x)
Write(x)
Read(y)
Write(y)
Read(y)
Write(y)

Table. Schedule 5.

CONFLICT EQUIVALENT:
The order of the instructions I a and s can be swapped when,

1) Ia and Is belong to two different transactions.

2) Ia and Is are not conflicting instructions.

—>The execution order of the instruction in Schedule S; are swapped, S0 as to generate a new
Schedule ;' which is equivalent Schedule S,. S; is said to be equivalent to S, because the
order of executing the instructions in S;! is similar to the execution order in S, except for
instructions | a and Ig (e, theOrder of 1a and I s is not considered.

—>In the above Schedule S; write(x) instruction of T2 can be swapped with read(y) instruction
of T1 (since both instructions are not conflict). This Schedule S, can be transferred into
Schedule S, by swapping the instructions of T1and T1in the following manner:
1) Read(y) ingtruction of T1doesn’t conflict with read(x) instruction of T2 Therefore these
instructions can be swapped so asto generate new Schedule S;t.
2) Write(y) instruction of T1 can be swapped with write(x) instruction of T2 Since, these
are non-conflicting instructions.
3) Write(y) instruction of T can further be swapped with read(x) instruction of Ta.

> After performing the swapping, a Schedule S>! is produced which is a Serial Schedule.

T, T
Read (x)
Write(x)
Read(y)
Write(y)
Read(x)
Write(x)
Read(y)
Write(v)
Table. Schedule S:!

Since Schedule S is equivalent to Schedule S;%, therefore S; and S;* are said to be conflict
equivalent.

—-> The conflict equivalence leads to another notion called conflict serializability. A schedule
say S2 is said to be Conflict Serializable, if it is conflict equivalent with the serial schedule.

—1n the above example, Schedule S, is Conflict Serializable, as it is Conflict Equivalence
with Serial Schedule.

2. View Serializability:
—=>Any given concurrent schedule is said to be View serializable if and only if it is VIEW
EQUALENT to one of the possible serial schedule.

>Two schedules S; and S;! consisting of some set of transactions are said to be view
equivalent, if the following conditions are satisfied,

1) If atransaction Ta in schedule S; performs the read operation on the initial value of data
item X, then the same transaction in schedule S; must also perform the read operation on
theinitial value of x.

2) If atransaction Ta in schedule Slreads the value x, which was written by transaction Tk,

then Ta in schedule S;*must also perform the read the value x written by transaction Te.

3) If atransaction Ta in schedule Slperforms the final write operation on data item X, then
the same transaction in schedule S;* must also perform the final write operation on x.

—>Let us consider the following schedules that are view eguivalent.

- Schedule & is view equivalent to Schedule Ss since the value of x and y read by transaction
T, isgenerated by T1 in both Ssand Ss

—>The view equivalence leads to another notion called view serializability. A schedulesay Sis
said to be view Serializable, if it is view equivalent with the serial schedule.

—>Every conflict Serializable schedule is view Serializable but every view Serializable is not
conflict Serializable.

Ti Tz
read(x)
Xi=X-10
write(x)

T T read(x)
read(x) n=x*20
K1EN=10)
write{x) write{x)
read{y]

read(y)
VIEN 410
write(y) Vi=N+10
'['ﬂ'b*lf?ﬁ} “Ti.tf[:f}
Xi=x*20
writelx) ['E-Ell]{]r}
read(v) J-'I=H'2l]
vi=y /a0
write(y
write(y) e()
Table, Schedule 5;

Table, Schedule 5,

3. Anomalies Due to Interleaved Execution (*¥*****x***+*)

- The Schedule, involving two transactions shown in the Table R1 represents an interleaved
execution of the two transactions.

1) While one transaction is waiting for a page to be read from disk, the CPU can process
another transaction. This is because /O activity can be done in parallel with CPU activity in a

computer. Overlapping 1/0 and CPU activity reduces the amount of tome and increases system
throughput which is the average number of transactions completed in a given time.

2) Interleaved execution of a short transaction with a long transaction usually allows the short
transaction to complete quickly. In Serial execution, a short transaction could get stuck behind
a long transaction, leading to unpredictable delays in response time or average time taken to
complete atransaction.

T: T
read(A)
write(A)
read(B)
write(B)
read(C)
write(C)

Table. Interleaved Execution of Two Transactions.

->There are three main situations when the actions of two transactions T1 and T2 conflict with
each other in the interleaved execution on the same data object.

- The three anomalies associated with interleaved execution are as follows,

1) Write-Read (WR) Conflict: Reading Uncommitted Data.
2) Read-Write (RW) Conflict: Unrepeatable Reads.
3) Write-Write (WW) Conflict: Overwriting Uncommitted Data.

Reading Uncommitted Data (WR Conflicts):

—>The first Source of anomaliesisthat atransaction T could read a database object A has been
just modified by another transaction T1, which has not yet committed; such a read is called a
dirty read or reading uncommitted data.

T, Ta
read(A)
A:=A-100
write(A)
read(A)
A:=A+0.06A
write(A)
read(B)
B:=B+0.06B
write(B)
commit
read(B)
B:=B+100
write(B)
commit

Table. Reading Uncommitted Data

Example: Consider two transactions T1 and T2 where T1 Stands for transferring$100 from A
to B and T» stands for incrementing both A and B by 6% of their accounts. Suppose that their
actions are interleaved as follows,

1) T1 deducts $100 from account A, then immediately.
2) T2 readsaccountsof A and B adds 6% interest to each and then.
3) T1 adds $100 to account B.

—->This corresponding Schedule is illustrated as shown in above Table.

->The Problem here is T2 has added incorrect 6% interest to each A and B. Because before
commitment that $100 is deducted from A, it has added 6% to account A and before
commitment that $100 is credited to B, it has added 6% to account B. Thus, the result of this
Schedule is different from the result of the other Schedule which is Serializable first T1, then
Ta.

Unrepeatable Reads (RW Conflicts):
- The second source of anomalies is that a transaction T> could change the value of an object
A that has been read by a transaction T1 and T2 is ill in progress. This situation causes a

problem that, if T, triesto read the value of A again, it will get a different result, even though it
has not modified A in the meantime .But, this situation could not Arise in a serial execution of
two transactions. Thisis called as unrepeatable read.

Example: Suppose that both T1 and T read the same value of A, Say 5. Then T1 has
incremented A value 6 but before commitment as A value 6, T2 has decremented value from 5
to 4. Thus, instead of answer of A value as’5, i.e., from 6 to 5 we got an answer 4 which is
incorrect.

Overwriting Uncommitted Data (WW Conflicts):

—>The third source of anomalies is that a transaction T2 could overwrite the value of an object
A, which has already been modified by atransaction T1, while T1 is still in progress.

Example: Suppose that A and B are two employees and their salaries must be Kept equal.
Transaction T1 setstheir salaries to $1000 and transaction T2 setstheir salaries to $2000.

- The following interleaving of the actions T1 and T occurs,

1) Tisets A’s salary to $1000, at the same time, T2 sets B’s salary to $2000.

2) Tisets B’s salary to $1000, at the same time, T2 sets A’s salary to $2000.

3) As aresult, A’s salary is set to $2000 and B’s salary is set to $1000, i.e., the result is
not identical.

—>Neither transaction reads a salary value before writing it; such awriteis called a blind write.
- The above example is the best example of blind write because T1 and T are concentrating

only on writing but not on reading.
4. Schedules Involving Aborted Transactions:

—>All actions of aborted transactions are to be undone and we can therefore imagine that they
were never carried out to begin with.

Example: Suppose that transaction T1 deducts $100 from account A then immediately before
committing A’s new value the transaction T2 reads the current values of accounts A and B and
adds 6% interest to each, then commits, but incidentally T1 is aborted. So, we get incorrect
result of transaction T2 because T1 was aborted in the middle of the process and T2 has taken
incorrect value of A by T1 and added 6%. We say that such a schedule is unrecoverable
schedule. The corresponding schedule is shown in Table.

T T2
read(A)
A:=A-100
write(A)
read(A)
A:=A+0.06A
write(A)
read(B)
B:=B+0.06B
write(B)
commit
abort

Table. Unrecoverable Schedule

—>Whereas, a recoverable schedule is one in which transactions read only the changes of
committed transactions.

4. 1. OCK-BASED CONCURRENCY CONTROL (***)
LOCK: A lock is a mechanism to control concurrent access to a data item.

—>A lock is nothing but a mechanism that tells the DBMS whether a particular data item is
being used by any transaction for read/write purpose.

—>There are two types of operations, i.e. read and write, whose basic natures are different, the
locks for read and write operation may behave differently.

—>The simple rule for locking can be derived from here. If atransaction is reading the content
of a sharable data item, then any number of other processes can be allowed to read the content
of the same data item. But if any transaction is writing into a sharable data item, then no other
transaction will be allowed to read or write that same data item.

Typesof LOCKS:

1).Shared Lock (S): A transaction may acquire shared lock on adataitem P in order to read its
content. The lock is shared in the sense that any other transaction can acquire the shared lock
on that same dataitem P for reading purpose.

2).Exclusive Lock (X): A transaction may acquire exclusive lock on a data item P in order to
both read/write into it. The lock is excusive in the sense that no other transaction can acquire
any kind of lock (either shared or exclusive) on that same dataitem P.

The relationship between Shared and Exclusive Lock can be represented by the following table
which isknown as Lock Matrix.

Shared Exclusive
Shared TRUE FALSE
Exclusive FALSE FALSE

LOCKING PROTOCOLS:

—>A locking protocol is aset of rules to be followed by each transaction (and enforced by the
DBMYS), in order to ensure that even though actions of several transactions might be
interleaved, the net effect isidentical to executing all transactions in some serial order.

Two Phase L ocking (2PL) Protocol: (¥ ******x***x)

- The use of locks has helped us to create neat and clean concurrent schedule. The Two Phase
Locking Protocol defines the rules of how to acquire the locks on a data item and how to
release the locks.

—->The Two-Phase locking protocol is a concurrency control protocol that guarantees
serializability between the schedules.

—>1n 2PL, the transactions can be divided into two phases. They are

1). Growing (Lock Acquisition) Phase: In this phase, a transaction acquires new locks, but
cannot release them.

2). Shrinking (Lock Releasing) Phase: In this phase, transaction releases the existing locks,
but cannot acquire any new locks.

—~>Whenever, atransaction enters the system, it is said to be in growing phase, where it acquire
the locks as per the requirement. But, when the locks are released, transaction enters the second
phase i.e., shrinking phase where no more lock requests are processed.

—>In applied in 2PL, then lock upgrading and downgrading can be done during growing and
shrinking phase respectively.

—>The transactions in Schedule Sio (T1 and T2) doesn’t obey 2PL protocol since the lock- X
(Q) is executed after the execution of unlock (P) operation in T1. Similarly, the lock- X (P)
operation is executed after the execution of unlock (Q) operation in To.

—->0On the other hand, the transactions in Schedule Si1 follows 2PL protocol since lock- X (Q)
operation is executed before the execution of unlock (P) instruction and lock- X (P) is executed
before the execution of unlock (Q).

Table. Schedule S10

T, T. |LockManager T, T. | LockManager
lock-S (P) lock-5 ()
Grant-S (P, T1) Grant-5 (P, T3)
read(P) read(P)
unlock(P) lock-X(Q)
lock-X(Q) Grant -X (Q. Tg)
Grant -X (Q, T1) unlock(P) |
read(Q) read(Q)
Q:=Q+P Q:=Q+P
write(Q) | write(())
unlock(Q) | unlock(Q)
locks(Q) | lockS(Q)
Grant -5 (Q, T2) Grant -8 (0, T4)
read(Q) read((Q)
unlock(Q) Tock-X(7) |
lock-X(P) Grant -X (P, T4)
Grant -X (P, T2) unm.;].;[qjl
read(P) read(P)
P:=P+Q Pi=P+Q
write(P) write(P)
unlock(P) unlock(P)

Table. Schedule S11

Strict Two Phase L ocking (S2PL) Protocol: (*******)

—>Strict 2PL isone of the most popular variations of 2PL protocol. Schedules following S2PL
protocol are compatible with the schedules following 2PL protocol that posses strictness

property.

- S2PL is designed to overcome the cascading rollback problem of 2PL.
—>A transaction follows S2PL if
1) Itiscompatible with 2PL and

2) It doesn’t releases the exclusive locks until the transaction either commits or aborts.

—->The S2PL permits release of exclusive locks only at the end of transaction, in order to ensure
recoverability and cascadelessness of the resulting Schedules. It guarantees Conflict
Serializability.
- The Strict Two Phase Locking Protocol disallows interleaving of transactions, if two
transactions access completely different parts of the database, then they proceed without
interruption on their ways. If two transactions access same object of the database, then their
actions are ordered serially i.e., al actions of locked transactions are completed first, then this
lock is released and other transactions can now proceed.

Example:
Ta T=
read(P)
P:=FP+10
write ()
read(P)
T:—=P*20/100
P:=P+T
write(P)
read(Q)
R:—=Q "zo0o /100
Q:=0Q+R
write(Q)
read(Q)
Q:=Q+10
write(Q)

Table. Interleaved Schedule
- Let Ty and T2 be two transactions. T1 increments the Value of P and Q by 10 and T>
increment them by 20%. If the initial Value of P, Q is 10, them after Serial execution, the final
value of P is 24 and Q is 14. On the other hand, if the transactions are interleaved, then final
valueof Pis24 and Q is 22.
->Such anomalies can be avoided by using S2PL. B When T1 Wishes to Operate on ‘P’. It has
to acquire the lock on P which means that T> cannot interleave T1.

T, T=

lock- X (P)

read(P)

P:=P+10

write(P)

lock-X(Q)
read(Q)
Q:=0Q+10

write(Q)

commit

lock-X(P)

read(P)

T:=P*20/100

P:=P+T

write(P)

lock-X(Q)

read(Q)

R:=Q%*2z0/100

Q:=Q+R

write(Q)

commit

Table. Schedule Following S2PL
When the transactions T1 and T» are executed using S2PL, then the transactions cannot be

interleaved leading to Consistent State.

Advantages:
1) Recoverahility is ensured since cascadeless Schedules are generated.
2) Itisrelatively simpleto implement.

Disadvantages.

Concurrency is reduced, since the Schedules generated are subset of Schedules generated using
2PL .

CONCURRENCY CONTROL:

1. LOCK MANAGEMENT:

—->The part of the DBMS that keeps track of the locks issued to transactions is called the lock
manager. The lock manager maintains a lock table, which is a hash table with the data object
identifier as the key. The DBMS aso maintains a descriptive entry for each transaction in a

transaction table, and among other things, the entry contains a pointer to a list of locks held by
the transaction.

—>A lock table entry for an object—which can be a page, a record, and so on, depending on the
DBMS—contains the following information: the number of transactions currently holding a lock
on the object (this can be more than one if the object is locked in shared mode), the nature of the
lock (shared or exclusive), and a pointer to a queue of lock requests.

1. Implementing L ock and Unlock Requests:

—>According to the Strict 2PL protocol, before a transaction T reads or writes a database object
O, it must obtain a shared or exclusive lock on O and must hold on to the lock until it commits or
aborts. When a transaction needs a lock on an object, it issues a lock request to the lock manager:

1. If ashared lock is requested, the queue of requests is empty, and the object is not currently
locked in exclusive mode, the lock manager grants the lock and updates the lock table entry for
the object (indicating that the object is locked in shared mode and incrementing the number of
transactions holding a lock by one).

2. If anexclusivelock isrequested, and no transaction currently holds alock on the object (which
also implies the queue of requests is empty), the lock manager grants the lock and updates the
lock table entry.

3. Otherwise, the requested lock cannot be immediately granted, and the lock request is added to
the queue of lock requests for this object. The transaction requesting the lock is suspended.

T, T= Lock Manager
lock-S (P)
Grant- S (P, T1)
read(P)
unlock(P)
lock- X(Q)
Grant —X (Q, T1)
read(Q)
Q:=Q+P
write(Q)
unlock(Q)
lock-S(Q)
Grant —S (Q, T2)
read(Q)
unlock(Q)
lock- X(P)
Grant —X (P, T=z)
read(P)
P:=P:+Q
write(P)
unlock(P)

Table. Schedule Si10

Atomicity of L ocking and Unlocking:

The implementation of lock and unlock commands must ensure that these are atomic
operations. To ensure atomicity of these operations when several instances of the lock manager
code can execute concurrently, access to the lock table has to be guarded by an operating
system synchronization mechanism such as a semaphore.

2. Deadlocks:

—>Consider the following example: transaction T1 gets an exclusive lock on object A, T2 gets
an exclusive lock on B, T1 requests an exclusive lock on B and is queued, and T> requests an
exclusive lock on A and is queued. Now, T3 is waiting for T» to release its lock and T» is
waliting for T1 to release its lock! Such a cycle of transactions waiting for locks to be released
is called adeadlock.

—>Clearly, these two transactions will make no further progress. They hold locks that may be
required by other transactions. The DBMS must either prevent or detect (and resolve) such
deadlock situations.

Deadlock Prevention: (¥***x*x*x*+)

—>We can prevent deadlocks by giving each transaction a priority and ensuring that lower
priority transactions are not allowed to wait for higher priority transactions (or vice versa). One
way to assign priorities is to give each transaction a timestamp when it starts up. The lower the
timestamp, the higher the transactions priority, that is, the oldest transaction has the highest
priority.

—>If a transaction T requests a lock and transaction T; holds a conflicting lock, the lock
manager can use one of the following two policies:

1. Wait-die:
2. Wound-wait

Wait-die:
- If Ti has higher priority, it is allowed to wait; otherwise it is aborted.

—>In the wait-die scheme, lower priority transactions can never wait for higher priority
transactions. In the wound-wait scheme, higher priority transactions never wait for lower
priority transactions. In either case no deadlock cycle can develop.

For example, if atransaction requires aresource that is already in use by another transaction,

o |If atransaction is requesting a lock on the resource and is found to be of an older time
stamp than the transaction which has the resource locked, it is not terminated.

« |If atransaction is requesting a lock on the resource and is found to be of a younger time
stamp than the transaction which has the resource locked, it is terminated.

Wound-wait:
—>1f T; has higher priority, abort Tj; otherwise T; waits.

-> The wait-die scheme is non-preemptive; only a transaction requesting a lock can be aborted.
As a transaction grows older (and its priority increases), it tends to wait for more and more
younger transactions. A younger transaction that conflicts with an older transaction may be
repeatedly aborted (a disadvantage with respect to wound-wait), but on the other hand, a
transaction that has all the locks it needs will never be aborted for deadlock reasons (an
advantage with respect to wound-wait, which is preemptive).

For example, if atransaction requires aresource that is already in use by another transaction,

« |If atransaction is requesting a lock on the resource, it is not terminated and made to wait
for the resource to be available.

« |If atransaction is requesting a lock on the resource and is found to be of an older time
stamp than the transaction which is in line for the resource, it can terminate the younger
transaction and take over the resource. The time stamp with a younger time stamp is then
rebooted.

Deadlock Detection:

—->When atransaction T; is suspended because a lock that it requests cannot be granted, it must
wait until all transactions T; that currently hold conflicting locks release them. The lock
manager maintains a structure called a waits-for graph to detect deadlock cycles. The nodes

correspond to active transactions, and there isan arc from T; to T; if (and only if) T; is waiting
for T; to release a lock. The lock manager adds edges to this graph when it queues lock
requests and removes edges when it grants lock requests.

—>Consider the schedule shown in Figure 19.3. The last step, shown below the line, creates a
cycle in the waits-for graph. Figure 19.4 shows the waits-for graph before and after this step.

d | T2 13 T4
SiA)
R(A)
X(B)
WiR)
Si(2)
5(C)
R(C)
A (C)
X (B
X (A)

Figure 198.3 Schedule Illustrating Deadlock

W P, | r A ™ | N
(T) - T2 11 o T2)
‘x_h____.-"'r _‘}‘x A L _,f-":;‘ _l_f‘-__ .
o 7
.-__f'-.. -‘7 H'\-\.v_.-"
- A
~ L P =,
s o e e - i -
X i T NSy
| T4) [T3] | T4 | [T3]
'%,H- A A .-""- x'\-\. .-""‘-. \i""\- .'___.-"'

@ (b)

Figure 19.4 Waits-lor Graph belore and after Deadlock

—>The waitsfor graph is periodically checked for cycles, which indicate deadlock. A
deadlock is resolved by aborting a transaction that is on a cycle and releasing its locks; this
action allows some of the waiting transactions to proceed.

—>As an dternative to maintaining a waits-for graph, a smplistic way to identify deadlocks is
to use a timeout mechanism:_if a transaction has been waiting too long for a lock, we can
assume (pessimistically) that it isin a deadlock cycle and abort it.

2. SPECIALIZED LOCKING TECHNIQUES:

(**)

1. Dynamic Databases and the Phantom Problem:

Dynamic _Database: A database with “value-based” relationships where typically the
relationship is specified at retrieval time and locations of related records are discovered during
retrieval.

Example: Both Independent Logical File (ILF) and relational database are value-based.

—>Phantom problem: Phantom problem is the situation that a transaction retrieves a collection
of objects twice and sees different results even though it does not modify any of these objects
itself and it follows the strict two phase locking protocol.

—>Phantom problem is a specific problem to dynamic database, so it cannot occur in a
database, where the set of database objects is fixed and only the values of objects can be
changed.

Example: Transaction T1 scans the Sailors relation to find the oldest sailor for each of the
rating levels 1 and 2. First, T1 identifies and locks all pages (assuming that page-level locks are
set) containing sailors with rating 1 and then finds the age of the oldest sailor, which is, say, 71.
Next, transaction T2 inserts a new sailor with rating 1 and age 96. Observe that this new Sailors
record can be inserted onto a page that does not contain other sailors with rating 1; thus, an
exclusive lock on this page does not conflict with any of the locks held by T1. T2 also locks the
page containing the oldest sailor with rating 2 and deletes this sailor (whose age is, say, 80). T2
then commits and releases its locks.

—>Finally, transaction T1 identifies and locks pages containing (all remaining) sailors with
rating 2 and finds the age of the oldest such sailor, which is, say, 63.

—>The result of the interleaved execution is that ages 71 and 63 are printed in response to the
query. If T2 had run first, then T2, we would have gotten the ages 71 and 80; if T2 had run
first, then T1, we would have gotten the ages 96 and 63. Thus, the result of the interleaved
execution is not identical to any serial execution of T1 and T2, even though both transactions
follow Strict 2PL and commit!

—>The problem is that T1 assumes that the pages it has locked include all pages containing
Sailors records with rating 1, and this assumption is violated when T2 inserts a new such sailor
on a different page. . T1’s semantics requires it to identify all such records, but locking pages
that contain such records a a given time does not prevent new “phantom” records from being
added on other pages. T1 has therefore not locked the set of desired Sailors records.

- This phantom problem can be handled by the following techniques:

1). If there isno index, and all pages in the file must be scanned, T1 must somehow ensure that
no new pages are added to the file, in addition to locking all existing pages.

2). If there isa dense index1 on the rating field, T1 can obtain a lock on the index page—again,
assuming that physical locking is done at the page level—that contains a data entry with
rating=1. If there are no such data entries, that is, no records with this rating value, the page
that would contain a data entry for rating=1 is locked, in order to prevent such a record from
being inserted. Any transaction that tries to insert a record with rating=1 into the Sailors
relation must insert a data entry pointing to the new record into this index page and is blocked
until T1 releases its locks. Thistechnique is called index locking.

—>Index locking is a special case of a more general concept called predicate locking. In our
example, the lock on the index page implicitly locked all Sailors records that satisfy the logical

predicate rating=1. More generally, we can support implicit locking of all records that match an
arbitrary predicate. General predicate locking is expensive to implement and is therefore not
commonly used.

2. Concurrency Control in B+ Trees:

—>Aninsertion or deletion may lock a node, unlock it and subsequently relock it. Furthermore,
a lookup that runs concurrently with split or coalescence operation may find that the desired
search key has been moved to the right node by the split or coalescence operation.

2>We illustrate B+ tree locking using the tree shown in Figure 19.5.

—>To search for the data entry 38*, atransaction T1 must obtain an S lock on node A, read the
contents and determine that it needs to examine node B, obtain an S lock on node B and release
the lock on A, then obtain an S lock on node C and release the lock on B, then obtain an S lock
on node D and release the lock on C.

—>Thus, T1 always maintain a lock on one node in the path, in order to force new transactions
that want to read or modify nodes on the same path to wait until the current transaction is done.

Hom ‘ \
B

T

.-";-.r ’
m“ 35 B
! |I.
.f) [-
f’f . H‘x
,4-/ % ¥ F ™y
6 ‘ H 12 ‘ 23 18 44‘ G
/ |] I| 'II l."
) [! f f | \
! | / (| \ \
/ | f | ' \
- . G H | | D v E

1’)] |) i ey
A o WA W) N . L
6| 9% | 1104114 124134 [208220 1234314 35036+ |38a1s| 4as

Figure 19.5 B4 Tree Lodang Example

—>To delete for data entry 38*, a transaction T1 must also traverse the path from the root to
node D and is forced to wait until T1 delete 38*.

—>Toinsert data entry 45*, atransaction must obtain an S lock on node A, obtain an S lock on
node B and release the lock on A, then obtain an S lock on node C (observe that the lock on B
is not released, because C is full!), then obtain an X lock on node E and release the lockson C
and then B. Because node E has space for the new entry 45* isinserted in the node E.

>Thus, the B* tree locking illustrates the potential for efficient locking protocols as a very
important special case.

3. Multiple-Granularity L ocking:

—>Another specialized locking strategy is called multiple-granularity locking, and it allows
us to efficiently set locks on objects that contain other objects. This protocol can ensure
searializability.

- In addition to shared (S) locks and exclusive (X) locks from other locking schemes, like
strict two-phase locking, MGL also usesintention shared and intention exclusivelocks. 1S
locks conflict with X locks, while 1 X locks conflict with S and X locks. The null lock (NL) is
compatible with everything.

—->To lock anode in S (or X), MGL has the transaction lock on all of its ancestors with IS (or
IX), so if atransaction locks anode in S (or X), no other transaction can access its ancestors in
X (or Sand X). This protocol is shown in the following table:

To Get Must Have on all Ancestors
IS or S IS or |X
X, SIX or X IX or SIX

->Multiple granularity locking is usually used with Non-strict two phase locking to
guarantee serializability. MGL uses lock excddion to determine granularity lock on a node ad its
ancetors

= Transaction Ti can lock anode Q, using the following rules:

1. Thelock compatibility matrix must be observed.

2. Theroot of the tree must be locked first, and may be locked in any mode.

3. A node Q can be locked by Ti in S or IS mode only if the parent of Q is currently locked
by Ti in either IX or IS mode.

4. A node Q can be locked by Tiin X, SIX, or IX mode only if the parent of Q is currently
locked by T; in either I X or SIX modes.

5. Ticanlock anodeonly if it has not previously unlocked any node (that is, Ti is two-phase).

6. Ti can unlock a node Q only if none of the children of Q are currently locked by T;. !
Observe that locks are acquired in root-to-leaf order, whereas they are released in leaf-to-
root order.

—Let us consider the following transaction for illustrating Multiple Granularity L ocking
Protocol.

1. If transaction T1 wantsto read Student Sy, record present in Course file Crap, then the
transaction must send a lock request to lock manager requesting that it wants to acquire
lock on university database, college area node Ci, course file Cra, in IS mode and a
lock on Sz node on S mode.

2. |If atransaction T2 wants to perform write operation on sudent record Ssc present in
Course file Crac then the transaction must send a lock request that specifies that it wants
to acquire lock on database, College area node C», on Coursefile Crac in I X mode and
alock on Sgc node in X mode.

3. If atransaction T3 wants to read all the student records in file Cr2p,then the transaction
must send a lock request, which specifies that it wants to acquire lock on database U
and on course area C; in IS mode and then on file Cra, in S mode.

4. If atransaction T4 wants to read the entire database then it must send a lock request
which specifies that it wantsto acquire lock on the database U in S mode.

Advantages.
e The Concurrency level isimproved.

e Overhead associated with locking single data item is reduced.

—>This Protocol is basically used in an application that consists of both short transactions
(these are those transactions that are capable of accessing fewer data items) as well as long
transactions (these are those transactions that generate reports from a Complete file).

3. CONCURRENCY CONTROL WITHOUT LOCKING

(*************************)

1. Optimistic Concurrency Control (Validation Based Protocols):

—>Validation techniques are also called as Optimistic techniques.
—>Locking protocols take a pessimistic approach to conflicts between transactions and use
either transaction abort or blocking to resolve conflicts.

—In optimistic concurrency control, the basic premise is that most transactions will not
conflict with other transactions, and the idea is to be as permissive as possible in alowing
transactions to execute.

-~ Transactions proceed in three phases:

1. Read Phase
2. Validation Phase and
3. Write Phase

1. Read: The transaction executes, reading values from the database and writing to a private
workspace.

2. Validation: If the transaction decides that it wants to commit, the DBMS checks whether the
transaction could possibly have conflicted with any other concurrently executing transaction. If
there is a possible conflict, the transaction is aborted; its private workspace is cleared and it is
restarted.

3. Write: If validation determines that there are no possible conflicts, the changes to data
objects made by the transaction in its private workspace are copied into the database.

—~>Each transaction is assigned three time stamps as follows,
i) When execution isinitiated 1(T)

ii) At the start of the validation phase V(T)

iii) At the end of the validation phase E(T)

Qualifying conditions for successful validation:
—>Consider two transactions, transaction TA, transaction TB and let the timestamp of
transaction TA is lessthan the timestamp of transaction TB i.e,, TS(TA) < TS(TB) then,

1) Before the start of transaction TB, transaction TA must complete its execution. i.e., E(TA) <
1(TB)

2) The values written by transaction TA must not be necessarily matched with the values read
by transaction TB. TA must execute the write phase before TB initiate the execution of
validation phase, i.e,, |(TB) < E(TA) <V(TB)

3) If transaction TA starts its execution before transaction TB completes, then the write phase
of transaction TB must be finished before transaction TA starts the validation phase.

Advantages:

i) The efficiency of optimistic techniques lie in the scarcity of the conflicts.

ii) It doesn’t cause the significant delays.

iii) Cascading rollbacks never occurs.

Disadvantages:

1) Wastage in processing time during the rollback of aborting transactions which are very long.
i) Hence, when one process is in its critical section (a portion of its code), no other processis
allowed to enter. Thisisthe principal of mutual exclusion.

2. Timestamp-Based Concurrency Control:

—>Timestamp ordering technique is a method that determines the serializability order of
different transactions in a schedule. This can be determined by having prior knowledge about
the order in which the transactions are executed.

Timestamps:

—>Timestamp denoted by TS(TA) is an identifier that specifies the start time of transaction and
is generated by DBMS. It uniquely identifies the transaction in a schedule. The timestamp of
older transaction (TA) is less than the timestamp of a newly entered transaction (TB) i.e,
TS(TA) < TYTB).

—>In timestamp-based concurrency control method, transactions are executed based on
priorities that are assigned based on their age. If an instruction IA of transaction TA conflicts
with an instruction 1B of transaction TB then it can be said that |A is executed before IB if and
only if TS(TA) < TS(TB) which implies that older transactions have higher priority in case of
conflicts.

Ways of generating Timestamps:

—-> Timestamps can be generated by using,

i) System Clock: When atransaction enters the system, then it is assigned a timestamp which is
equal to the time in the system clock.

ii) Logical Counter: When a transaction enters the system, then it is assigned a timestamp
which is equal to the counter value that is incremented each time for a newly entered
transaction.

—>Every individual data item x consists of the following two timestamp values,

i) WTS(x) (W-Timestamp(x)): It represents the highest timestamp value of the transaction that
successfully executed the write instruction on Xx.

i) RTS(x) (R-Timestamp(x)): It represents the highest timestamp value of the transaction that
successfully executed the read instruction on x.

Timestamp Ordering Protocol:

- This protocol guarantees that the execution of read and write operations that are conflicting
is done in timestamp order.

Working of Timestamp Ordering Protocol:
- The Time stamp ordering protocol ensures that any conflicting read and write operations are
executed in time stamp order. This protocol operates as follows:

1) If TA executesread(x) instruction, then the following two cases must be considered,

i) TS(TA) < WTS(x)
ii) TS(TA) WTS(x)

Case 1: If atransaction TA wants to read the initial value of some data item x that had been
overwritten by some younger transaction then, the transaction TA cannot perform the read
operation and therefore the transaction must be rejected. Then the transaction TA must be
rolled back and restarted with a new timestamp.

Case 2: If atransaction TA wants to read the initial value of some data item x that had not
been updated then the transaction can execute the read operation. Once the value has been
read, changes occur in the read timestamp value (RTS(x)) which is set to the largest value of
RTS(x)and TS

2) If TA executeswrite(x) instruction, then the following three cases must be considered,
i) TS(TA) < RTS(x)

ii) TS(TA) < WTS(x)

iii) TS(TA) >WTS(x)

Case 1: If atransaction TA wants to write the value of some data item x on which the read
operation has been performed by some younger transaction, then the transaction cannot execute
the write operation. This is because the value of data item x that is being generated by TA was
required previously and therefore, the system assumes that the value will never be generated.
The write operation is thereby rejected and the transaction TA must be rolled back and should
be restarted with new timestamp value.

Case 2: If a transaction TA wants to write a new value to some data item X, which was
overwritten by some younger transaction, then the transaction cannot execute the write
operation as it may lead to inconsistency of dataitem. Therefore, the write operation is rejected
and the transaction should be rolled back with a new timestamp value. Ignoring outdated
writesis called the Thomas Write Rule.

Case 3: If atransaction TA wants to write a new value on some data item X that was not
updated by a younger transaction, then the transaction can executed the write operation. Once
the value has been written, changes occur on WTS(x) value which is set to the value of
TYTA).

| A 'z
reacdi v}
reenah v
Wi & 100
Wi te{ W)
reacki b
el =)
.-.]1-;;1'-.-'(= :\':.-":I
i, M 1 Ch

Worite{)
showi{ -y

The above schedule can be executed under the timestamp protocol when TS (T1) < TS(T2).

	Data Definition Language (DDL):
	Data Manipulation Language (DML):
	Data Control Language (DCL):
	Transition Control Language (TCL):
	Data Retrieval Language (DRL) (or) Data Query Language (DQL):
	Database Users and ADMINISTRATOR:
	Database Users and User Interfaces: (**************)
	(Database users are the one who really use and take the benefits of database. There will be different types of users depending on their need and way of accessing the database.
	Client/Server Architecture:

	UNIT-II:
	The join operation denoted by “join” or “⋈”, is a relational algebra operation, which is used to combine (join) two relations like Cartesian-product but finally removes duplicate attributes (same column to only one column) and makes the operations ...
	Example:
	A join dependency is a further generalization of MVDs. A join dependency (JD) ⋈ {R1, ... , Rn} is said to hold over a relation R if R1, ... , Rn is a lossless-join decomposition of R. An MVD X →→ Y over a relation R can be expressed as the join depen...
	Advantages of Concurrent Execution of Transaction:

