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After going through this chapter, you should be able to unaerstana :

o Alphabets, Strings and Languages
o Mathematical Induction

o Finite Automata

o Equivalence of NFAand DFA

o NFAwith ¢ - moves

1.4 ALPHABETS, STRINGS & LANGUAGES
Alphabet
Analphabet, denoted by 3 , isa finite and nonempty set of symbols.

Example:
. If 3 is an alphabet containing all the 26 characters used in English language, then

y is finite and nonempty set,and £ = {a,b,c,...., 2}
2. X ={0,]} isanalphabet.
3, ¥ =1{1,2,3,.) isnotanalphabetbecauseitisinfinite.
4, 7 ={} isnotanalphabet because it is empty.

String
A string is a finite sequence of symbols from some alphabe.
Example :

"yy2" isastring over an alphabet I = {a,b,c, .., z} . Theempty stringor null string is
denoted by .
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Length of a string

The length of a string i the number of symbols in that string, If  isa string then its length
isdenoted by | w]|.

Example :

I w=abed, thenlength of w is | w|= 4
2. n=o010 isastring then|n|= 3
3. e isthe empty string and has length zero.

The set of strings of length K (K > 1)

Let  beanalphabetand £ = {a, b}, thenall strings of length K (K > 1) isdenoted by $K,
gk ={w:wisastring of length K, K > 1}

Example:
l. I={ab}, then
2! ={a,b},

2? = {aa,ab, ba,bb},
L' = {aaa, aab,aba,abb baa, bab,bba,bbb}
| 2'|= 2 = 2" (Number of strings of length one),
|27 = 4 = 2* (Number of strings of length two), and
| 27| = 8= 2 (Number of strings of length three)
2. §={0,1,2},then §7 = {00,01,02,11, 10,12,22,20,21} ,and | §?| = 9 = 3?

Concatenation of strings

If w, and w, are two strings then concatenation of w, with w, is a string and it is denoted by
ww, . Inother words, we can say that w, is followed by w, and | w,w,| = [ w,| + | w,|.
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Prefix of a string

A string obtained by removing zero or more trailing symbols is called prefix. For example, ifa
Stl‘ll'lg w = abe ,lhen a,ab ,abc arepreﬁxesofw.

Suffix of a string

A string obtained by removing zero or more leading symbols is called suffix. For example, ifa
String w = abe ,then ¢,bc,abe are suffixesof w.

Asstring o isaproper prefix or suffix ofa string v if andonlyif a # w.

Substrings of a string

A string obtained by removing a prefix and a suffix from string y is called substring of w . For
example, ifastring w = gbe then p isasubstring of . Every prefix and suffix of string w is
asubstring of , but not every substring of y is a prefix or suffix of w . For every string y, both

w and ¢ are prefixes, suffixes, and substrings of .
Substring of w = w - (one prefix)-(one suffix).

Language

A Language L over 3, is a subset of s*, i. e, it is a collection of strings over the
alphabet 3. ¢ ,and (e} are languages. The language ¢ is undefined as similar to infinity and
{€} is similar to an empty box i.e. a language without any string,

Example:

1. L, ={01,0011,000111 } isalanguage over alphabet {0,1}
2. 1, ={€,0,00,000 ,...} isalanguageoveralphabet {0}

3. L, ={0""2":n > 1} isalanguage.
Kleene Closure of a Language

Let 7 bealanguage over some alphabet 5 . Then Kleene closure of 1, isdenoted by 7, * and
it is also known as reflexive transitive closure, and defined as follows :
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L* = {Set of all words over L}
= {word of length zero, words of length one, words of length two, ....}

-UeEhH=10ululu..

K=0
Example:

l. Z={a,b} andalanguage ; over y.Then
IF=r'ul'ulu..
L= {g
['={a,b},

I? = {aa,ab,ba,bb} and so on.
So, L*={e,a,b,aa,ab,ba,bb..}
2. §={0}, then §* = {€,0,00,000,0000 ,00000,....

Positive Closure

If 3 isanalphabet then positive closure of 5 isdenoted by 5+ and defined as follows:

5t = 3 - {g = {Set of all words over I excluding empty string €}
Example :
if £ = {0} ,then £* ={0,00,000,0000 ,00000 ,...}

1.2 MATHEMATICAL INDUCTION

Based on general observations specific truths can be identified by reasoning, This principle is
called mathematical induction. The proof by mathematical induction involves four steps.

Basis : Thisisthestarting point for aninduction. Here, prove that the resultis true forsomen=0or 1.
Induction Hypothesis : Here, assume that the result is true forn=k.
Induction step : Prove that the result is true for somen=k+1.

Proof of induction step : Actual proof.
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1.3 FINITE AUTOMATA (FA)

A finite automata consists of a finite memory called input tape, a fnite - nonempty set of states, an
input alphabet, a read - only head , a transition function which defines the change of configuration,
an initial state, and a finite - non empty set of final states.

A model of finite automata is shown in figure L.1.

y § j— Input Tape

f*—- Reading Head

Finite Control

FIGURE 1.1 : Model of Finite Automata

The input tape is divided into cells and each cell contains one symbol from the input alphabet.
The symbol 'y is used at the leftmost cell and the symbol '$'is used at the rightmost cell to

indicate the beginning and end of the input tape. The head reads one symbol on the input tape
and finite control controls the next configuration. The head can read either from left - to- ight or
tight - to -left one cell at a time. The head can't write and can't move backward. So, FA can'
remember its previous read symbols, This is the major limitation of FA.

Deterministic Finite Automata (DFA )

A deterministic finite automata M can be described by 5-tuple (Q, £, 5, g, F) , Where

1. Qis finite, nonempty set of states,

2.y isaninputalphabet,

3. & istransition function whichmaps Q x £ — Q i.¢. the head reads asymbol in its present
state and moves info next state.

4. q, €Q,knownasinitial state

5. FcQ,knownassetoffinal states.
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Non - deterministic Finite Automata (NFA)

A non - deterministic finite automata M can be described by 5 - tuple (Q, £, 8, q,, F), where

1 Qisfinite, nonempty set of states,

2. ¥ isaninputalphabet,

3. § istransition function whichmaps Q xX—» 2° i.e., the head readsa symbol inits present
state and moves into the set of next state (s) . 29 is power set of Q,

4. q, €Q,knownasinitial state , and

5. FcQ,known as set of final states.

The difference between a DFA and a NFA is only in transition function. In DFA, transition
function maps on at most one state and in NFA transition function maps on at least one state for
avalid input symbol.

States of the FA

FA has following states :

1. Initial state : Initial state is anunique state ; from this state the processing starts.

2. Final states : These are special states in which if execution of input string is ended then
execution is known as successful otherwise unsuccessful.

3. Non-final states : All states except final states are known as non - final states.

4. Hang-states : These are the states, which are not included into Q, and after reaching these
states FA sits in idle situation. These have no outgoing edge. These states are gcnerally

denoted by ¢ . For example, consider a FA shown in figurel.2.

FIGURE 1.2 : Finite Automata

g, istheinitial state, g,, g, are final states, and ¢ isthe hang state.
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Notations used for representing FA

We represent a FA by describing all the five - terms (Q, Z, 8, g, F). By using diagram to

represent FA make things much clearer and readable. We use following notations for representing
the FA:

I. Theinitial state is represented by a state within a circle and an arrow entering into circle as
shown below :
(Iniial state g, )

2, Final state is represented by final state within double circles :
( Final state g, )

3. Thehang stateis represented by the symbol '¢" within a circle as follows :

4. Other states are represented by the state name within a circle.
5. Adirected edge with label shows the transition (or move). Suppose p is the present state
and q is the next state on input - symbol ‘a', then this is represented by

6. A directed edge with more than one label shows the transitions (or moves). Suppose pis the
present state and q s the next state oninput - symbols 'a,' or 'a,' or...or 'a," thenthisis
represented by (P)—asetsy(7)

Transition Functions
We have two types of transition functions depending on the number of arguments.

Transition Function

Direct /\ Indirect

( Represented by §) ( Represented by §')

Direct transition Function (5)

When the input is a symbol, transition function is known as direct transition function.
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Example : 5(p,a) = q (Where pis present state and q is the next state).
Itisalso known as one step transition.

Indirect transition function (3')
When the input is a string, then transition function is known as indirect transition function.
Example : 6'(p,w) =g, where p is the present state and q is the next state after | w |

transitions. Itis also known as one step or more than one step transition.
Properties of Transition Functions

1. Ifd(p,a)=q,then § (p, ax)=58(q x) andif &' (p, X) = q,then &' (p, xa) =5'(q )
2. Fortwostringsxandy; 6(p,xy) =8(8(p,x),y),and 8'(p,xy) =6'(8'(p.x),y)
Example :1. ADFA M = ({9,,9,,9:,4,},{0,1},8,9,.{q,}) isshowninfigurel.3.

FIGURE 1.3 : Deterministic finite automata

Where § 1s defined as follows :
0 1
- G g G,
q, % 9
G G %
G 3 g

2. ANFA M, =({g4.9,,92,9 7}, {0,1},8,4,,{q}) isshownin figure] 4.

0,1

®

FIGURE 1.4 : Non - deterministic finite automata
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Calculation of < -closure :

€-closure of state ( e -closure (q)) defined as it is a set of all vertices p such that there is a
path fromqtop labelled ¢ (including itself).

Example :
Consider the NFA with ¢ - moves

A QLA
€~ ClOSBI‘B (%)z {QQJ 91935 45 }
e~ closure (¢,)={ q,,9,, 9, }

€ - closure (@,)=1{4,, ¢, }
e~ closure (g,)= {g, }

Procedure to convert NFA with « moves to NFA without - moves

Let N=(0Q, £,8,q,, F)isaNFAwith  movesthen there exists N’:(Q,e,g,qo,ﬁ") without
e MOves

1. Firstfind e - closure of all states in the design.

2. Calculate extended transition function using following conversion formulae.
0 8(g x)=e- closure 3(3 (g, o) x)
M  &(q,e)=e ~ closure(q)

3. F'isasetofall states whose e closure contains a final state in F.,

Example 1 : Convert following NFAwith & moves to NFAwithout & moves.

Solution : Transition table for given NFAis

b a b
>4, 4,
q: @ ¢ %

¢ @ ¢
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(i) Finding < closure :
e - closure (g,) = {go}
e closure (¢,)={4¢,, 9.}
e~ closure (¢,) = {¢,}

(i) Extended Transition function :

-

5 a b

ma L {41,902} ¢

¢ {9,}
¢ {q:}

8 (4, @) = ~closure (5 (8(q4:€)a)

= e~closure (& (€ —closure (q,) , a))
= e—closure (6 (g,, a))

= e—closure (g,)

={4:,9, }

8 (g5, b) —¢ ~closure (5(5(go.€),b))
=e— closure(8( e— closure (q,), b))
=g~ closure(d (q,, b))
=& closure(d)

=6

8 (q,,a) = e~ closure(8(5 (q,, €), a))
= e~ closure(d ( €- closure(q,), a))
=€~ closure(8 ((4,; 4,), @))
=e— closure(d (q,, a) Wo(q,, a))
=e— closure (¢)

=¢
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5 (q,, b) = - closure (5 (5 (g,, ©), b))
= €— closure (8 ( €— closure(q,), b))
= &€~ closure (8 ((q,,q,), b))
= €~ closure (8 (q,,b) v d/(q,,b))
= €= closure (gq,)

={q,}

8 (q,,a) = €~ closure (3(5 (q,, €), a))
= €~ closure (8(€~closure(qy), a))
=€ —closure (6(q,,a))
= &~ closure (9)
=9
5 (g, b) = e~ closure (8 (5 (q,, ©), b))
= €~ closure (8 (e~closure (q,), b))
=&~ closure (8 (q,, b))
= e~ closure (g,)

=1{q,}

(iii) Final states are ¢,, g,, because
€ — closure (g,) contains final state
€ - closure (g,) contains final state

(iv) NFAwithout € movesis
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2.1 FINITE STATE MACHINES (FSMs)

A finite state machine is similar to fnite automata having addiional capability of outpat,

A model of finite state machine is shown in below figure

Finits control
Input reading Output
head roducing head
y $| v E
1
Input tape Output tape

FIGURE : Model of FSM

2.1.1 Description of FSM

A finite state machine is represented by 6 - tuple (0,2,4.,6 Asq) s Where
1. Qisfinite and non - empty set of states,

2. ¥ isinput alphabet,
3./ A isoutputalphabet,
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4. & istransition function which maps present state and input symbol on to the next state or

OxL—->0,
5. 4 isthe output function, and

6. ¢,eQ,istheinitial state.

2.1.2 Representation of FSM

We represent a finite state machine in two ways ; one is by transition table, and another isby
transition diagram . In transition diagram , edges are labeled with Input/ utput.

Suppose , in transition table the entry is defined by a function F, so for input ¢, and state g,
Flg,, a) = (8(g,, a), Mag;,a,)) (where § is framsition function, 3, is output function.)

Example 1 : Consider a finite state machine, which changes 1's into 0's and O'sinto 1's
{ 1's complement ) as shown in below figure .

Transition diagram :

(=18
-

FIGURE : Finite state machine

Transition table :

Inputs
g I
Present Next State (NS) | Output Next State (NS) Output
State(PS)
q q q 0

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 20



Example 2 : Consider the finite state machine shown in below figure, which outputs the 2's
complement of input binary number reading from least significant bit (LSB).

RN CG
@ 11
T

FIGURE : Finite State machine
Suppose, input is 10100. What is the output ?

Solution : The finite state machine reads the input from right side (LSB).

Transition sequence for input 10100 :

Inputs
Co S ORNOSYoRNguEG
Outputs —
So, the output is 01100.

2.2 MOORE MACHINE

If the output of finite state machine is dependent on present state only, then ﬁns model of
finite state machine is known as Moore machine,

A Moore machine isrepresented by 6-tuple (0, £,A,4, 4,4,), Where

1 @ isfinite and non-empty set of states,
2y isinputalphabet,

3 A isoutputalphabet,

4

5 is tmnsiﬁon function which maps present state and input symbol on to the next state or
OxL -0,

2 is the output function which maps 9 — A, (Present state —» Output), and

6 g,<€Q,istheinitial state.

L

If Z (1), q (1) are output and present state respectively at time  then
Z{t) =1 (g ().
Forinput ¢ (null string), Z (¢) = & (initial state)
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Consider three LSBs of Input Output

L0000 () C
001 (X) C
010 (X) C

Ol (X) C

100 (X) C

..101 A

...110 B

LX) C

Transition diagram :
101/4 @
, 110/B
E0
xjc @

FIGURE : Moore Machine

24 EQUIVALENCE OF MOORE AND MEALY MACHINES

We can construct equivalent Mealy machine for a Moore machine and vice-versa. Let A, and
M, be equivalent Moore and Mealy machines respectively. The two outputs 7, (w) and 7, (w)
are produced by the machines M, and M, respectively for input string w . Then the length of

T, (w) is one greater than the lengthof Z,(w),ie.

L] =|Kw|+1

The additional length is due to the output produiced by initial state of Moore machine. Let output
symbol x is the additional output produced by the initial state of Moore machine, then -
Ti(w) = xTp(w).
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It means that if we neglect the one initial output produced by the initial state of Moore machine,
then outputs produced by both machines are equivalent. The additional output is produced by
the initial state of (for input ¢ ) Moore machine without reading the input. |

Conversion of Moore Machine to Mealy Machine
Theorem :If M, =(Q.%,A,8,4,9,) isa Moore machine then there exists a Mealy machine
M, equivalentto M.
Proof : We will discuss proof in two steps.
Step 1 : Construction of equivalent Mealy machine M, , and
Step 2 : Outputs produced by both machines are equivalent.
Step 1(Construction of equivalent Mealy machine M, )
Let M, =(Q,%,A,8,4',q,) whereall terms 0,3, A, 8¢, are same as for Moore machine and
)’ is defined as following :
M (g,a) = A (8(g,a) forallg eQand 4 ¢ ¥

The first output produced by initial state of Moore machine is neglected and transition
sequences remain unchanged.
Step 2 : If x is the output symbol produced by initial state of Moore machine A, and
T;(w), T,(w) are outputs produced by Moore maciﬁne M, and equivalent Mealy machine A,
respectively forinput string w, then

Ti(w)=xT,(w)
Or Output of Moore machine = x| | Output of Mealy machine
(The notation | | represents concatenation).

If we delete the output symbol x from 7, (w) and supposeitis 7' (w) whichisequivalentto

the output of Mealy machine. So we have,
T () = T(w)
Hence, Moore machine M, and Mealy machine M, are equivalent.

Example 1: Construct a Mealy machine equivalent to Moore machine A, givenin following
fransition table.
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3. A remains unchanged,
4, . isdefined as follows :
8 (g, bl.a) = [8(q,a), A (g,a)], where § and ), are fransition function and output
function of Mealy machine.
5. ) isthe output function of equivalent Moore machine which is dependent on present state
only and defined as follows :
A([g.0) = b
6. g, istheinitial state and defined as [g,,5,], where ¢, isthe initial state of Mealy machine and
b, is any arbitrary symbol selected from output alphabet A .
Step 2 : Outputs of Mealy and Moore Machines
Suppose, Mealy machine M, enters states g, ¢;, ¢5,...4, On input q,, a,, a;,....a, and
produces outputs b, by, by, ... b, , then M, entersthestates [¢4, 51, (g5, B} {42, 8] .-+ [45. 5]
and produces outputs &,, b, b,, ... b, asdiscussed in Step 1. Hence, outputs produced by both
machines are equivalent.
Therefore, Mealy machine A, and Moore machine A, are equivalent.

Example 1 : Consider the Mealy machine shown in below figure. Construct an equivalent
Moore machine. \

FIGURE : Mealy Machine
Solution : Let M,=(0,£A,6,44,) is a given Mealy machine and
M,=(02,4,6"4"q,") betheequivalent Moore machine,
where

L Q' c{l96:7}:190:¥} (91,7141, 7], 9270 (5, ¥]} (Since, O < O x A)
2. T={0,1
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3. A= {myl
4. g,'=lgy,y], Where g, istheinitial stateand y isthe output symbol of Mealy machine,
5. & isdefinedas following : :

Forinitial state{g,, y] :
8'(190, ¥1,0) = [6(g0,0),4(g0:0)] = [91,7]
5190, 1Y) =18(g0 )4G0 = [4257]
For state [g,,n] :
8 (g, 71, 0) = [8 (g, 0), A (g, 0] = [g:, 7]
8'([g1,n)1) = [8(q11Ma11I=la2m]
For state [g,,n] :
8 (195,11, 0) = [3(95, 0 A (4, 0] = [41,7]
8 ({g2,m ) =[8(g2: 1), A (g, D) = [0, )]
For state [g,, y]
8 (g1, 1, 0) = [84g1, 0,1 (9), 0 = 41, Y]
8 (g, ¥1 1) = [y, 1 A (g0, DT = {25 7]
For state {g,, y] :
8 ([¢3, 91, 0) = [8(g25 0, A (g2, 0] = {91, ]
8' (lg2s ¥ 1) = [8 (g2 DA (42 D] = [925 Y]

(Note : We have considered only those states, which are reachable from initial state)

6. 3 isdefined as follows:
Algo:y1=y
Migunl =n
Migynl=n
Mgyl =y
Mgyl =y
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2.5 EQUIVALENCE OF FSMs

Two finite machines are said to be equivalent if and only if every input sequence yields identical
output sequence.

Exampile :
Consider the FSM M, shown in figure (2)and FSM M, shown in figure (b).

w o

Figure (b)

Are these two FSMs equivalent ?
Solution :

We check this. Consider the input strings and corresponding outputs as given following :

input string Output by ¥, Output by A,
(1) 01 00 00

{2) 010 001 001
(3)0101 0011 0011
(4) 1000 - 011t 0111
(5) 10001 01111 01111

Now, we come to this conclusion that for each input sequence, outputs produced by both machines
are identical. So, these machines are equivalent. In other words, both machines do the same

task. But, A/, hastwo states and M, has four states. So, some states of M, are doing the same
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task . e., producing identical outputs on certain input, Such states are known as equivalent states
and require extra resources when implemented.
Thus, our goal is to find the simplest and equivalent FSM with minimum number of states.

251 FSM Minimization

We minimize a FSM using the following method, which finds the equivalent states, and merges
these into one state and finally construct the equivalent FSM by minimizing the number of states.

Method : Initially we assume that all pairs (g,,4,) over states are non - equivalent states
Step 1 : Construct the transition table.

Step 2 : Repeat for each pair of non - equivalent states (gg,,) :
(@ Do g, and g, produce same output ?
(0) Do g, and g, reach the same states for eachinput a €27
(¢)  Ifanswers of (a) and (b) are YES, then g, and g,are equivalent states and
merge these two states into one state [q,,¢, ] and replace the all occurrences of
g, and g, by [g,.q,] and mark these equivalent states.

Step 3 : Check the all - present states, if any redundancy is found, remove that,

Step 4 : Exit.
Example 1 : Consider the following transition table for FSM. Construct minimum state FSM.
Inputs
: 0 1
Present Next State Next State
State(PS) (NS) (NS) Output
8 9 a 0
9, 9, % L
2, 4 9o 1
% 9, 4 1
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After going through this chapter, you shouid be able to understand

Reguiar sets and Regquiar EXpragsions.
[ Unit-1|

|dentity Rules

Constrecting FAfor a given RES
Conversion of FAto REs
Pumping Lerima of Ragular sets
Closure properties of Regular sels

‘
’
L]
¢
é
q

5 REGULAR SETS

A special class of sets of words over S, called regular sets, is defined recursively as follows.
(Kleeize proves that any set recognized by an FSM is segular, Conversely, every regular sét can
berecognized by some FSM)

1. Every finiteset of wordsover S {inchuding e, theempty set yisa regular st

2, ¥ AandB aroregular seis over S, then 4, p andABaxealsoregul_an

3. HSisaregularsetover S, then soiits closure S*.

4, Nosctis rogulartless it isobtaingd bya fnite munber ofapplicationsof defidtions (1)to(3).

i, theclassof regular sets over S is the smallest class oontaining afl finite sets of woeds over §
and closed under union, concatenation and star operation.

Examples;

). Let £={a,bsthen the set of strings that contain both odd rumbier of a's and bls is 4

segular set.
i) Let Z =40} thenthesetofstrigs {0,00,000,..) isasegular set

i) Let Z ={0,1} then theset of strings {0110} is aregular set
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3.2 REGULAR EXPRESSIONS

The tanguages accepted by FA are regular isnguages and these languages are easily described
by siraple expressions called regular expressions. We have some algebraic notations to represent
‘the regular expressions.

Regular expressions are means o represent ceriain sets of strings in some algebraic
manner and regular expressions describe the language accepied by FA.

If 5, isanalphabet then regular expression(s) over this can be described by following rules.

. Any symbol from Ze and ¢ are regular expressions.

. If 5.and », are two regular expressions then union of these represented as » v », o1
K + r, isalso aregulerexpression

. I » and 7, are two regular expressions then concatenation of these represented as. ryr, i
also aregular expression, '

. TheKleepe closure of aregular expressionr isdenoted by p * isalso aregular expression.

. Hrisaregular expression then (r) is also a regular expression.

. The reguler expressions obtained by applying rutes 1 to 5 onoe or more thah once are also
regnlar expressions,

Examples :
(1) £ = {a,b},¢then
(a) aisaregularexpression (Usingruile 1)

(b} bisaregularexpression (Usingrule 1)
(©) a + b isdregular expression (Using rule 2}
(@) »» isarcgularexpression (Usingnile4)
(€) .gb isareguiar expression (Using rule 3)
@ ab + b+ isaregularexpression (Usingrule 6)
(2) Find regular expression for the following

{2} Alanguage consists ofall the words over {a, 5} endingin p.

(b) A language consists of all the words over {a, b} endingin pp.

() Alanguage consists ofall the words over {a, b} staxting with yand ending inb.

(@ A language consists of all the words over {a, b} having pp asasubstring.

{&} Alanguage consists of all the wordsover {a, b} ending inaab.

Solution :Let T =4{0,5}.and

All the words over £ = {g a, b, aa, bb, ab, ba,.aad, .. ... =St @+ *or{avb)*
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o((e0,5,00,8,...) )

= {e,a, b, an, b6, 0b, ba, ara, bbb, abb, bas, aahd, ...}
= { All the wards over §a, b} }

2lat+tb)”

So, (e P ={(a+t)"
%3 IDENTITIES FCR REs

The two teguiar exquessions P and Q are equivalent ( denoted 83 P = Q }if and only IFP
represerts the gume set of strings a3 Q doea. Fev shavwmg this equivelence of ogulir expressions
we need 1o show some identities of reguler expeessions.

L P, and R are regular expressions then the identity rbes are as ghwen bedow
L e fnRexk

ate g Eiﬂm‘m

) =4 ¢ isemply sining.

¢R=Rp=p

#=R=R

R+R=R

RR*=R*R=R'

(R’}'zﬁ'

€+RR' BR‘

(P+()R=FLR+{R

(P+0) =(P'Oy=(F" +ZY

RasR)={e+&IR =%

[RI'G)’=R'

s+l =R

(PQ)" P=F{OPY

16, RR+R=RR

2
3.
4.
5.
é.
-
8.
2.

e I A et
2R

33.1 Equivalence of two REs

Let L= sae orie importan theorem named Ardar's Thaorsm which hetps in checklng the
equaience of (W refular expreasions.
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Arden's Theorem : Let P and Q be the two regular expressions overthe input set £, The
regularexpression R is givenas

R=Q+RP
Which has aumique soluticn as & = 9P

Proof : Let, P and Q are two regularexpressions over the input string ¥ .
IfP does not contain ¢ then there exists R suchthat

R=Q+RP e {1)
We will reptace R by QP* in equation 1.
Consider R. H. 8. of equation 1.

=Q+QP'P

=Q{e +P'P)

=g v €+ R'R=R'
Ths R=QF
is proved, To prove that R = OP"is a urique sofution, we will now replace L H.S. of equation 1
by Q +RP. Then it becomes

Q+RP
ButagachmbereplaccdbyQ+RP
, O+RP=Q+(Q+RP}P
=+ QP+ RP’
Again replace Rby Q+RP.
=Q+QP+{0+RP} P
=0+0QP +0F + RP’
Thus if we 20 on replacing R by Q + R then we get,
O+ RP2Q+ QP+ P +....+0P + RP"
=Q(e+P+ P2+ . P+ RP™
Fitm equation 1,
R=0(c+P + P2+, + P4 RPH
Where 20
Consider equation 2,
R=Qle+P+ 2" 4. ..+ P )+ RE™
)’

R=QP"+RPY
debeastnngoflengﬂn
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m e, 0,00,111,111,01,10,
= | &, anycombination of (s, wry combinsdicnof 1's, any combination of
Gand 1}
Heoce, L HS.~R H.5, is proved

3.4 RELATIONSHIP BETWEEN FAAND RE

Thave is 2 close elationshin betwosn a finite atomats and he regular expression we cm show
this reéation m betow figyre.

Can be Regubar Canbe
Converted expetssion conyerted to

NEAwihoat |
& mdyes

FIGURE ; Relafionship betwesn FA and mgtlaraws’im .
“The abxrvs figure shiows thet it s canvenient to camvert the rguletexpression toNFA with ¢
moves, Letus se the theorst based on this comyersion.

3.5 CONSTRUCTING FA FOR A GRVEN REa
Theoran :|fp Doarapdarerpmeson bien hemmiise NFAWE ¢ -moves, which acepts (7).
Proof : First we will discitss the construcdon ofNFA 3 with ¢ -moves for regtitar expression
r anid then we prove that £(M) = L{r).

Let » bethe regular expression overthe aiphabet 5.

Conewruction of NFA with ¢ - movea
Casat:

B et
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NFA M = (fr, £, { I o, {73) asshowmin Figure] {8)
(Nopath from inifial 3¢k 510
( ) ‘ reach the finat state /)

Figure 1 (2)
@ r=€

NFA M = ({3}, L }, 8,5 {r)) asshowninFigiee | (b)
’° {The mitial state s is the final state]

Figure 1 {b)
i) # = aoferalla =5,

N.Flﬁ M - ([’,ﬂ,z,&.&{ﬂ)
° . o {One pathis Uhere from initial stais s
. . : toreach be final stute fwith Jabel 2.}
Flgure 1 [¢)
Casal: |r|21

Lzt 5 and r; beibe rvo rogular expressions over 2, 2, and ¥, and &, @eiwoNEA for
r, & r, respectively as shown in Pigure 2 (a).

D « 0
e Ny @ LA,) =5

Flgure 2 (8} NFAfor regular expreasion », and »,
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Now let us compute for final state, which denotes the regular expression.
n will be compuied, becauise there ate total 2 states and final state s ¢, whose start state is g,
= Yo e W)
=Be)e)+0
=0+0
#2 = 0 whichisafinal regularexpression.

3.6.1 Arden's Method for Ganverting DFA to RE

As we have seen the Arden's theorem is useful for checking the equivalence of two regular
expressions, we will also seeits use in conversion of DFA to RE.

Foltowing algorithm is used to build ther. e. from given DFA.

1. Let g, bethe initiad state.
2. Thereareq,, gs.2s:qs,--q, 2umber of shates.The final state may be some g, where j<n
3. Let o, represents the transition from g, 0 g,.
4. Caleuiate g, such that
g, =, q,
If g, is a start state

g, =g, +e

5. Similarly computethe final stase which ultimatefy gives thie regular expression.

Example 1 : Construct RE for the given DFA

Solution :

Since there is only one state in the finite antomats lefus solve for ¢, onty.
C 4o =q90+qol+e
go=Go(0+1)+e

FORMAL LANGUAGES AND AUTOMATA THEORY




Example 3 : Construct RE for the DFA given in below figure.

Solution : Letus see the equations
g =ql+ale
7 = go0
g =gl
23 = g0+ g1 +g; 0+ 1)

Go =l +q,0+€

o = g;01+ ¢o10+€

30 = 3,01+ 10)+ & - R=Q+RP

q'@ =g {01+10)¥ = (P* where

go <01+10)* R=q,=c,P=(01+10)
Thus the regulas expression will be

r=(01+10)*
Since g, isa final state, we are interested in ¢, only.

Example 4 : Find out the ragutar exprassion from given DFA,
by
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Example 8 : Show that the language L = {a' b"|i >0’} s not regular.

Solution : The set of strings accepted by language L is,
L = {abb, aabbbb, acabbbbbb, aaaabbbbbbbb...}
Applying Pumping lemma for any of the strings sbove.
Take the string abb,
it is.of the form wvw.
Where, |wv <t vi2]
To find i such that sv'w ¢ L
Takei=2 here, then
w'w = a(bb)b
= ahbb
Hence wv'w=obbb €L
Since abbb is nof present in the strings of L.
~.'Lisnot regular.

Example 9 : Show that L = {0'|n is & peifect square } is not regular.
Solution :

Step 1 : Let Lisregular by Pumping lemrne: Let nbe nmimber of states of FA accepting L.
Step 2. et z - o+ then |zfn22.

Thetefore, we can write z=uvw; Where [wisnlvl.
Take any string of the language L=1{ 00,0000, 0600000..... }

Take 0000 as string, here u="0, v=0, w=00to findi such that w'w¢ L.
Take i =2 hexe, then
w w0000
= {000
This string 00000 is not present instrings of language L. S0 wviwg L.
. ltisacontradiction.

3.9 PROPERTIES OF REGULAR SETS
Regular sets are closed urder foflowing properties.

1. Union
2. Coneatenation
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3.
4.
S
6

1. Union : if R and R, are two regular sets, then union of these denoted by R, + R, or
R, U R, isalso aregular set.
Proof : Let R, and R, be recognized by NFA », and ¥, respectively as shown in
Figurel(a) and Figure1(b). |

FIGURE 1{b} NFA for regular set &
We construct a new NFA N based on union of ¥, and ¥, as shown in Figure 1 (¢}

FIGURE 1{c) NFAfor ¥, + ¥,
Now,

I{N) = € L(N,} € + e I{N;) €
=€Re + eR,¢e
=R+ Ry
Sirtce, Nis FA, hence L{¥) isaregular set (fanguage). Therefore, R, + R, isarégularset.
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2. Concatenation : If B end R, are two regular sets, then concatenation of these denoled
by &R, isalse aregular sef.
Proof : Let R, and R, be recognized by NFA ¥, and N, réspectively as showsin
Figure 2{z)and Figuire 2(b).

FIGURE 2{b} NFA for regular set R,
We construct anew NFA N based on concatenation of &, and N, as showh in Figure2(c).

FIGURE 2{c) NFA for regular set R X,
Now,
L(N) = Regular setaccepted by. N, followed by regular set aceepled by ¥, = R\R;
Since, L(N) isarcgular set, hence R;R, is alsoaregular set.

. Kleene Closure : If Risaregular set, then Kleene closure of this dencted by R*isalso
aregular set.

Proof : Let R isaccepted by NFA & shown in Figure 3(a).

FIGURE 3(a) NFAfor regulas set R
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We construct a new NFA based on NFA Nasshownin Figure 3(b).

FIGURE 3({b} NFA for regular expression for &'
Now,

-L(N} =I{G’R-,R R » R R R ,'"'}
=i
Since, L{ N} is arogular set, therefore R* is aregular set,
Complement : I{ 7 is.a reguiar set'on some alphabet 3 , then complement of z is.
denoted by =" - R or 7 is also aregular set,

Proof : Let g be accepted by NFA N = (Q.2,8,5,.F) . It means, L{(N)=R.
ANigshown in Figure 4(g).

FIGURE 4{a) NFA forreguiarset R
We constrzct a new NFA x'basedon n asfollows:
(8) Change al! final states to non-final states,

(& Change alinon-final states to final states.
N'is shown in Figure 4(b)

FIGURE 4 (b) NFA
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Now,

L{N"}= {All the words which are not accepted by NFA N}

= { All the rejected words by NFA NV}

=" -R

Since, L{N") isaregulax set, sherefore (2" - R) is aregular set.

. Transpose : IfRisaregular set, then the transpose denoted by g7, isalsoa regular set,
Proof : Let g beaccepted by NFA N = (@ ,2,5,5,F) asshowrtin Figure 5(a).

FIGURE 5 {4) NFA N for regular set R

i 1 isawordin g, then transpose (veverse) is.denoted by 47 .
Lnet W= alaz...a,,

Then w? =ga.a,.;...a;
We constructanew x based on p using following rules::

() Changethe altfinal states info non-final states and merge ail these into one state and make it
initiaf state.

{b) Changeinitial state to final state.

{©) Reverse thie direction of all edges.

 yvisshowninFigureS (b)

FIGURE 5{b) NFA N'for regular set g7
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Letw = aia,...a, beaword in R.thenitis recognized by p and

w’ =a,a,,..a, isrecognizedby av 2sshown iti Figures (b)

In general, we say thet if a word 1 in R is accepted by N.andther pn accepts 7,
Since, L(A") isaregular set containingall ,,7 ; it means, L(NY=RT,

Thus, &' isaregular set.

- Intersection : if & and R, are two regular sets over % » then intersection of these
denotedby R, N R, isalsoa regular set.

Proof: By De Motgan's law for two sets 4 and B over R,
AC.B=R*~((R*-4)U (R*-B))

SO, R, M Ry = X —((S*-RIUE*—R;))

Let By = (Z*-R,) and R, =(=*-&;)

80, R; and R, are regular sefs as these are complement of g, and &,

Let R, = R, w R,

So, R, is a regular set because it is the union of two regulai sets &, and R,.
Let R, =S *-R

8o, R isaregular set beeause it is the complement of regular set R, .
Therefore, imersectionofhvoregb!arsetsisalsomgtﬂm-set.
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REGULAR GRAMMARS

e o ————— TS
ARtar going through 1his thapter, you should by abis to untemtand

& Aagsde Gommar
v Enuivalanca bodwesn Beguist Graverir snd FA
v Inlcavienion

41 RECULAR GRAMMAR

Definiton : The grenmsar G=( V, T, , 5 ja mbd to bo reygalac grammar iff the grammar is
dghx tecaror lofl fimes
A gracroves G s 56 1o be right Ilnear ifal! he prodacilons are of ha fon
A—wE mi/eor AW whers £, Bo¥ okl wai'.

A gzmerer G s suld 4o be 1ot Fnewe if ] the productiors are of the fom
A—Pw sadicw A oW whete 4, Bc¥ and o 1.

Exemples 1 @ Tho geamma

s - aB|bbA| g

A -~ gAlb

B - bB|a|e
0.yt Linoar gramenr, (NS e 5 and string of Sadnals o wopesr on RHS of sy production
tad ifnon - teantloal s prezerrt on R, H. § of any production, vnly one nog - terminad shoukd be
resent and it bas o be dwe dght et symbolon R H. 8.
Ezaropls 2

The graoamet
§ - Boa | AR | <
A = Aalb
D - Bbla] '3
iz beft lineaw yramermne, Nigte it v and etring of tnarats can appesz an RIS of sty producsion

mod 1foca - tenninal s precemt on 1, HL 8 of sy production, any 0oe non  sestainal ahoutd be
peewent o it Bas to be ik felt et svmbodan L H. S.
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Example 3:
Consicer the gramursas
S -> aA
A - aB|b
B 3 Abla

I thais gramma, ench production iseither left Hnedr ocright liear. Bu, the grmenar is not either
left Bincar or nght lisear &xhwd'gmnmiaeﬂd&ww&xammmﬂﬁchm
alnwstmmnksmimlonLhen'gb(s'dcu:-fmymuhmims\ihw!rcmnonﬂlepuslbmof
this nan - teeminal { note the nan - serminal can be lefimost or sight most ) is celled linear
e

Note that the language gencrated from the regulnr grarmme s called regular languags. So, there
drould be some relation between the reglar grammes snd the FA, sinoe, the language accepied
by FA 5 also regular langnuge. So, we can construct a nie artomucon 2iven a regulr gramamar,

4,2 FAFROM REGULAR GRAMMAR

Thoorom : LetG» (V,T, F. §)be a right linear gramenar, Than there exists 3 Rrg=age 14G)
which 6 accepied by a FA, | ¢., the language generated from the regular grammar

= regular larguage,

Proof : Let ¥ ={g,, 4, -..) bt the variables and the start stale S = ¢, Let the productions in
the grammar be
G = TG
g - L4

oY R/Y

a7 59,

Assurne that the langusge L(G) penerated from these prodictions is w. Correspondmg Lo each
production n the gramemar we can hiave a equivalent transitions in the FAto acoept the string w.
After sccepting the string w; the FA will be in the final state, The procedure to obtain FA from
these productions i8 given below
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810 1. g, whichis the St symbol in the gramumar iathe st ete TA

S%p 2 For esch prodoction of (w Boom:
» ow,
the corespoadi g tran sition defined wit be
2'tg,¥)=4,;
Step 3 For each muduction of the form. g — w
lhe correspanding tonafGoa deflned will te 3 (g,, ») =g, where ¢, isthe fnalstate,

A the atring w e Z(G) i aloo noorpted by FA, by applyluy the Iransiiions oblained from
stepl (heough step, Lhve hemesyoze i egular. 5o, (he (hcorsm s peonvad.
Exampte 1 1 Consiruct & DFA K actept fho enguads peseraied by 1ha Toowing o aemat

S = 0Olf
A - 108
2 5 04U

Solution ;

Note that for cach productiva of the form 4 - w, the corevaponding tranattion Al be
& A, wya B. Al , Toreach poudhiction 4 -5 w, We ol introducs the tanaition S(4.») =2,
whae 7, Lethe el o, The trasiSons obtdned o grammas O w shown using the followkog
mhl:

Productinne Treaakicns
DiA &S, 0n a4
LGS ¥4, Wed
BA X2, )=
11 B, =g,

The EA conresponding 4o the trana does obtadned i shown befow -
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Sa,dmDRA  Af = (I, 5,4,.A) vhem
G=15. 4.8, 4 Q&) T
w=S, A={gd
§ isa obiained from the abowe table.
The adiGtlmel vortices ntedooed are 4, .4,. 9.

Example 2 : Conutuct a DFAK Brosptthe ihquane genervtes Ry tha FE0wing g remnmar .
A — a5
A —  aNbBlg
B — bB| £
Soludon :

Noae thas for cach proviuttion of the foom 4 5 w8, e comrcsprmuding trussdion will be
3 A w)= 8 Al for cachprodwtion £ - v , B Caninrduoe i transitiog KAw) =g,

whete ¢ istbe fitiaf e, The trsmitiors pEaimed frova gramm O i shovm wsing $w fallovdng
ke

Thaet
[ =
St final e |
Maa)=4
34,58

A tathe faal stz
a8, d)=F
Bisihe final swe
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Rote : Forcacl wresitlon of e fism 4 ., ¢, oabke A ge o flial thuse.
The FA comussymding 1y the a3l pus abesriod s shenan bel oo

08

S0, the DFA A ~[(1LE, B, g, A} where
Q=(S.A4.B) , Twa,d}
q,=5,4=15. 4, 8)

3 )¢ s chimined from the sbove 1eble,

4.3 REGIRAR GRAMMAR FROM FA

TROOMN ! L8 44 o{(3.1.8,0,,4) o5 nie maowtn. I i tha ragu b kngug? Rocsgtad
by FA, than s sodats A5 Boasd grmmp Go{ V. T, P, B) 8o thal L« L[G).

Proot : Lot M o(0.4,8,¢,,4) benfinike siomsta sczpbng |, whons

£ =20 qynga)
Z =0, 0y..- 0]
A rcgular ganmar G =( V, T, P, 5 }can be actatrocted wheve
Fa{g.q,~a.}
=z
S=q,
The produactione P from the bomegfions o be obévined as show belet
Step 1 : Forcach tahaition of the fonm g, 0)=g,

the cocregpomiling peoduction éefieed will be 7, — oq,
Step 2: If ¢ = 4 i, 0,4k the Finat nts in FA, then Amtroduoe 1he prodction

g

As them: prodyetiona are phtained #oe the wathtios defited fior FA, B bnpaseo sccapted by
FAis aba nocepted by e grammase,
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REGULAR GRAMMARS
— — . —
After going through this chapter, you should ba able to underetand ;

+ Reguiar Grammsr
s Equivaience bebween Reguiar Srarnmar and FA
s lieroonversion

41 REGULAR GRAMMAR

Definition : The grammar G ~( V, T, ?, 8 yissaid to be regnlar grammar iff the grammar is
tighttincar or lef} hinesr.
A granunar G is said to be right lmear i€ al the productions are of the fomm
A->wB aedicr A—)“’m A.BEV wwer-

A gramimar 13 32id to be left linesrif'all the productions are of the form
A-Bv mifor A »w where 4, BeV ad 7',

Example 1 : The grampar

S - #aB | bbA | ¢

A o5 aAlb

B -+ bBlaj¢
isaright linear erammar. Notethot < and string of terminals can appear on RHS of any prodhction
andif o - termingl is present on R. H. 8 of any production, only ane non - tetiinal should be
prescot and it has tobe the right reoet symbol on R H. 8,
Example 2:

The gratoinar

5 -~ Baa|Abb| ¢

A Aalb

B - Bbla| e
isaieR linear grammar Note thet ¢ and string of termsingls can appesr on RES of any prodactin
and if'oon - teeminal is present on L. H. S of any production, only ane non - terminal should be
present and it has 4o be the ¢ft mostsymbol on L. K. S.
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No®e : For each transition of the fonn g _y.¢, make A 5 the flnal siate.
TheFA comesponding to the transitions obtained is shawn below;

30, the DFA A7 =(D,E, 8§, g,, A} where
O={8 A48} , Z={u b}
g =S . A={8, 4, B}
5 is &8s obtnined from the zhove table.

4.3 REGULAR GRAMMAR FROM FA

Theorem : Let A =(0,2,5,¢,,4) beafinite sulomsaton, If L i the regular languege accepied
by FA, then there exista 4 fight linear grammar G = {V, T, P, § } so that L= L{G),

Proot : Let M =(@,L.8,9,,4) beafinite sutomata sccepting L where

2 = {¢s.91: 20}

I ={a;02; 0y}
Areguler grameaarG=(V, T,P, $ ) canbe constrocted where

V={Gu s ¢}
T=Z

§=g,
The productions P from the transitions can be obtained 23 shown below :
Step 1: Foreach transition of the form &(g,, @) =g,
the corresponding prodixtion defined will be g, — ag,
$tep2: If g < 4 1.0, ifq isthefinal state in FA, then introduce the production
g —5€

As thesa peodhuotions are obtsined from the transitions defined for FA, the languags aceopted by
FAisalso accepted by the grarmmor,
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CONTEXT FREE GRAMMARS

Aner going through this chapter, you should be able to understand :

Context free grammars

Laft most and Rightmast darvation of strings
Derivation Trees

Ambiguity in CFGs

Mrimizaton of GFGs

Normnal Forms (CNF & GNF)

Pumpirg Lemma for CFLs

Enumeralion properties of CFLs

5.1 CONTEXT FREE GRAMMARS

A grammar G = (V, T, P, §) isssdd 1o be a CFGif the productions of G are of the form :
A—ra wheeee(l uT)?

The right hand side of 2 CFG ks not restricted 20dd it may benuldl or acombination of vaziables and

terminals. The pessible leegth of gl hand scotentll form roges fomOto @ ie, 0 < (o | <=

As we know that a CFG has no context neither lefl nor right. This is why, i1 i known ax
CONTEXT - FREE. Many programming languages have recursive structure that can be
dgfined by CFGYy

Example 1 : Coasderthe grammar G = (¥, T, P, §) having productions |
S -» aSa ) b5Y . Check the productions wnd find the kanguege pencrated,

Solution :
Let B8 -5 aSa (RHSisterminad varible teominal)
£ 8 - ASh (RES isterming vaniable terminal)
B:8 e (RHSismd stng)
Simce, all productices sec of the form 4 —» @, wheee @ (V' o 1) * herce G is0 CFG
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So, the firal pracwast to peatmbe the bangoape L= | w|a,(w) = r, {w} | sC={V,T.£$)
wee
V={8) . T=1lah}
P= | Sac
5—>a%
S BSa
53—>5
} 9 istbe stut wymbol

9.2 LEFTHOST AND RIGHTHMOST DERIVATIONS
Lefenoat derivation :
fGu(¥,7, P 5) 5aCFGand » e £(T) then A derlvadon E3w ks called |eftrost
dedivadion fznd oaly [fall stegs Lanahved Lo desd vatlon Banes Lefimoss varlabbe yeplacemmetd only,
Rightinogt sortvation
WG u(F, T, 2.8) ixuCFGand w & £{5G), ther A dstivation s—T}w la calbed rightmost
degivation if and oaly if Wl sepe TTvoived in derividion dnes rgh e vesrke cepkaotmenl ey,
Example 1 : Coneléertbe grammmr $ — § + & § * Jof & . Firud leftmos ond nightroest
dertvathiong SocStiog w = 2% a 4 -

Solution :
Lafmost derteation for =g " g + &

ol ol Using 5 —+ 5+ 5)

?0'3 (The first lefl hand ymboliee, pousing & —+ »)

?9'3&3 {Ushng s = § + 5. Inanderoped 7 + &)
=20%0+$ ( Second Fymabol Bum Giekeflias, o vang § - g)
Pa"urd  (Themtsymbel Gothe lolis &, 50 wig § — 8}
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Rightmost dervathon kx o = z* ¢ 4 &
§=23°8 (Udng s —» 5 5)
2848+ 5 (Slowe, mcheabove pernantial foom seccad symbol from the righk is ¥ 50,
Woan il st § — alé. Theschoos we ¢ § - 5+ 5}
2SR5+ (Usngs )
?S"o-&l (USRS = o)

=wa'R+l {ildmgs-.a)
Example 2 ; Comsider s CFG € — a4 af, 4 —+ afladda, B > AS|abfb . Find
Lefimcst and rightanos dernvatiorn €67 w = oasdAadidg -
Sohrtlan :

Laftmostdardration I o - aaxdbahbée !

£ = ad (Uelng 5 — a7 to@eoato Emisymbolof w )
= a28B (Siniz, croond tymbol it o, <0 WU 8 — 28F)
= oacH8B {Sinec, thdnd eywibal ks o, 80weuSe 8 — oBY)
= AXOFF (ince ourb symbol ia . 0o wome B w &)
= aeahhd Slice, Rhsymbolka b, sowense ¥ — 5)
= ambbodd {Since, sxth qymal in g, <0 Ut Uus B oy 28R7)
= saohhats Sincz, soremth symbolis b powe wet 5 — b )
> mrabbabhs (Nince, dghth symbolisd, mwvoe g - AS)
= apabbaphidd (Siode, nitith symhol is &, 2OV WEE S — b4)
= poaahhmibha (Moce, thownth symbol iBA, OWNE 4 — o)

Rightmost dewrhaabion ko 3 o sottabbée
§ = ap (Usg § - o o gowernte firgt oyrubol of w }
o aly(We nead nas 1be righdmost 3 ymbet snd socoud symbo | from the ket side, 20w
MK 3 - 8B )

= ouBbS (W need 44y rightmod grontol ard 194 i obalined fum A only, weue> g — 8y )

= aalhhd (Lalg £ ba)

= aalide {Usicn 4 — 2}

= caaBtbe  {Moneedbadthe fourth hvabol Dokt the righ)

= opabdbla  (UEmg 2 .5 b)

= woehfPhba  (VHog &+ &S )
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Figure (c} Parte Ues I w = ob Figure (0} Parso voo Or w = ab
Sy the gives grammer Ls smbiguoss

541 Removal of Ambiguity

5.4.1.1 LeftRecimnion

A gramamar o bechanged fram vwe foom W wvoter sccepting (he cane Janguage, e

has lofi recarsive propenry, It bs undesiable nod left rocursion shoukd beeliminsed The et
ety o s dafinet ag fhllowa

Definition 12, gramwnes C i s0id 10 be Jefl recurstve [Tthere 15 sare non keraliad A sooh that
£ =* 20 inotharwordss, i Uhe derdvition proceas starting, o ony e - tattiel A, if o serecied
o sty with e ot ot - katnmal A, then oy s (e gawnimar s havisg kit mondon

Elimipntion of Left Recursian
The lefl recuralon bn.a grammar G s be eliomoled a: oo helow. Consicdér tlw A~ pendmcin

althe form Ardada iz, P ATAL: AT, A
where £ 3 donot start with A Tlentbo A produsstions van be rvplaced by
AR 188 IAA iy A
A0, A md 1md—. |z, 4
Notethet o, 'sdo notstart with 4.
Examphe 1 ! Brmei b0 goason Fom e o IDmng Qramimsr
E= E+T|T
T—T*F1F
ForiBy I
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5.5 MINIMIZATION OF CFGs

Aswe have seen various languages cam effectively be represented by context free rummmes, Al
the grammers e not alwiys optirnized. That mecus graomme may onsists of some extra symbols
( non - lerminals). Having extra symbols unnccessary increases the length of grammes,
Simplification of grammar means reduction of grammar by removing useless symbols. The
peoperties of reduced gramimar are given below

1. Enchvanshle (i & non - 12emmaly and each rermins of G sppesrs in the derivagion of some
ward in L.

There shonld not be ary production as ¢ » ¥ where Xand ¥ are non - ferminals,
If ¢ oot inthe Janguage L then there need not be the production § e .

We see the reduction of grammar as shown below

Reduced grasmny

Removal of Ermirstion of Remaval of
wicless symbols & productions | it produetions ]

5.5.1 Removal of useless symbols

Definition : Asymbol X is useful if there is a derivation of the foem
S="a¥f="w
Otherwise, the symbol X is uscless. Note that in a derivation, finally we should get string of

tesminals and all these symbols must be reachable from the stact symbol 8. These symbols and
productions whichare not at ull wsed in the deivation are wseless.

Theorem 551 el G=(V, 7, F S)baaCfG We can find an  equivalent grammar
Gy = (V13 F, 8 suchattorsack Ain (FT)) theswaxisls o and & in (FT)* and = in
I forwhich 5 =" et =" »
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Py T,

S—>a|BblAs ab
Aol ab
B—alAs ab

The reanlting granurar @, =(¥,, T, .4].5) whxe
¥, = {9.4B)
T, (ab)

f ¢

§ 5 a|Bb|aa
A -+ BB
B -+ RlAa
] & & the st symodvl
yuch hatmech syynbol X io (F)w 1)) hisadetvalonofthe bon § 5" @p =" w.

5£2 Eliminwting = - produxtiots

A prochuction of the form 4 - & is tndesirabieio A CFG, onlees ot enpry setng 18 daived fom
1ha soare eymbol. Suppose, Ok Jaspuege pendamted from a prumme O doey pog Eexive Any
amgsy 9ing and the grammesr ceneists of «- prodeeions. Such ¢ «production e cat be nepied.
Ab 4 - prodoetion it Jefined g5 follgws

Defiabion 4 : LetG={ V. T, 5} boaCFQ & prodaction in P of the form

A= a

ia called an = - production or NULL production After appkying the production the variable i s
erzsed. For esch A in V, ifthere ip 3 dernvation of the: Gamn

FEE
lbon A isa oulbable vaclabk.
Exmntpl : Gonaider tho gammar
8 -  ABCa|bD

A -» BCib
- bla
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Swg 2 ¢ Construetion oM paxducdons 7, .Addopoa ¢ productionn P #, JGde all the
onorit rmtiret af gudlabla varishgain a produrdon, delets subie af nulldhe verabies oec Ty e
wd add v remliitg productions 1o #, -

Prodxiee Resultieg proshactions ( #, )

BAAB S .» DAAB|AAR | BAR |BAA|
AG1EB|BA|AA|AIB
OA2 A »0A2{D

AD A 2A0]20

AB. B 5 AB|B|A

=) B 1R|I

We can dekel= the prudicelons of the form A —+ A. In r, , the produetion 8.4 8 ombe
delrialasd the sl grumenar obtained after ¢/kmigaing « -peoductlonsis shown below.
The gammar G, = (¥, T F},5) wiere
v, = [SARCD}
T - tancdi
A = {5 BAAB|AAB|BAB|BAA|AB|BB|BA|AAJAIR
A 4 0AZ|02|2A0]| 20
B - AB|A|TR]|)
} S isthestan sywibol

653 Ellminsingunit prodections
Cotukder the prochction 4 - . Thelbefl hand Rdeat the p’odxdnnm.d ﬁgfn.hmdtidanﬁb
production cookame only ot variable, Such produs tany i salled v productione. Formally, @
curit productot k deflne] as folows.
Definithon ! [ﬂG-(Y.T.F,S]bch?GMrpmdmdmlnGofﬂlc&lm

A=+ ¥
wham A, gep mamlt protcion

In any grermmnis, tae it productions e mndesirable. This is because oae vamisble is staply
Tepbaced by anodher varisbie,
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In 8 CEG there is ho restriction on the right hand side of a production. The restricticns sre
imposed on the right hand side of prodacticas in 2 CFG resulting in pomaal foems. The different
narmal formsare !

|. Chomsky Nomeal Form (CNF)
2. Cirelbock Normad Formn (GNF)

56.1 Chomsky Normal Form (CNF)

Chomsky normal form can be defined as follows.

Non - terminal —» Non - lerminal Non - terminal

Noq - terminal - tegmnal
The given CPG should be converted i the above forrest then we can sgy that the Eranmer is io
CNE. Before converting the grammar into CNF it should be in reduced form, That meass
remove all the useloss symbols, ¢ productions and unit productions from it Thus this redocad
grammar can be then coaverted to CNF.

Definition :
TetG= (V, T,P,S ) bea CFG. The grammar G is said to be in CNFif all productions are
of the form

A - BC

ar

A . a

wiere A, Dand CeV anda T,
Note that if s grammar is in CNF, the right haad side of the production should cortain two

s,\mbohmuoes)mtml.lfuwmzcmns;mxﬂsmlhr right hand side those two symbols must
b2 mon - terminsds andd if theee ks only one symbel, that symbol must be = teeminal

Theorem 5.8.1 : Let G=( V, T,P. 8 ) be s CFG which generates contexs free Sangnage
without <. We can find sn equivalert comext free geammar G, =(V,,PA.5) in ONF such that
L(G )=L(G, ) L e, all productinns in G, arcof the fonn

A - Be

or
A -
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Thue, fom( 7}, (Fyaad (9), the resuian grmmenar bocomoey -
L¥, S|VHD, lalb
¥, -
K, =]
K » 3R
Vo —» ST,
not
Yo
Nrros, it the remubaeil grarsar (C), Bl wing (s dbe produe: tios which 8110t in the form ol CNE:
SN Y,
We tan wiite this peocluction e ;
S4¥,P, v {10)
LA
Thus, fron (10) sd {11, the resulvo prensmer becomes :
53 MSP ¥y b
Fi-s-
¥, =
K-y,
¥, + SV,
K, = SF,
v.—+ 1
K.=1
M&mmtm%mmabnndmﬁtddkﬂnmim! oheon.

582 Gruiback Normal form (GNF)
Greshach fnnal form canbo defined a5 folbows -

momhamlml — one teerinal Aoy rwsnberof re - Lerminads |
Examnpla :

S-+ad isla GNF
S5—a s GNF
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From the sabtree shown in figure (), Wepet § 5 asfe OF § 5 2, 52, &odconsidoring

the subtree shown in figure(c), we gel g,-',a ar g = 2

The subtree shown in figure (b)can be ndded as muny times 23 we like inthe poese tree
shown ia figure (a). So, g— 33 S5l neye)

Therefore, string z cam be written 25 az,z,,y for scme v end y substrings of . The sahstrings
2, e 2, Gn be pumped & many tmes as we lke, Replacing #;, 4 and 2, by v, wand x

respectively, we get z= uvwxy and g _',,,.u,,,'). forsomei=0, 1.2, i
Henve, the statement of theorem is proved

Application of Pumping Lemma for CFLs

We tzse the pumping lernma 1o prove cestain languages are not CFL. We proceed us we lssve
wen inapplication of pumping Yemma for reguler sets and et comtradiction. The resu¥ of this
lerma is altways peganve

Procedure for Proving Language is not Context - free

The following steps are corsidered to show a given language is not context - free,

Step 1:

Suppose that £ i covtext - free. Let | be the natan number obtained by using pumpeng lenyms,
Step 2

Chooscasuring sc ¢ sach that |xf 21 using purnping leruma principls wete 2 = LV WKy

Step 3:

Find saitable i so that w'sx 've . Thisisacoatradiction. S0 L 18 nol context - free,
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Cann2:

vea* Bnd ;" Let , 0 and pant. Pemping v wnd T, {¢+1) cimes. we gl
Ol dt?y,

nZ. o ofdawill by o-prak gentiy,

No.of b'sia 7' witl remaln 01+ b. Hénce, o, of 2% =po. ofd's in 2,

Simikarty, motber caxes, we cam ariye M irivgs nol a6 per speciflcation of L.
Hetxoe, 1 i1 v cucoteed free-

58 CLOSURE PROPERTIES OF CFLs
The closuee properdes that bobd R regishar brgungens do ot nbwys bodd for contend ftee bmpuages
Conctidey {ho = opermticns which preacrve CFL.
The pupose of frete OPerstions @ & prove et ngosges mn CFL and cortin bagnages
e noe CFLL
Comextdrae Mrgusges wre closed uater folicwing properties.
- Leoon
- Cancetonation ud
- Rleaw Closura [Cotvext-fros baxgioazs eary or mury wot ¢ koo undor folkowing propercrea)
. Ieeervecton
. Coopléroentntion
Thearam 5.8 : [f ¢; eod Ly aretwo CFLe, e wien of [ and 25 denoted by Iy + £
oF Gy v £y inalbw a CFL.
Proof ;
Lat CEG G, = {V,,7].8.5) penersbes L) and CMO G, = (F,, 7). 2.8) genemies Z;
ad G=(F,7, £,3) pnetaes [ = £, + L;.
Ve comstroct (7 aa fodlows

Btap 1 = Repane the verabies of CFG G,

BV, = (5,4, 8,., &} tben e ramned sacebis o [S), 4), B..-t; | Thsmadifictie
shonldd be reflerted in productions elso.
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Shmp 2 t Renam the yartables of (TC Gy

If ¥y =13,4,8,.X]. hea e resgaed vorisbles are (8, 4y, 5. T3], Thia
mod feating sboukt be refledted in priducilon aleo.

Biepd: Ve gatofthe peoductions of G, asd Gy to et productoas vl G ed follows

§ = |5, %hae S nd 53 are sauting symbals of granwmers G; aad G, respectively mnd
&) - productions and 35 - producticos remuin unchanged,

T Ty Ty,

V= €8, A & X i {8y, 4y, By Xy

Simce, 8ll productices of @) and Gy inchuding § —+ 5;| 5, ort m eaniext-frea form. 30
Gealfx

Lengunge genarated by G :
£(G) = Langpupe generted froer (8, o 57)
= Longuege pacnated fom S of Lngwgs geaeraied fooen 5
- L(G)) or I(G) (Sirce, § and §y arenarting symbolsc Gy =nd Gy sespecively.)
» Iy or Ly {Sinta, Gy poodiess Ly and G, peochoces Ly )
-l sl
Henoe, nateanest of fhe therrem it proved.

Exampls : Covaklerthe CFGs 8 + ol | o¥ amd § — oS8 | odf, which gahetate
Livpiagen Zy id £, respectively. Constroct praenmar foe 7. = Ly ¢+ £p.

Sohution :

Let Gy gonstares £ axd Gy geaemies L3 and G = (V. 7, P8} genomten |, = 24 » I3,
Renaming the varinbles of o) and G We gt

¥,={5,) anl ¥_ =(3,}. where & - produciions ara & - a5p | @b, 90d
Sy - producthona e 53 — oSyt | cdd
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PUSH DOWN AUTOMATA

Atwr going twough tiky Chaptor, you sOWM B 4ble (0 undersiand |

« Puah down dutriads

o Acoeptarvs tw fodl ammde 30d by emply 34K
v Enubniahcrof CFLand PDA

o Idertdrwanion

*

ntrducliom b DCPL and DATA,
5.1 INTRODUCTION

AFDA s aneataraienn of finke aioneats (FA )L Flotic s sowsis vt 8 stack monery w2 3o
vived as pushdows subomats Addition of steck marmary enbonces the capabiidy of Pushdown
Eutamats as compancd (o finie automata, The stek memony i poLarokally iafhrtte and itis 2 datn
stewctire. B operution in based on [t « in - Aned - et (LUFO). r means, tho Lsat ob)oct pustied
on the ack: in poppad fod Bropearon. We saaune 8 stack 19 loog enoogh and sty 7w e,
Weodd or mmove obijects at the A ahd.

6.1.1 Mouve) of Pashdown Automesia (PDA)

Attvodal of pushdown actomaa isshown in bedow g, I corsiia ol finkéiz tpo, 8 coaling
head, winlch reads fram (b tape, 8 stack memory operating it LIFD fadion.

be— Sapart Togre

Fintie e (urtrof

FIGLRE : kodsi of Pushdown Autorata
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There are two alphabets : ono for inpat tape and another for steck. The stack siphabet is denoted
by r ond inpust alphabet is desoted by % . PDA reads from both the alpbabets ; ones symbol
from the input and one symbol from the sack.

6.1.2 Mathematical Description of PDA
A pushdown automatu is desceibed by 7 - tuple (Q £,1' 4, 9,.2,.F) ,where
@ 1 finite and posempty setof states,
L isinput alphabet,
1 i firite and novcmpty set of pushdown symbols,
5 i the mansition fumction which maps
Fram ¢ < {E W {&) » I' to {finite subsetof) O = 17,
g, @ £, i the slarting sate,
6. Z, « I ,isthesesting (top mostor initial) stack symibol, aad
7. F ¢ {,itsthesetof final states,

81.3 Moves of PDA
The mine of PDA means that what sre the options 1o proceed firther afler reading inpatsin

same state and writing some string on the stack. As we have discussed eardier that PDA is

pondelerministic device having scme finite number of choies of moves in cach sitaation
The meve will beof two types :

1 lnufmnpcofn»ve.mhpamnbulkamdfmﬁzmhmmﬁwhudisulvmwd
and depending upon the topmost symbolon the stack and present state, PDA has number of
choices to procead furtber.

n the second type of move, the mput symbol is ot read from the wpe, 3t meass, boad s not
advamoed snd the fopmost symbol of stack s usad. The topmest of stack ks modified without
reading the input symbol. I is alse known asm e « move.

Mathematically first type ef move is defined as follows.

50,0, 21 = {{py @M s @3 poa,)) , where for | S ¢ S myq, p are slates in
Qack Zelad ael*.

PDA reads s input symbol a and one stack symbol Zin presemt state ¢ and for any vatluseds) of

i, enters stane p, , roplaces stack symbol Z by siring &, T * , axxd bead is advanced one oell on

the tepe. Now, the kflnost symbol of stong <, i3 nasumed es the sopmost symbol on (he stack.

Mathematically second type of move is defined as follows.
5(9.6.2) = {{ pe @ W (P1v0 3 her Pay@, )} yWhere for 1 <1 < 2, g, p, ATeSates i
Qaek, 2el,ond a,cI'*
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PLA does nat fead [npur symbod bz it rexds sack symbol 2 tn poesent suate ¢ zad for amy
valve{1) of i, cuters state p,, tepinces stack aymbol Z by string o, e [ ¢, #nd hend is wol
advincad co the mps. Now, the leiimoet symobol of siing @, 39 ssaared re bo topwmost yymbol
o the skack.
Thostring o, be any ooaof Lhe following :
1. o, «a |bhecxse i opmesl stk symbol 2, 1seeaced and socond toproast symbol
bacamed T sgwintst syibiol by the o ot B35 thown ba figuma (8]

=)

FIGURE(m): Move of POA
2. m,=rcce,nthscas totopmostsack symbol Z,, isxplaced by eymbul ¢ JUis
abowan i fgean)

Bl

FIGURE(Y: Mavs f PDA
Y. @ =Lzl Lio hiseanc e wpneod auck symbal Z,,; is coolacod by otring <0;.0 . ¢,
Irisshownin figuw(c).
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'| .

Fier
L
F T

: ' A'h* \

FIQURRE(ek Move of POA

6.1.4 Inntamzapeous Descrintion (D) of PDA

LaAPDA & = (@I 2,90, 2o.F ) 1 thets o configaration st o given knclat 20 be dofmed by
Irestimtimecusdeicription (ED). An D mwhades s, renidning inpad sioieg, od commiatng stack
writes (qymbole) So,mDH (g.v.2) whae ge G re B asT*.

The relgthon Tatweaen two consecutive s is repvesemied by Ube sd gt |—

We gy 9,0, 2 [l pas.aB 1 175 (g, o, 2> cooiting (.0). vhere Z,0,0ET*
woybondllr s eE p g v Q lor M

The peflesive and manshive closre of e relation - La denceecl by b7
Propartes :
L. lftq,x.aﬂ;}(p.e.di.m ael*2<cE®,and p. g €@, thenforsll y s *,

RS RN

N |3 w.zy.a*&(y,y.a}. wherse 2 e T%x.7eE*, and pg 9, them
{q.z.n')hf-{u.eal . =d
If (g.refdpe B, where o Ad~xel*, and pgef. theo
9.2 f)}&(pﬁ-ﬁrl. where y al" ¢
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€15 Acceptance by PDA

Let Whe n PDA, O aocepizd [enguepeia repacocared by N(M)L e dedusd the aterpdasion by
PDA in two mags,

L Lt M (BT A, 4y, 2,,F) . then N(b) i ecrepted by Erl siate auchy thed
KM I=tmigpwvZodatq; @.0), wheve g € @, wel%2, fc*, and
q, €F;

T sac|ae $o the seocpteania by FA discumed earlinr We defm s soave Bxxal stades and
The seecpied Jengoage WA Bthe sct of sTl imput strings for wich some chokee of mnes
e 1o wme fiowd sigte,

P Tl M = QT 8.40uZo ), then M3 yorczpiad by amnty sk ornull sisek sk
that MM ) = {wdgowiZ hptpe e ) whers o e Duwe D3
1o {angoage N7 15 the s of all ispel sarings For which scme sequeass of moves
couses (he PDA tn ety ity sinck.

ROk © [ scceptance i defined by ampty stack Ibon there B 00 meaning of Fnal stave and i i
represected by §.

Exnmaple : comcder & FDA A = ((4,,9),9;):05¢]40,20 15902519, )} showa in
below Ggurs. Chock the oqoeptability of string exas.

ﬂ,éi?a #a,s
9 =05 QZ. a

0, &y aR

FGURE : POA $coppihg [a'co’ 2 I}

Note : Fdges are iafeled with Irgpet aymbot, yiack symbol, writier syrabal on e arack.
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Sohstion ;

The trencition furcion B it definad as fatloma -
LN RES (N7 B
iy 0,0 =402
Flgy.ca)={(g,.a0)
#t@r.=,a) ={(g,. €N, «od

Slg el )= e 4o}t
Fallowiog moves are carried oot im oty 30 check acospriadsl iy of siring e

(. O Zquo.m.az,j
Hepom 002 )
g, 09,022
[ @200, ¢
Hane2y)

1“9’&-‘-21]

Begce, (gommcma 2y hi{9,2 Zo)
Theratove, the string teosa & sccaptad by 3¢,

4.2 GONSTRUCTION OF PDA

0 s aecilon, we ahall see bow PDA's G becamtrucacd.

Erampit 1 Ctian 2 PDA o ooy B IANQuage (A0 = [ wOw'| we(a+5)*] whm
w»" by reverse of Y,
3oluton:

Tiinclesy o the language t(&d) = | wOu) hatil wwatd

Lhes rewerso ofw dencted by s will be e - oo tod e Language L will be oyt
I8, WYChts which 1s a string of palindrome.
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To accopt the string :
The sequence of toovay s by the PDA Jot (he string aahClan [s shot belaw
Tnitial ID

(e, oOChaa Z,) (g, QCoda, al,)

{w SCHaa, andy}
(@, Char, boaZy
(geAas Bae2,)
(‘T‘IMQJ
{912.02,)
(Fel,)

F =2y}

(Firad Condlgewatican )y
Sloce g, & the Sl stabyaad mput string is « i the final configursdon, the aring aabChas
it scctprted by the PIXA .

To rejectibe string :
The sequence of mores made by the PDA foc e saring sabTbub by shown below.
Iitial (D

(G0, sabCtud, Zt oo {gg, adChal az,}
F (e 6Chak, quig)

[ {do. Chud bnXy)

F o (3. oot hexZy)

" @y dh k)

F o b ey

[ Firnt Canfigranstion)

Sincs the traneltlon &g, 4, 4) ¥t defined, o ering aabChab s wot 3 palinderome
U ot trinws hadts and the sting ia rejecied by bo PDA.

Exampls 2 : Ootain 4 PDA M #208p! lhalenpuepa .5 { o* 4% 42 |} by a tngl state
Sclution ¢

Tl reanch Lo shoald actept i Haomaber afits Fpllowed by m rmmber of b,
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6.3 DETERMINISTIC AND NONDETERMINISTIC PUSHDOWN AUTOMATA

In this section, we will discuss aboot the deseeministic and noadeterministic behovior of pushdown
aupomata.

6.3.1 Nondetarministic PDA (NPDA)

Like NFA, nondeserministic PDA (NPDA) has finite nusber of choices for ils mputs: As we
have discussed in the mathematicel description thut traasition function & which maps frem
O x (X w (h)x I wifinitesubsetof) 2 x T *. A nondeterministic PDA sccepis an input if
usequenes of choices leads to some fined state or cimses PDA to enply itsstack. Since, sometimes
it has more than eoe choice to move further ona particular inpat ; it means, PDA guesses the
right chotce al ways, atheewise it will fail aad will be i banyg sune,

Example : consider a nondetermimstic PDA M ~ ({g,).{a.8){a.6,21.5.9,.7 ), [or the

langunze 1 = (2"8" :n = 1} where § & defiecd a3 follows:
By Z) = {{9a. 20, (9 ,a2h 1] { Towo possible moves formpant < onthe tupeand Zon the stack),

] (§oo@, 8= ((9s.%5)), and Glqat0) ={(q,,€))
Check whether String w = aqbd 15 nocepted or not ?
Solution : Initinl configursion i (g, sehb, 7). Following moves are possible :

[(v..mﬂb.nb) — (2,085, ) e &
(fh '“”b‘?.)——

(§o. 0008, 82b| wunm (g, ubb, Z5)

|
{ }

(g abb adb) {qy .abb, aZhb)
(g bb.t0) {50, D, Zbit)

(7,.0.5)
(g, b adbb)  [9,,b0.aZbbk)
(9..6%)
¢ ¢
Honee, w = aphth is accepied by empty stack.
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One thing is noticeable here that only one move sequence Jeads 10 empty store and other don't.
In other words, we say that sorme mose saquence(s) leads to accepting configuration and other
lead to hang state,

6.3.2 Deterministic PDA (DPDA)

Deterministic PDA(DPDA) s just like DFA, which has of mas! one cloice W0 move loe certain
inpul, APDA M = (Q,X,1,8,9,.2,, F) isdeterministic if & sshisfies both the conditions given
s folkows
1. Focanyge 0, ae(Zu fe}).amd Z = T, B4g, @ Z) has al most one choice of move.
2 Forany geQ,and 7 ¢ 1, if 6(q,€ 2) is defincd ic, &(g,€ 2) » §, then
g e, Z) « g forall g g T
Example : Consider & DPDA M =({9s, 0,0 1a.¢), 10, 2.}, 8,4 2o, #) 2ccepling the
langusage (o"as” su = [}, Where § i defieed as follvws !
6(9e,2,2,) = Hgy,a2,5))
8(gy,a.0) = (g,.a1)},
Flguee,a) = {( g0},
&gy 0a) = {{g,,%)}, and 8(g;.6.2;) ~ {g;. )
Check whesher the string w = aacon 1sacoepted by empty stack or not 7

Solution :
We see that in each transition DPDA has al most one move. Indtdal configuration is

(s, a2000, 7, ). Following ae the possible moves,
Gy v , 2y ) = (g o0z, 0y ) (go 0w, 0aly ) —» (g, 0,00 )
i
(@ 5.5) = (0,5, 25) &= (9,,0,07,)
Hence, the string w « aacan is accepted by cmpty stack.

As we have discussed in earlier chapers that DFA and NFA arc equivalent with respect to
the language acceptance, but the same is not true fur the PDAL

For exanple, language £ «(ww 1w e (o §) *) Seceepted by noadeterministic PDA,
can not by any deterministic PDA. A noadetenministic PDA can not be converted into equivalent
deterministic PDA, but all DCFLs which are accepted by DPDA, are also accepted by NPDA.
So, we say that deterministic PDA 18 a proper subset of nondeterministic PDA. Hence, the
power of nendetermimstic PDA = more as compared to detenministic PDA.
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64 ACCEPTANCE OF LANGUAGE BY PDA

Thelangnegc can be accepted try o Push Down Aviomasds mcing fwo appooachas,

1. Accaprianc by Pinel State : The PDA aoepis its mpad by consuming Lo and then i sagary
L the sl sxmwe.

- fecepience by enmply staok : On reading the hopid string frocn initin] configanaton fos
sime PDA, tho stk ofPDA gef s crpiy. e ’

4.1 Equivalanca of Empty Sicre and Fingd siate soteptance

Thaocem:

i, =<0, E.T,.5.p,.2,.§} 86 FPDA serepting CFL [, by stipty cteve then thare
BB PDA M, = {D;. t-]‘u&n’;-zp '.an Mmhl,brﬁml talr

Proaf :
First we consmom PDA A, based 0a PDA 4, and then wo prova that both accept £

Step { : Conatruction ¢f POA £ baced on ghven PDA M,

T issaae for both PDAs. Weadda e initinl stwo and & new final state swth gdvea PDA u, .

S Qo=@ \ripaua,l

The stack alphebet O of PDA 4, voateles ooe additions] gpmbal Z, with I,

80, M =C,u|Z,)
The truaition faecson &, vontansall the temnsttings of glven FDA. 4, sod 1wo addisions] trmsisions
(% aod Ry) wa defined a9 Follows:

Ri:8dp. s Zy) = (2, 2,200

Ry 8, e 2)=48,¢¢.0.2) fral (g2 Zp 0 Q, % | L {ath e I,

(s priginel trmsiivan of & ),and
Ry26:(9.5.2;)% 1{q,.5)} foxrpll ¢ = £,

By e &, &, moves fom dsinklal T ( p, ¢, 24} tothe imitid Dof #, By Ry, & umeallthe
Taaiions of w, afterrenching the indfial ID of w, wod by using Ry «, macheste final state @
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The blook Segmam sabowh s below figas.

c.25.2, 2, €29  FN
@2

EHMMRE : Biock dagram af FOA A

Stzp 2 ; The languags scospiad by PDA A, and PRA 5,
Thebohaviortof &, and 3, ore pane except éha two by ¢ ~oovopdenedby £y ond 2.
lﬁm” x L wmwb’ N..M

¢Pew. )5 (9.6.5) where ¢ < 0, {Resuit 1)
Fox 34, e inidel Dis¢p;, ., Z,) and it canbe wiitten &3 {p, mwa )-S50,

[Poawe, Zy b (. 2, Z;) (Thds ndtisd DT 4, }
|57 (0,523 (toy #y o Ruosatc )

b 60,58} aary 0 Ry)
Thuy,if M, cocepts w, then M, also accepta it

Hmeit LIV ) Lid))
lLetsting w ¢ 2 acud secapied by FDA M, thon

{Faewaid b l‘ﬁ{ﬁa wZZ,) {BvR) (Result 3)

ks 9.2,25 (By #)  (Kewak4)

Iﬂ;(@;-‘-a‘l ael;, By R))

Note : The Reault 3 isthe imiial [Tt of #¢,, The Resuk 4 shows ibe conpty state for M, if
symbol Z; Bnotthena
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For 3¢, thamitisd D (p,, w,2))

S0, (211w 20) [ (0.0.), whe 4 < @, (8 Resit 3 and Rowels ) Thua, 3 M, aecepis
w,ln 44, alsoaccepts it
Lenesme, £4Af, 3 LEAL,DY (Renlt 5)

Therefare, L= (A e E{MF))  (Firoi Resqult 2 00d Result 5}
Eeoes, the suteent o fheoramn Is proved.

Exmmphec Conssdor s sondeterminietic MDA M, = {fe, ), {73}, (@ 8.51. &.q0,5.43 Which

Booeplds therlanguege £ = {a"" ;. 4 2. ) by apty sorm, where § is defimed as folkows -
8{9,.. 8} = (e, ), (g, 0587} (TWo poasible moves),
Bloy. 221~ ([44.6) . o] Slg, & 00m 1 g,.))
Conrtruct an oquivakat PUA. Af, whiehscoupis.£ io fionl stote end check whether strivg
ko = gebb ishecopted or okt ?
Behution : Following moves st camiedout by PDA i, Ln otk 1 it w = s
{2y 0685 |- {4, a0bh aSh)

[ tgy.as,58)

[ abt,ab}
(go, b, 55)
[—gutnby

|~ tgq.=2)

Heaoe, (40335.5) |- (41,,5)
Therekore, w = aabb I8 scepiadby M, .
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TURING MACHINES

After going through this chapter, you should be able to understand :

Turing Machine

Desgnaf TM

Computable funchons

Recursively Enumersbie Snguages
Church's Hypothesa & Counter machine
Types of Turing Machines

7.1 INTRODUCTION

The Turing machine i a generalized machine which can recognize all types of languages viz,
regular lungusges ( penerated from regular gnunmar ), context free languages ( generated from
context free gramimsar ) and content sensitive languages (genenled from coetext Sensitive grammse).
Apart from these langaages, the Turing machine also sccepts the language generated from
unrestricted gramemar. Thes, Turing machine can acoept any generalized language. This chapter
maindy concentrates on bullding the Turing machines for any laeguage.

7.2 TURING MACHINE MODEL

The Turing machice model is shown in bedow figure . 1t isa finste automaton conmected to resd -
write bead with the following components :

. Tﬂl\'
Rend - write bead
Coattrol unit

Tape
Lelalglal . Ioisisl...T |

o2 avim Head

Corrrel
Uait

FIGURE : Turing machine model
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Tapa 1 b is atenporuy mttge and is dividad Ingo ceils. Each ocll e auvet the inforsation of
omdy ods symbal, The sdcing 10 be scrared sl b sotad fhom the el anxst postion on the tegse.
The atring to bewened should end with mifdte pmiabeg of ks,

Road -write #0000 : Thetead - wrik ead cantend s.xymbol from whe it is poimting o aed
11 con wrila bt the tape to whets the riad - writs head polts .

Comirol Unit.: vzmmngmiﬂngmmmmismmwwmmm
deuMmodbyﬁ-mﬁmwmﬂqudmw ond the
vzt g, The vesl - waite hed can aove eithey towards bl or ight i & NO0YERDEL 280 be
ocotothihe directions. The varios moves pesfonned by the mazhloe we -

l. Changs of siate Fus Gue v o anrhior stk
p 3 medpdnﬁumwhmﬂ-mbﬁmbBMh;Mamm
3. mm-mmwmmwm«mzim
e Turing machin: crm berepveecied esing varom aotxtions such 23
. Tt thic
» Istotaneus descriplam
Troemston diagrnd
121 Trawsition Table

" tabie hebow o L tratts tion tnkde &t come Tering aachime. Lader soctines teacTide bow
10 ubeain Ba brasaition eblo.

Tape Symbok (1)

(9 Y,

|
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Not that lor each stade g, there can be acomresponding eatry for the synbol in 1. In this table
the symbols o and b are input symbols and can be denvted by the symbol £, Thus ¢ T
excluding the symbol B, The symbol B indicates & blaek chaructor and wususlly the string ends
with infinite number of B's 1. ., bionk charscters, The undefined entries indicate that there see no
- transitions defined or there can be a tramsition to dead state, When there is i timsition to the
dead state, the machine halts ind the inpul string is rejected by the muchine. If i chear from the
table that
SiQxTw{P«Tx|LER))

where Q= {90991 d0vta) s T=t0, 3}

F=(a b X Y8)

¢ Btheinitid sate;  Bisqspecial syunbol indicating blank charscter

¥ =(g,) which isthe final state.
Thas , n Tuaring Machine M can be defined as folkows.
Definition : The Turing Machine Af ~(0 2,18 ,¢,.5,F) whera

0 is set of finite states

» is setofinput alphabets

I issetoftape symbols

& ¥ tmnsition Amction ¢ <e (@ «xUx{L.R)}

qq ks the Initinl state

Bisa special symbol indicating blark charncter

F =0 i8setof final staes.

7.2.2 Instantaneous description (ID)

Unlike the IDdescribad in PDA, in Tuning machine {TM), the ID is defined oo the whole string
{ Dot oo the string 1o be scarmed) and the current state of the machme,

Definition :

AnlDof TM Isastringin a8, where g is the current state, o f is the string nsade frown tape

symbols dencted by i, ¢, & 1nd @ « '*, The read - write head points 1o the first charocter of
the substring 4. The initial 11 is dencted by ged where g i the ssart state and the read - write

head poinss to the fizst symbol of « from Jefl. The Bnal [D s denoted by ofgl where g2 F is
the final stace and the read - write head pones 1o the blank charscter denoted by B.
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Exympln : Conaider thw snapabotof a Turing machine
Tape

Resd- wripy Head

Conoal
Ot

To thiseschine, sach o,e T (1 &, axth o, bebangatatha trpd Eymbol) o dhls sz, Lo
gymbel o is under 163 - write hendand the syebe] towards inft of o, L ¢, 2 inthe coman
oats, Note tha, inthe Toring tynchine, the symbn] bninadistly tovads leftof the read - wrine
tead il be the gurtent sale of the movhimnand the symbol icowedixtaly towards right of the
stabe will b= the ek symbo to be mnanad. Bo, o thia case it 10 ks denated by

A e Aty - —.

wivers the SUbSTIRE maxayw, Mowweds Jeft of ds 3ot g, 1s the Lefl seuence, the
Sebetring ayardy ... bownrds Figit of the sl ¢, (8 e right equerroand ¢, isthe oo e
of the caachize, The symbal o ks the nend symbo] to bs ecanted,

Asgurhe (et he crrenk ID of (e Twdeg machioe is o,0,a,0,¢;#.0ch8)..... B3 shown i
anepehot of ccampie:

Suppdss, there L3 g transifion 5Ty, &:) = (g by R)

[rensans thet if fiye mainioe ks im stte g, mnd the merct syeibol to be acaneed i ., , then the
evuschire eners o BtEle ¢, repioving e symbal o, by & pod B indicates that e rend - wite
head ismoved uné symibod kPvards M. The cew ool partion oblsined is

A s, bogy @y Ty

Thés ¢am ba apecsaned b 0 IROYE &5 1,033, 9; 0y Mty - | = N1 358 Bg Redaty---
Slasllady il the cvareoe 7D oF tha Tarng moctie # o020, 018,38y
and there s & vt

819,40, )%g),01.L)
meeans Uhe if the miacbilne 35 n st 2, Jnd the.ncut syrobot o be scanncd 6 o; , den the machvine
entrm ittt st g, replocing the aymbel 2 by o eod L Indiestes tint fhe csad - write bead
moved ot 35ubal comands YoB, The new confl garation vhtaied ks
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This can be represeatod by R MOVE 88 0,0,050, ¢, Gsly@yiyin |* @253 0400520y ...

This confipuration indicates that the new state is ¢, , the next input symbel fo be scanned
s & . Thosctions performed by TM depends on

L. The current state.

1. The whle string to be scsmmed

3. The curvent position of the read « write head
The ection performed by the machme consists of

1, Changing the states from one state to another

2, Repiscing the symbol polnted to by the read - write head

3. Movement of the read - write head towards loft or nght.
7.2.3 The move of Turing Machine M can be defined as follows

Definition : Let A <(Q.EX.5.q,.5F) he a TM, Let the ID of M be
05y GO Ay g e, WhEDR @) ST for 15 J<n-1, g =@ is the coment state and a, as
the nest symbol to scanoed, [f there s a transition &g, ay) =(p, b, £)
then the move of machine Mwill be ¢,.a,4, 8, | =0,a58; e 5 080

I thee R & transition g, a;)={p b, L)
then the move of machine M will be

P PRSRNE" JUPL) [0 TORIE. JR B PO Y - PO 8

7.2.4 Acceptance of a language by TM
The language acospted by TM is defined a3 follows

Definition :

Let M « (Q.5,1,5,4,.5,F) be a TM. The language L(M) socepted by M is defined as
LAY = [ iqom *ay pa; where wek®, pe F and o), a6 T'Y)
i€, et of all those words win ¢+ which cavscs M 10 move from start sste g, 1o the final
stato p. The langusge accepted by TM is called recursively enumerable Bnpuage.

The string w which is tha string to be scauwed, ghould end with infinite number of blanks,
Tnitsafiy, the machine will bein the start state ¢, with nead - write head pointing 10 fhe first symbol
of'w from left. Afler sume sequence of moves, if the Turing machine enters into the fined state and
halts, then we sy thet the string w is accepad bry Turing machine.
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7.2.5 Differences between TM and PDA
Push Down Automa :

1. A PDAissnondstermmistic fingte automaton coupled with & sack that can beused 1o siore
nstring of arbitrury length.
. The stack can be read and modified only st its top.
. A PDA chooses its next move based on its currend state, the pext input symbaol and the
gymbaol at the top of the stack.
. There ate two waya in which the PDA may be allowed to signal acceptance. One is by
entering an pocepting state, the other by emplying its stack.
. IDcoesisting of the stike, remssinmg inputand stack contents o describe the "current condition”
of aPDA.
f.  The languages accepled by PDA'seither by final state or by empty stack, ans exactly the
cantext - e languages.
7. A PDA langusges lic strictly between regular lenguoges and CSL's.

Turing Machines :

1. The TM isan ahstract compting machine with the power of both real computers and of
other mathematical defirmtions of whist can be computed.

. T™ consists of  firdie - stsae control and an infinite tape divided into cells,

3. TM makes moves based on fts curent stase and the tape symbol al the cell scanned by the
tupe head,

. The blank isone of tape symbols but ol inpul symbed,

. TM acoepts its inpat if it ever cnters an scospling stste,

. The languagss accepted by TM's are called Recursively Enumerable (RE) langnages.

7. Instantmmeousdescriptional TM describes coment configumtion ofn TM by finile- kenghstsing.

. Stomge in the fimilo control helps to designs a TM fora particalar language.

. ATM can simulete the storage snd control of a real comparter by wsing ane tape to store all
the locations and thels contents.

7.3 CONSTRUCTION OF TURING MACHINE (TM)

I this section, we shall sce how Ths can bo constrocted.
Example 1: Obtsin a Tuing maching 0 accect the Beguage L = {0717 [z 11,

Solution : Nose that n number of s should be followed by n number of 1's. For thas let us
take an example of the Str0g 4 = 00001 111 - The string w should beaccepted as it has foor neroes
followed by egual member of 1's,
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General Procedure :
Let g, b.'lh!svmmandk(ﬂtcrwd-\m‘tchendpuhnsmlheﬁrslsyml‘d of the string to he
scannesd, The general procedure to design TM fow this case is shown below
I. Reptscethe loft most 0 by X mmd change the state 10 g, and then move the resd - write head
fowards right. This iss because, aftera zero is replaced, we have to replace the camesponding
| 0 that number of Zeroes matches with number of 1's,
2. Search for the lefimost 1 and replace it by the symbol Y and move towands left (08310
obtain the leftmost ( again). Steps 1 and 2 can be repeated.
Cansider the sitvation
XX00YY11
t
%o
where first tvo 's are replaced by Xs and first two ['s arcreplaced by Y5, In this sitoation, the
read - write head points o the keft most zzro and the machine is in state g, With thisas the
configuration . now Jet us design the TM.
Step 1: Instate g, repiace 0 by X, change the etate t© 4, and mave the pointer towards
right. The traesition for this can be of the form
8o, B = (g1, X. R
The tesulting canfigueation is shown below .
XXXOYY
1
el
Step 2: [nstate 21, We have to obtain the lefl - most | and veplace it by Y, For this, ket usmove
the pointer (0 point 1o lefinuost one. Wisen the pointes ks moved taowands |, the syenbols enotered
maty be Dand 'Y Imspccti\ew»mboliscmmmmnd.wplwcomllYbyY.muinlnsmc
g, s move the poimter towards tght. The transitions foe this can be of the form
85€(q,,0)=(4,.0.R)}
&(g,.Y )=4qy JLR)

When these transitions are repeatedly applied, the following configuration is obsained.

XXX0YY1l

-
\

{
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Shop 3 : Juide q.,mwmbolinbewmmdbu,ﬁmmhm i by Y,changsthe
280k 10 g, and mowe the polntec lowrds ket Tha bramaiticn for this e be of the Sorm
s‘m-ngtﬂflrlb}
o fhe JoRovrieg configmmeion 1 obained
OXOYYY1
1

143

Note than the pointer is Toovest koweds Joft, Thin isbacanse, 8 2510 is 1eplaced by X il e
conrespounting 1 iswplaoedby\tNou.wehmmmﬁxuu}eﬁmuﬂﬂmmdnlb
poiie WaE move knaergs bafl )
Stap 42 Noie that to obealin keADoe 2673, woneed ta abtain right moat X first, So, we sean f@
e dght moat X, mmmmmmwmm.mywmwo.
Temoin inatitd g, oty 0 move the pointer towds ket The transitiona for {ds €0 beolte
xm 3[?)-’]‘(7}1’:‘)

5(9 3 W0 )"{01 Q.2}
Thx following conBiguwasion ks obizmed

LHOYY VI
13

@
S4ep 57 Now, wo have chiained the tight moet X, To get kefteoat 0, replace X by X, change
(e stk ko ¢, &nd move the poatet wwands ght. The wnsticn For tha's e be ofthe formt
F12,. X ym{gy X &)
and the fllatving conflguastion ic obdted
XCOYYY)

r
%
Mow, repomting tbossape 1 theugh 5, we get the configarnation showm below :
™ OXYYYY

r
Ja
Stwp B : 1o state g, ,iféhe somard aymbol i Y, it feans tht there meno more 's, IF(heze 23

00 Zeroes wutisould ce (i thers wm tio 19, Far this w ahanga the slate 1o ¢, ,eejlare Thy Y
prad thove the poiter tpwends fight, The tomitkon foe this cwo be ol fozm

FORMAL LANGUAGES AND AUTOMATA THEORY




élgeT IeiguF R
and the fifloming catligaicaton 1S obtsed
X0XYYYY
r
5}
[@ $htt 7, , v shosld a0 that there areonly Yo axd nomoee 1's, So.eswecanreplaco Yoy ¥
and reouin 7 g, only. The trangitien for this can ba of (e fomm

F(Qa T J=E0y.T R
Repestedly apprlying this toside. e fllrvirig configamtion is obtained .
YXXXYYYYB

t

¥
Note that the string ceds with iafinite number of blanks and 3o, instake ¢, ifwe enomasier Lhe
syebod B, ineans thae and oF string 1s encomuersd and (hare exlets o aambes of s ending widin
ounabes of 1's, 5o, in staie g, , oo inpul symbol B, change the stmic to g, , replece B by Baod
more the pomlex tonvomds o gt angd ihe siring i aocepied. The tgmajdon foc ikly casbs of the
fxm 5(q,. BW1qs.8.R)
T Eellowing configueesting & obtwnss]

XXXXYYYYRB
+

L7

S, thas Tuwng raeth | th atcrpst the S 7 =1 *|mz1}

iagiven by N =Q.E.1.88,.5F)
where

@atge B b E=(0H IF=(Q LYY B)

@ Y2 ybo st drinof machene ; B &1 isthe blank symbal.
X =(g,) Lo the fina) siate.

i eshan belote

Slgar O = (ne X, R}
&(d;.U}={4,. 0.8}
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tgy. Y )=14,7 . R)
S(grd)=(g1,7.L)
F(g1.F1a{g;F.C0
50¢5.0)=14,.0.L)
dg,..X) c(go. T . R}
$(9..11=(q,. Y R)
S(qy. Y=g, YK}

6(1‘-.3J-1q4.3.a’) ‘
The ramitions oo sl be repreacned Lstng tiouler fova 36 shoem below,

Tope Symboks ()
0 Y
(&, 4 R ‘ w9, 7. A)
{705 T &
(740,47 . {w P L)
- - . .M

The brwxsitbon tibie s above can be repreacnted rs trmaition dipgrafa as sTxrwm b |
YR YL
%

*['ha aoqoenct: ¢f maves oF compusstioas {B)5) fort the atring 0011 enade bry 1 Turing roachion
s shown bekrss !
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|-~ Xg,0I1 |- Xoq.1l
Xg,0M ay Y0¥
Yam Atg 1l
xR ¢ XN, V¥
Xay XYY g, 1Y
et XYYy
ANTTEq,
( Peat 1)

Ezampie 2 ; Cotain a Turing machlm & ecoupt e languega L () ~ {07 027 |r2 1§

BoluBon * Noke tha o numaber of (s re folkrwed by o ommber of E'a which in b o folkovwed
by o sutsberof 2's. T slinple seams, the sohutSoo b this problens can b stated ws floys

Rephacs firal o oaammher of O by X's, next o rmmberaf 1's by Yisand rest n number of s by
2. Coashber (he sitoation when: in fitst 4wo (Fs aro pkaced by X0s , saxt lvmoodists twe 1'y are
replaced by s and naxs two 23 a0 ceplaced by Z76 ny shown bn figura 1{a).

oo a g briav XXXNUYY1E2222 OXOYYIIZZR
13 t T

% ) e
(& (b} {e)

FIGURE 1 : Viricus Canfiguraitons
Now, with figure 1(&). & eathe cumrent comfigusntion, bt 18 destgn the Turing stachine. In
sixte g, . if the next scarned symbol I 0 caiace dbry X, change the gats Lo g, and move (e
printer s righl tnd the sleathon shivwn in figwe 1(5) s obeained . The transition e dds cau
beof the form
&(g6.01e(g,. XKD

imotste g,, Wobuva kroench futthe befimost 1, s cleac frona figure 1(5) thad, when we

are eexruhbeg ot the symibod 1, we tnay encouder e gyrabots Goc Y. 5o, nplacoOby D, ¥y

¥ ] anove the polover bowards righi and rescurs i ptade: g, onfy: The tandticaa Forthis canbe
ofte ot &lw01=[4,.9.R)
#(9:.¥)=(gs.7.R)
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e confmntion shovmia flge 1{c)isobitioed s g, on naubteng | claoge the
sinte s g, ieglace 1ty Y snd maove tise poricker towwends right, The trmsiiioa B this o baaf
the form

iq) Ti=~{4,.1WR)
0 the conb ghasot skrat Lo 6gere2(3) L obtained

RXONYYIZZ22 XYY Yidey OVYY1ZZ22
1 1 t
7 % 9s
(= () ©
FIGURE 3 : \orines Corfigurations
ingae g,, e hervo o pearch fo e Jeficocat 2, 1 s clesy from Sigare 2(a} whal, when we
are yemokdng for te svimbol 2, v wily cocounter the syawbols L or Z- So, taplace | by 3, Zty
2 and wowe e poiter owind s A ght and roms i s g, oafy aad the configorwéon shownin
Ogers 2} is obrelond, The parsitons for this can be of the
6lg.00=(94.1. K)
&g Zy=(9:. 2. RD
In st 3, , N GODOATIATITG 7, chanje the Bista to gy » Pepaca 2 by Z and ncrrs (he poitiess
wwarrhs %), The transiticn Borshis canbe of the form
S92, 202497 L)
aid tha configuration shown in g 2{c} isobtatcd, Onee the TH 13 Lo sz qu o Tt veans thot
equal wember of U, 1'57nd 2's are repleced Try agual rurmbar of X, Y'sm! Ze nepertivedy:
Atﬂiswid.MwaMﬁnbeWXNwmﬁ.Dmlﬂsmu
bl Erm 6igare 2(¢) it the symboks such 29 24, 1,3, 7', P ored Xaro Rawdrepactively
ana after the oiber So, replce Z by Z, tbrl,YbyY.l}by&mhpo&mmmud

sixy kranace g, iy Thro bratalioas For e ¢ae b of the Snm
6"?1-3)'“1-2.51
S{¢s-hb=(gyJ L ¢
Slg: F)=(qa 1}
Si74.0)=19,.0,L]
Onthmng,udmxwxthmmgmdm&m
toroais High 10 get 1afivnost 0. The transition five thiscan be of the form
8[QJ-X]=(‘|-XQR)
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All the sieps shown above are repeated till the Sollowing configumution is obtained.
XXXXYYYYZZZZ
s |
4o
In state g, , if the input symbol is Y, it means that there age no s . If there are no ('s we
showld s that there are no 15 also, For thisto happen change the state 1o g, replace Y by Y
and move the pointer towarnds right. The trnsition for this can be of the form
8(g,.T)=1q,Y.R)
In stave g, search foronly Y's, replace Y by Y, remuain in sate g, only and move the pointer
towseds right. The trmsition for this can be of the form
LICPRAET PR N 3
Instate g, ,if we epcounter Z, it means that there are po 1's wed 50 we should seo that theee
are no s and only Z's should be present. So, on scannng the first Z, change the stee to g, ,
replace Z by Z and move the pointer towards right. The transition for fhis can be of the form
{9 2944 ,R)
Bul, in staie g, only 7' should be there and no more 2'%, So, #s lng asthe scanned symbol
s Z, remain in stage g, , replace Z by Z and move the polnter towards right. But, once blank
symbol B is encotmterad change the state 10 g, , replace 1 by B and move the pointer towards
n'glzandsa_vthauhcinpmwinsiszucp(rdhyénmadﬂm.’lbwunsnmrsr'orthis:ambcc-ﬁhc
form Mo Zy=1g, L. R)
{0y, B)m (g, 0.R)
where g, is the final staie,
So, the TM fo recognize the language L= [ 0"1"2% n = 1} isgivenby
M «I1Q.ET.64,.8.F)
whese
O =190 430920 0:95.61 5 Ex{0 L 2)
r={o L2 X T 2 8); @, latheinital sie
B iz blank chasacter | F={ g, |isthe final 2tatc
& = shown below using the transition table.
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g,. LR

g. AL

oK

@ LR

The traiticn Aagrems for this can bo of the formn

Exdargie 3 : i a TM w0 socaptthe ograge L= {w|w <(0+1% oeBenU e abatag DL,

Solution ; The DFA wisich acocptsiv bageais ooesiotng of strings of 05 acd L's havisg a svh

‘The manadcon twble fror e DFA ks shown bedow |
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o

3. 2,
g, 8

7 % %

We vt oecn Tenguege wiioh & sozpied by & DEALS rogralar Ad the DEA procasscs
the toput slting Bz befk to right n ety ooe darsction, Th @l processed M inpwd sudng lo anfy
v derecdon { umtie the previoor rples, whete (e reod « Wit héader v naoving 1 both
the dleecticns) For coch wmmed mgnd sysvbol { <l ther @ or 1), n vhachever atute the TFA vaa
in, TM also sotary mto tlsd e Stises 8 Samne put ko i, repdartng G by Gand 1Yy 1 aed
theread . M0 Dead moves towards Hghn Sa, the trarddon table for DPA and TM eemiains
swo{ the foonat taay be different. B is svadand ta both Gl ermpsitioa tanles). S0, the transition
tabbe fix T (0 secoguizs e kngusge consisting of p and 3's with a subetring €01 festhovn
B -

—— -

0 ! B
% 7.4R a0 LR -
' 2,0 R g. LR
¥ 70K | g LR
9, 4.0k & LR

'
The TM sgven by

o *{0.2.7'.5.9'. W F b
whare

@@= [ $oP T2 2T E-fL}
Te(D1); §- sdeflosd akcady
q, isfhsialtlal seaic; B blank charcler

F=1 g, | i the Goal sate

The traccesithort cllagram Fo dri s shown bebow.
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Exxmple4. Ottains Tuing machine taaconpt the knpyueer containing steings of 7%
and 1's eoding with O LI,

Bolution : The DFA widchasecpts e languags constaing of tdugs of (s and 1's eoding
with the string 001 issiwoun below

Thettmation table for e DHFA 1 Maoywts bedonw -

5 [ 1

& 2 4|

[ P 9 ¥

ql ql 9 >
4, ¢ 4.

Ve bave ocxe (et aary Lenguage which is suoepted by & DFA is tepubir, As the DEA processes
the R tring Grom left to Tightin anky one directian, T sk processes the il siing in only
anedirection Fow ench pocem e ingue sanbol { sibey ¢ o 1 ), i witichewoe state the DFA wes

i TP »la vt it the caiee santng ot sawas knpat cymbots, reptaeing 0y 0 and | by £ and
b road - vrte hoead evoies bowwnds tight, Sa e tranasition table for DFAm T romains
samne { the haaas may be differenc, it 1o & vident i both (he trnaition tibizs}- So, the tasction
lable fot TM™ to recoguize the benguage comiating of 0's wod 1's ending with a sabtritg OC1 b
shorn below !
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L i
g./hR LR
A 7. %R gL B
@ g.LR ¢. LR
., ¢..0R _q,. LR
N - -

TheTMispveaty M =4Q.L.T.4,5,.8,F}
where
Owfgn q.a8g,0 s Tefll) o C=(0 1}
& - IsGefimed nlreads
g, intheinidal sate | B docswot appear
P={ ¢, Yistbe finad ytie

Bxample 8 : Obtina Turng machine w accept the laxguoge
L={wwaenwind &= {a.d}]
Solution ;

The OFA wactat the Janguage convsisting of dven nuenber of 1R b shown befaw,

G

8b

FORMAL LANGUAGES AND AUTOMATA THEORY




The praveltion wEe for the DEA 153 shtrwn belovr -

b
ql . q- q 1
q‘ " qﬁ

We heoepyeett e any Lanmage which s acoegsod by o DFA s reglie As tho DFA pracesaes
the impat tring o ket to right i oaly cxs direco, TM™ Ao proconns the imtu-luhnghr
oo drectian. Forsach sommed ot symbol (cltber s orb), 1o whicheves state fo DFA was m,
TH alon enrs o the s S48500 (e inpw symbola, ieplscing o by aand b by band the
read - write head moves towirds righs, Sa, the trankdtion table for DFA and T rerusms s
(the fommeat mey bediflerend). So, the trmsition tahle for TN to recognlae che kengumegrcosstling
ofg's 4nd b ¢ Teving & ven murter of syendls k3 shooa below ©

K3 # b B
'R ¢ R bR g,sB.R

q- q...&R q',.h.k -

93 .
The T s givendy

™ ':'(Q E -T.tsa!'n ,3.F)

wher
Quf w9 b i={adt;  C=iabl
§ -~ wdefomed wineady ; g, ka thelnitiel simt=
B dees soteppem ; F =1 ¢, }Hothe fingd st

"The tramsition dimgraen of TM is given by
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Exampie 6 : Chtsna Turing machine o sscepta palndrome conssing of 8's and b's of sny ogth
Solution : Letus assume that the first symbol on the tape i3 hlank character B and 35 followed
by the string which in tuem ends with blank character B, Now, we bave &0 design a Turing mechine
which accepts the string, pravided the string is a palindrome. Far the string to be 2 palindrome,
the first and the bast character should be same. The second charscter and kst but one character
in the string should be same and so on, The procedure to secept ondy string of palindromes is
shown below, Let gl be the start state of Turing maching.
Step 11 Move the read - wiite head 1o point W the Girst chasacter 0f the string. The rungino
far this can be of the [ormm Qe Bi=(q.8,R)
Stop 2! Instmwe g ,if the first chamcter is the symbol 2, replace it by B and change the ssate
to ¢, and move the poinger towards right. The transstion for this can be ofthe form
"’(Qn")"‘(?)-ﬂv"‘)
Now , we move the read - write head to point to the lnst symbol of the string and the last

symbol should be . The symbols scenned dunng this process are o5, b's and B, Replacea by
a, by b and move the pointer towards fight. The eransitions defined for thiscan be of the form

F(ys.at)=lag,,a . R)
Filg..8)=(g5.5.R)

Buk, once the symbol Bis encountered, change the state fo ¢, , replace B by B and move the

potrder towards befl. The transition defined for this cia be of the form
F{q;.B)=(gy.B,L)

In stame g, the read - write head poings w the last character of the sering. [f the last character
is & then change the stde to ¢, roplace & by B and move the podnter towards lefi, The tnmstions
defined for thiscan be of the fanmn

G(ge,@) {94, 8,0)

At this point, we know that the first chamacier isa and last chamcter is also o, Now, resut the
read - wite head to point to the first non blank character as shown in steps.

Instate g, ,ifthe last characteris B { blank chamcier), it meuns that the given string ks anodd

pefindrame. Sa, replace B by B change the state to ¢, end move the poinger towasds right, The

transition for this can be of the form
Slgy H)=(g, B.%)
Stop 3 the first character is the syrbwl b, replace it by B and chanpe the state from g, © g,
arcd move the pointer towards sight. The trassition for this can be of the foom
§{q,.0)=(gs.8.,R)
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Now, we move the read - write head to poitt 10 the last symbol of the string and the last
symbol shoukd beb The symibols scanted during this process are 98, b's nd B. Replaceaby
b by b and move the poirter dowands right, The transitions detined for this can of the form

S(gs.a)={95a.R)
Slgs.b)1=0q, .0, R)

But, cace the symbol B it encounsered, chamge the state 10 g, ,replace B by B and mave

th polester towrds lefi. The trarsition defined for this can be of the form
Elqs.B)=lgs.8.L)

In stste g, , the read - write head points fo the Lt character of the string, 1 the Last character
b, thets change the state to q‘.mmblwnmmwcﬁmxﬁmcrnmmhlcﬁ.‘nxmm:s
defined for this can be of the form

5(g..0)={¢.,8.L)

.\uhisp:lm,wcknwhtﬂzﬁmlehMuishmdh!dWﬂBmoth.mﬂm
read - write head 10 point to the first non bk clarscter as shown in step 5.

instate q‘.lflhelas!chmm'uB(Hmkc}mm).ilmnammra(hcgivtuwhgism

odd palindroene, So, replice B by B, changs the state to ¢, and move the potater towards right.
The transition for this can be of the form

Flge . B)=(9:.8,R)
Stop 4: In stale g, ifthe firs: symbal i blank character (1), the given string & even palindrome
and so chanpe the stute 10 q..mpmnbynwm»cunw-mwmmmgu The
transition for this cén be of the foam

5{g, 8)={4,,8.%)

Stop 5: Resstthe read - write head o point to the first non blank charneter. This can be dooe
as shawn below.

1¥ihe ﬁlsts)mtwlddwsh‘mgisa.mZixpeﬁ'mmdaﬁifﬂuﬂmsmbolm’themimb
b.slepS'mpuﬁnnaLAMommhﬁmnfmmeplhixclch&cﬁm:yn@laﬁ&w
fast symbol matchand the machine is cumrently in state ¢, . Now, we have 1o reset the rend - write
hwdwminmﬂwﬁmmmlankdmmhnhwingbgrqmbdlymmﬁmmww
Jeftand repainin state g, . Durring this process, the symbels encountered may beaorborB
(blmkdmaaet).!{cphccnbya,bb)‘bmdmovel!wminmwwmlslcﬁ‘ﬂrmilhns
defined for this can be of the form Glge,al)=lgy.al)

Flgad)=(g.4.L)
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Bu, if thesymbal B s aconiered , change fie statn o g, , nplacaB by Bandmove the poinser
towand 2lghL the boarsitinn Jeflned e this can be & the fom

$(¢4.B)=(4,.8,R)

Aber recating e fead - write head bo tive flret ace « binok chaycter, repeat Guongh sp 1.
So. the TM foacept strings of palindranes over { 2,6} o pivea by & = (0, £. 5, 94,8.7)
Whete O | Qi deatn Quedinda i) & B=da 8 ; [~{aB B3 g, o e ititisl sats

Biathe hlarsk character; F={ g, ] ; & is shown belomr using the trmmition mble
r
d I B
Y, . - ¢.B. R
v, ¢..BR 4,.LR 7. B, R
g4, &R 9.8 R ¢ 8,L
T, 78T - 7. B K

4q. "ﬂ’,L Q-vbpl-i q,,B.R
4, flla’n OI‘h' K 2 B, L
&4 " 41'&1‘ Q:’Bin

L9 - . .
The trangifoa diagram to 2coe pahisdromsss over { o, b} pvenby

The rewder can trmee the moves mado by the tachine for the strings abha, shw and asbr ond is
Jefk as fin exe i,
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Exsarple 7 1 Sorairuct s Tunng mechine which ancspin i anguage o 2bA over T (2B}

Solution : Thia TM jsonty for L= {aba }
e willl msaame thwe om the Dt tapd Lhe saing sha' B placcd llke this

abaiB Bl auau-

T
"The twpe hend will n:ad oud the scxquence mysto the B chacookr if sbe' i rosout the Te4 wil
halt afber reediony B.

_@Mm @W!@vm o

LE,4.050

The tripket along the edge vritien i ( irgu cead, output to be peinsed. dimoction)
1.ct vtk 1 troesitso o beasnean start atate and ¢, 161 R, &, R )t iz tha curreed syrobol

sead from the tepe ia & then asa satpol & endy hes to be priated on the tape o thas mova e
(apa bead to € right- The tape will kaok Lk thds

a | b) | B lE
t

At lha cravaition bereeen g, and g, 8{ [y, b, R). Thas cheans read b, primi b aod sove
vight. Note hat a5 trpe hend i roving ahead the staics are getting changed.

:1 b a B B
f

The 1M will acczpt the language whon il reachies 10 halt stale. Halt state iy ahway's € 30085
statn fivt sy THL Benee the tsmion betwen ¢, andhaltia (B, B, 5), Thia oo nead B, print
P apd siay thete of thire i3 10 move bett or right. Evinhough wae write( B,B, L) or (B, B, R)
i1y equatly Loerest, Becae witer all the comptsie lupn s already recognized and nowy wa
iy Wak b eeteT inbe w adtopt st o il i, Noke (e for mntid inpwis such as abb or
ah orbad ... there is cither no parh sachng o fizal stute wod for 10ch Ripats the TH gets
stied in berureen, This mndiass that these all invalid itgprty 6 o1 be recognized by our THL

The sz T < be: tepueacrrted by anotiier methad of rasaltion table
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9 (HALT. R, 3)
LYW -

In the glves trnamdon wbla, wi wiite dw #phed n each row oe

(e shite, caapi oo e prwniod, direedbon )

Thus T o be ropeeseaiiad by any of theas meghods.

Exampie 8 : Designa T ®hai racoonieas e sat 2= {071 |a x4},

Solutien ; K the TM shocks for exch ono whethar hwi T sty presesst {n the JoR side, Tt
wectch them by @ b and peoa the sitkg.

Thetransition graphof (e TMis,

FIGURE : Turing Machms for the given languege L= [0t F#x 5}
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Examplo 11 : 'Whol goss the Tiring Machinrs Sestriad by Tw & - hipioy,
(w&mﬁ%--’m-ﬁ'um34,.8.8).

(0. O KA (00,81 R} amd (g, BB R) DO whan g @ tit strig
o At 7

Bolion ¢ Thetadadtion dlsgrean aftbe TH 1S,

FIGURE : Trarsilics Diagram for Bre ghvan TH
The T8 bete ronds aa Erpet and starts Loveating (s oo 1'smod U to O's Ul G first 1,
After it has Juvented e £irst 1. 8 road the inpal symaba) wod keeps it es tis tll e et 1.
Aftes eocrmtering G 1 it sants topesting de cycio by invertiog he syl fill nerct 1. Hi balts
whea i cocoemiers o bk sywmbal.

74 COMPUTABLE FUNCTIONS

A Twring wachlon it 2 Janguage acseptor wikich checks whether a 2riag x 18 acoqped by &
kmgoage L. additen ko (al o mey be viewed asmpwamﬁ:hguﬂmwngumd
fmctions G dTegeta b tregrry, i tedinlonal appeoechan imeger b regpwiscuded in mary, m
{nteper  » p s roptesended by the staing y .

Example 4 © 23t repecsencod 23 7 - ITa flmcan has i aguaeets, .5

itegers ate indtialky placest on tha kipe aapacated by 1's, @ 010111 ..., 184 .
10'(he T helts { wisother indc nok En avaecepting =) with 2 18pe consisting of (a fot e m,

then o7 ST, 15, fumenrly = o, Srove £3 the fmcthon of k argeomembs compated by fhis
Twing macking.
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Hage, ) 2190, 5. 1)

Olge, 0 =t 0. &)

&0~ {4, 0 R}
[f'io stte g, 4 B lacncomiered bofore &0, we herve sibuaien (1) doacribed abat. Endér piate
9, P Tove l6fL ehanging all §'910 B ' urtl encousering o'E. This B ischangod bock lon )
strte 4, isentered, and b baits,
6. Hyp ) =g B K

34,9 = {q,. 8, By

S(e 1) ={ay, & R

51g:.B) = (g, 8, B)
13 stase g, a1 is ercovntered instend of a0, the first block of (s has boert akhaasted, os in
sitnotion {ii) abave. M enmes stie g, to aIRee the et of e Lupa, [hea coers ¢, aod balta

Exxnghe 4 Dot a T which S0mpaien the ScHon of tro poskive integens,

Solutfon: LT M = (@, {0, 1, 8}, 5, a) commpuint the addition of tvo positive attegormn
aod . T noeans, the comapuaed kaoction £( , o) defined & Dflows :

}_{u-mw mrzl)

| (m=r=0)
1 on the dape sepwites both the manbars m and 2. Followiog vk are possiibhe form i g
T m=n=0 (#14...._itshe Inpat ),
2 m=0xd npd ( 930r4 - T the Input 3,
3 metondn=0 (2eriR .- 2o e gty and
4 pedad nrpd ( 200" .- 19 102 bemert }
Sevizad wohnipses tve posaibls for désizadrg of M, some are ws folkews
{a} M eppends (writes) m afier ttad czases the m from e befl end.

() Mﬁmbhmdt«dmmmmmmamm.mmmﬂm
c20¢ 0f 20 OF w2 ondy. fin 200y n=0then § i replaced by &,

e neo techmiques (b) gvea abavs. M ia showe ¥t hdow e,
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P, | vl 1 e
sdrpy. masr e O = g
FIGURE ; TRl fof additon of tno positive irkagans

7.5 RECURSIVELY ENUHWERABLE LANGUAQES
AWWLEWMMM:TMMM
in L et cdects [ conahen}or Toopd for vy soed i gy sge 1./ {be pamglecnart of -

Acoept (M} =L

Rejoot (M) « Locp (M) =L’
When T M ia i rming o soeac imput { of reoursively esunorshio o ) 7 Cam oever
ol whether M vl svvotually sceep if et it rum foc lotg time ot b wall tan fosevae (0 loop).

Examgle : Cansldes s lnpage{2+b) "bb(a+b) "™
T for thdslangwmgs i5, b, ) i s, RY

G b, R

{€N.{

FIGURE ; Turing Machina for (a+b) kb (m+b) "
Rere ibe ity s of oot types,
1. Al wordswith bb =scoepts (M) = 8000 33 TH sea two conmeculive s it hakty,

2, Al srdngs withoal bb but coding tn b= sjecss (M), When TIV sea aginghe b, i eniers
stote. 3 fhe otring ks ending ity b, Thi will hakt ot atete 2 which is aot accephing stete.
Boooe bis refected, .

3. Adl otlegs withoot bb codieg ' grhlank B’ =loop (M) bese when tho Th seas Jasta il
aicrs state 1, fn this stts on blank eymbol 31 boops Foreves.
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Recursive Language

Alanguage Lover the alphabet 3 is called recursive if there isa TM M that sccepts every word
i Land repxetseveryword in L i ¢,

acoept (M) =L
reject (M} =L
toop { M) = ¢.

Example :Consideralanguage b (a+b)* . lisreprovented by TM as

)20 o)

FIGURE : Turing Machine forb(a+b)*

This T™M accepts all words heginning withs ¥ because i enters halt stite and it rejects all wards
begimning with a beoause it remains in st state which is not accepting state,

A language accepied by & TM is sasd (0 be recsrsively emumerable langunges. The subclass of
recursively eaumberable sets (. ¢) are those languages of this class are said to be recursive s:8
or recursive language.

7.6 CHURCH'S HYPOTHESIS

According tochurch's hiypothesis, all the functions which can be defined by human bangs can be
comperied by Taring machine, The Tustig machine is belleved to be ultinune computing machine.

The chuch's otiginal ststement wees slightly differest because he gave his thesis before machines
were aciusdly developed. He said that any machine thot can do certain st of operations will be
able Lo perfoem all algorithms, TM can perform what church asked, so they are possibly the
1sschines which church described.

Church tied both recursive functioos and computsble functions wgether. Every partdd recursive
function is compatable on TM. Compurer models such as RAM also give rise fo partial iscursive
functions. So they can be simulated on TM which confinms the validity of churches hypofhesis

Important of church's hypothesis is as foliows
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Firss we will prove cerain problems which carmot be sobved using TM.

2, Ifchusches thess i true this implies Tt problems cannot be solved by any comprier or any
programning languages we nught every develop,

3. Thus in stusving the capabiities and limitations of Tanng machenes we an indeed studying
the fundamental capabilities and imitations of any computatiomal device we might even
CONFTKL,

B provides a geners) principle tor algorithmic compuisticnsnd, while oot provatile, gives strong
evidence that no mone powerful models can be found,

7.7 COUNTER MACHINE

Counter machioe kas the same strocture as the multistack machine, but in place of sach stack is

s oounter. Coursers hold any non pegative integes, but we can ooty distinguish between zero and
NG G0 counters.

Counter machines are off - line Turing machings whose storage tapes are semi - infinite, snd
whose tape alphahets contain only two symbols, Z 20d B ( blask), Furthermore the symbol Z.
whtich serves 25 1 botbom of stuck marker, appears [nitially on the cell seimned by the tape head
and may never appear on ny other cell. An integer | cxn be stored by moving the tipe bead §
cells to theright ol Z. A stared number can be inczemented or decremented by moving e tape
hesd right or heft. We can test whethee a number is zero by checking whether Z s scanned by the
head, but we cannot directly test whether two numbers are exqusl.

[o] womtorsy e | 4]

[z]s]s]-]= arn]_

FIGURE : Counter Machine
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¢80d 3 wrecusiamnTily wed For end ks o the ingut. Here Z 39 (o non Mk sprabal oo
sach tape. Af Ingtarkaneau descripticn of  couster ranchine catt b deacribed by the sie, the
Lgrat tape comtents, die pozation of the amput head, and tha dhnanoes of'the stoaage hewds frowt he
gymbol Z { showg heye na-d, sad o). We call thape distances fiw cownts o the fapca. The
cotmter i e can cndy STore A comt v mch tepesmd tedl if thed eqontia 70,

Fower of Counter Mechines

Every lmgmees naeptad by a coamter Mackine (e roaursivély aromerabie.
Every bnpmge acceptad by o atie - exumter moshine i3 0 CEL 30 woné - cOWASY machino
=3 special cave of aue - stack Ieechine i. ¢, ATDA

7.8 TYPES OF TURING MACHMES

Yiarhous types of Turlng Mackines am

[ Withonbigh tges.

i Withone tpe but wubtinha beads.

L Woth bwn dinerrsious) Lygea.

iv. Nondetarnndmetic Tucdtg nacbines
i obemrnad that comprmsonally all these Turing Machine ass aqually powrerfil Thet csacs
onetypocan coryraa the same that other cam, However, dio afficlency of compurtilion my
Aty
1. Turing thacking with Two - Wy Infindi Taps -
Thia in o TH izl heovecme tim te cotieod and one tapo which ederods infiftely i bath dirsetiond,

g Apapk R

———

N
ool

HEEEERNEENRN

e
FIGURE 1 T\ with Mminite Tapa

T\ toree ot thet thti« 1ype of Touring mochines mre as porshil Ay o tape Toring rackinas whose
om0 e & ket et
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Multiple Turing Machines :

woet T T |
wmz T 1111

woes T TN
FIGURE : Nuitipie Turing Machines

Amaltiple Turing machine consists of a finite control with K tape heads and K tapes, cach fipe is
infinite in both directions. On a single move depending on the stane of the finite contro] and the
symbol scanned by each of the tape haads, the niachine can

1. Champe state.

2. Prmtanew symbol on cach of the vells scanned by its tape heods.

3. Move cach of its tape heads, independently, one ocll fo the left or right or keep it staticoary.

Initinily, the input appears on the first tape and the other tpes are blank.
3. Nondeterministic Turing Machines :

Anoodesninistie Turng muching is & device with  findte coatrol snd a single, one way infinite
tape. For a given state and tape symbal scanned by the tape head, the machine bas a finite
nuenber of choices for the next move, Each chaice consists of & new stute, a Lape sytabol to peint,
and n direction of head motion. Note that the mon determanistic TM & not permitied to make n
move i which e next stare s selocted from one choios, and the symbel printed and/ or direction
ofhead motion are selected from other choioes. The noo deterministic TM aocepes its npet Fany
saquence of choices of moves leads to an accepting state.

As with the finite smomaton, the addition of nondeterminism to the Turing machine does not
allow the device w0 accept new lmguages,
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4, Muticknensional Turng Macines

Icouiiimal TH

FIGURE - Miskdimansionel Tuthg Wi
i ieeogionsl Turing machies Tom e wval fmibe vomtro], huﬂu:_qn oonseds of

k -3:“ yxy of oells {nfinite 30 alh 2 dicections, for yoaw flwad k. Depeniding oo M ﬂ:{?:

gymibol acemmed, the device Chapges a6, Mt 5 ovey sy, vl mowes #5 {ape hasd o obé

oGy, niiwe poakively OF arv off the Toemo, Inttiel by, (ha Ingt i .
@ e i 64ty BBt e of the IpULAL ay Gae, ooy 2 ﬁsﬂomhetf rown b ey Oiosrmsos
septaios soublenk aymbols, mad (-0 Tows cech hirve ctily o fimite menber of ionbiank symbods

8. Magihead Turing Machinas :

AcoagPagett

- ————

———— ] me

HI I“L’w-
arEnEENERENN
-t

FAGURE 1 Mulinesad Turing Mechine

rambered 1 tatgh
k « bed Ty raachwe hias s fEaed ke, £, o beads. Tha boads a0
tdnmEMTM&pmmmmde@ﬂnW!mw eich beod. I 0pe
mmmmmWanmmammw
6. Off . Line Turing Mackines
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COMPUTABRLITY THEORY

T e e — R =,

Ahyr going through INte chagrier, you shouks bo able to Lndevaland .

ChonTsiqy higrmatry of Lingusges
Linesr Bounaes Aunorana arnd C8ly
LR (D ) Grarmer
Biacidablity of probiama

VT gnd PCP

F avd RP RIS

2.1 CHOMAKY HERARCHY OF LANGUARES

Chewmedey bt e flod all grammean th foar categarios ( type 0 10 typa 3 Ybesed an the right
bt € fvmea O e prochacoes.

() Type 0

Theas typea of pratriraas ks aloo know s phoee Rructured gramaes, sd RES of these am
free from amy ceaaietion. All gramamess e fype (¢ granERem.

Exampla : producticas oltypss AS—»aS, 38 - .S ~se arc typed produckicn,

) Type 1

Wo npply st Festzictions on tvpe 0 g and thes: resbvictid SHINMATE Are known 38
(ype L o7 comben( - snosiltve gramminrs (CSGn). Sappote a type 0 producton ot — 18
wod (e peochaction oz — 4 i reandesed such thet | a|s | #|and 2+ €. Then tma tpe of
procustions i nowe s Type b production. all protuctions of e geneToe o oftype ] productian,
mmmhmmwclmmmwmham-ww
prammer is called cooxt - pensiive langstge ((SL).
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In G50, s ls Mmmwﬁmmmmmyorcw@marﬂrcm
A+ . Tnhis, ¢ is et comtiac and 5 s Tighe coowenct o 4. 20d A s dhe veritble whichis
repleced.

Tl peoduction aityps 3 - « Badlowed inype ) if ¢ la 1 1{G), bot S shoald uot appearon
righa baned gideof Ry produciion

Examplo : productions § - A0S ved o e type ] productioes, bt e production
of P A —+ & innotelloveed . Almos every Yanguags cas be thonght = CSL.

Notd < Flefl or iy comkert is minsing theo we acnumic then € is the odead.
(o) Type 2

We apply Bome nare restrictiors oo RHS of ype T producdons and thess groductions e
known a8 (ypo 2 UF dontest - foe productions. A produttion of the faon o -» @, whvets
@Bl VL)' is known 1S type 2 production. A grammar whose productions & type 2
prodirsion ks knoam 8a type 2 of cuntes( - fee grammac (CFC1) 2md the langvegm procemod by
s ype of greemmsr iy caled codtext - free rgungey (CFL).

Example : §- 5+ 5, 5255, 5 & e type 7 predoctions,

{d) Typa 2

Thia ks the ek rexiricted typa Productiorn oftypés 4 — 5 0F 4 — aS|B0  wheve 4. eV

and o€ ¥, ore knowt astype 3 or regula pratotar peoductions. A pruductionoftype 5 - < ta
aleo athowed, if §ipin geoenired lngusgs

E£xample : productions £+ aS, §—+a arctype 3 productlons,

LoA - nsar production : A procucton oftypo 4 —+ B ls called ket - i metr peoduction,

Right-Inaar production : A prodociaof ype £ -4 3 iy cfled right - linear procduction.
AR - linoar o Tight - It gratenar {5 calind regbar granmen, The language geommied by 4
gl grauTmse iy knowe b tegal & angvagr.
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8.2 LINEAR BOUNDED AUTOMATA

The Linear Boueded Astomata (LBA) ks a model which was originadly developed & umoded for
actixed copeners mther thes moded for compitational process. A lincar bovnded atomaton is &
resaricted form of anon determindstic Turing machine.

A linear bonrded sutomaton is 8 multiuck Turing sachine whick has only ons tape and this tape
is exactly of same Jength s that of inpu.

The lingse bounded momaton (LBA) nocepts the siring in the similse masner a5 that of Tunng
maching docs. For LBA halting means sceapting. In LBA competotion i restricted to an atea
boanded by length of the inpart. mshsmlmdlﬁnihmmwmmgmvmumme
of varioble is bounded by its Gata type.

~ it 0
[elee]ofofe]~]
7 \\
| 3

| S
| Finite
=

FIGURE : Linear bounded aulomaton

The LBA is powerfisl than NPDA bet bess powerful than Tutirg machine. The input is placed on
the input tape with beginning and end markers, In the sbove figure the input is bounded
by < and >,

A Hisear bounded sutomats cam be Sormally debmed as

LBA is7 - tuple on deterministic Turing machine with
Ma(Q L T8, @4 Quumer Tagea ) Having
1. Twoextrisymbols of tefl end morker and right cnd marker which are pot elementsaf 7.
3. Theinput lics between these end markees.
3, The TM cannot replace < or > with anything clse nor move the tape bead left of <ar
right of >,
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83 CONTEXT SENAITIVE LANGUAGES (C8La )

‘the contwed senséve langaeges we te lengueges witch ae scempred by kmear bonnded akoaets
'Pixse type of langunges we defiged by cooters cxusiive grammar. [n this grammer more than
o teyminal ur pon einal aynbal may eppesr on the kB haod xide ofthe produclion tale.
Abtang swith i, (ke covdet senssve prammar follows EX%aing nules;

L The nuenter of symbols oa the etk o xide skt 0ol ¢:0oad member of yrnbals oo the
right band side.

i Thonlseftheform 4 o nolatiowet sl A b 3 suan gymbol, It does pos o
o6 tho right hand side of mmy rule,

The <Jassiv owmple ofcomest seopitive Mngangs £ = (2" £ ¢* [ 2 | - Thecommtsathive
Srameaur can e writhen s -

bdELb4 bl
zxs&sg;ggg

REEBERRO®"

Now v dezive | ho string sabbos wo till gart from stact symbol :
kS -
kS -
nie Ch -
naCR
nduBA
miesd =
[ T17Y:): QY
ket -
nlehC =
nlecC =
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No# : Thelmguags o 5 ¢* whete p > | is cepresenied by cootexk snaitive grasunse bat it
can i e reprasetiand by cooted e gramm,

Trvexy eomiext seraftive Langange can be npusentsd by LBA.
84 LRIK)GRAMMARS

Befire pamg fo the dopic of LR (k) grammar, ket as discues aboue soqe conoepts widchwil be
bt endersending i,

Lo the 1wt of contect Fror grammers you hove seen that to clcok whether a particuba Sring s
e by 8 peoti culte gosmerr ornot wo bty to desive Gt seteacs niing ightmos: dezviioo
of Leftmaoes desbvetion . I han suraag s Jetlved wesay 1bal o Z5e velid sting.

Exampio ¢

E—F4+7|T
T I"F| ¥
Fa i | (5)

Suppoas we wird @ check salidity ofa etring i 4 14 ¥ id . e tightradas deriviom &
£ T+7

E+T*F
&+ Thad
£y P
Eri*ia
Tid*id
F+atd
W+

HAGURE(a) ; Rightmost Dertvatkn of 3d + ki = id

$nce this semiznos 1 devivabic wsing the given gramonar, bisa yulkt string. Here wehuve checked
fhevalidity of sving 108ng prucess known s dertvmtion,
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[n reduction process we have seen thes we nepeat the process of substinution util we get sieting
stae. But somne times several choices may be available for replacenct, In this case we have to
backtrack and try some other subsiring . For cortain grammans it is possible fo carry cut the
process in deterministic. (1. ¢., baving only one choice ot each time ). LR grammars form one
such subelass of context free grammars, Dependling om the munber of ook alwad symbolized to
determine whether n substring must be repliced by & won termingl ov nok, they are classified as
LR, LR(1).... :nd in genersl LR(K) grammars.

LR(K} stands for Jeft to right scanning of input string using rightmost derivation in reverse
order ( wo sty reverse order because we use reduction which is reverse of derivition ) using
look alwsad of k ssmbols,

84.1 LR(0)Grammar

LR(0} stands for left 1o right scanning of input string using rightmost derivation in revensz order
usmy (Hook abvead symbols.

Before defining LR(0) gramimars, let ws know about few torms,

Prefix Property : A lmguage | i said to have prefix peoperty if whenver w in L, oo proper
peefix of wis in L. By introduciig ierker symbol we can convert any DCFL 0 DCFL with prefix
propecty, Hence 18 = { w$|w & L) is a DCFL with prefix propesty whenever wis in L.
Example : Consider s lsngusge L= { cst, cant, hat, ant, cir | . Here, we can sec that sentence
cartisin L and its one of the prefixes caris alsa ix in L. Heee, It is not sutisfying property. But
[$ ={cat$, ceet$ bat§ an §,car )

Here, cart $ is In L$ but its prefix cart or car ase not present in LS, Simiferly no proper prefix is
present m LS, Heaos, it is sotisfying prefix property.

Note : LR(0) grammer gencrates DCFL and every DCFL with prefix peoperty has 3 LR(0)
Snamae,

LR tems

A itern foe a CFG is a production with dot sy where in right side inchuding beginning or end, in
ease of ¢ production, suppost 4 - € 4 -, Banilem
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Camputing Valid tom Sets

Thomaln sdez bere is o constrcd oot a ghvoo gramimaer sdcirmmainicic fuste sfomatn o ecognize
virtle prefixes, We groap kems together ko sets which give 1o xtnis o DFA- Therteoe may be
viewad s stateax 0F NFA sl groaped #ems may o viewed as stotes of DEA ohained valng
e oot reaciis kpndthed.

To comprte vabid aef of mams we: use two operationss poto and chosare,

Cloaure Dperalion

Bl iz aset of foms for o gresamanr G, thom clostre (T) ks the s of ftesns caastruciod from | by oo
Ililw.l. Tnitialty, every item 1 ip sdded to closare {I).

2 A2 a8 nindonure{lland g, § is prodeciien then add fam 5 — 5 w1 iffie
a0l already thove We opply this rule vatif no mose pow i can e addad i ¢lomsa (Th

Exanspie : Forihe praammar,

€S e S inserof ot itam {n ster: | 1ban cloaure of Tla,
428 4 x5
5§ = oA

The Bt itemisaddedisingndo tad § = o4 ksadded nalog rule 2, Becmne' . 'is
Eofiowex] by onéacmine S we add Henshaving SmLES lo 5 - .add " iy Soltowed by
tromirgd kg no new it it added .

Goto Functicn ; 1tk wrnenas goaa ¢ |, X) whare [is ret of Kems 2ed X is grnamar symbol.

If d > o X7 &0 30me Meraset | oo goo( L X) wikl baclosme al setuf alt w4 —a.X 4.
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WW:DF&WWMM%S&:?W Keng

Definkion of LR(0) Grammar : Wesay G bs s LR (0) greommet if,

L. b st symbol daea ot sppen o the dght heul demmnfnd

2. Foxevery vighloprdflx 7 of G whentier 4 «a iaampkmim‘wdﬂm ywonna
otiver coevpleda bm oo ey {bezn with wérmalwal {0 tho right ol the dotasva}id.ﬁv 7.

Condition 1 : For 2 granmer i de LR(() it shousd satiefy bulh the conditicma. The Etft

conditicn con be medo t atisfy by o mmbyimommdnmmndm S+8is

¥nown sugeensed grammec '

Conditian 2 : For the DFA ehowp in Figiare{a), the mcond conditkn laaboutkﬁodbw

in the pem sets 1, [, aed 4, sach conadning ¢ coanpleds ftem, Tt e 00 otbes clxnplcto ibemy

ot ang atber candBeL.

Example : Covsider the DFA givenin fipsre(d).

FIGURELD] : DFATor the ghveh Grammer
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pobten P i 3 woadon gy o applied o
Exh ¥ s apair consiseing ofa eot and a querion, WhrTe e quce

voch ceect bn the set, The st |& called the damale of e probiens, and its elements Bre oalliad
fh ntates of (e protlem.

Example :

Doman~ § A!lmlarlmmmaomw}: 1.
Instancs ; L~ {w:wiawordover & coding abh) ,
Quaation : Inamsn of fwp Tegolar Imglagey wgutar

251 Decideble and Undecidabile Prohtams

A proble 1 s 10 e decidable if
1. I bnguege ik tecurshy, ar
2 Whas scduton

Dby ema which do oot suticfy (e abova are wadecidable. We Tevtyvct Fa magwes of
memw'mwrw. H thxte mdm@uf fix the moblem, then
Mmmmmnmm'wwmummmmmmm
‘YBS'mr"NO'mm-pmbnblcwwﬁrwbolepmhmmllwememualomf
probaams. Oue qaestiem heze. Wihywe a4 testricting out snsweTs oy " YES" or N0 The
anewiat 14 very smple ; we Wit Ehe anvseers a3 sirple a6 paselii¢., o

No, we sy [Pfira probiesn, (here cxists malgorihm wddch s Tha them zatwes i ity
“YES" o "NO™ then poobiem i decidabie.

T for w peobizm hoth the ansvers ero pasible ; 2ome ttes "YES" and sametimen 'NO7,
then probilans [s undecideide.

4.5.2 Dacldable Froblemae for £A, Regular Grameem and Rogutar Languages
Some decidebr pecklems mre cealinaed bkt &

1. Dosl'Aascceps regulat ingonge 7
2. 12 the powes QENFA B DFA e ?

3 I, ad QEMWWMMGM:\M fodl oving -
{2) Lition
(b)  Coocalcostion
(¢) (ntacection
(@  Compicamet
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6. Wehae fiollowing 0o - theorem based an sbove discussion for recursive enuenerable and
recursive ngiuges.

LetLand 7 aretwo languages, where T the comsplement of L, them ome of the following
G

(a) Both 1. and | areyccursive languages,

(b) Neither Lnor 7 isrecursive languages,

{¢) If1, is recursive esumernble but pot recussive, then 77 isnot recursive emamersble ard
vioe versa

Undecidable Probleme about Turing Machines

fiy this soction, we will first discoss about halting problem in general and then about TM.
Halting Problem (HP)

The balting preblem is & decision problemn which is informally stated a2 follows |

*Given a description of an algorithm and a desceiption of its witial angumcats, determene whether
the algorithm, when executed with these argnments, ever halls. The altemmtive is that a given
algorithm runs foeever without halting”

Alan Turing proved in 1936 thst these is no general method or algarithem which can solve the
halting peoblem for all possible sputs, An algocitm may contain Joogs which may be infinite or
finite in kength dependlitg on the input and bebaviour of the algoritiun . The amount of woek done
it 3 algorithen uscally depends on the input size, Algocithms may consist of various mumber of
loops, nested or in sequence. The HP asks the question

Ghmnmmﬂmhﬂbdumm,d&miuifﬂwmmwiﬂemmlympMm
it s given thaet input 7

One thing we cin do here 10 find the solution of HF. Let the program run with the given inpot and
if the prograem stops and we conchude that peoblem is solved. But, if the progriom (oesn't stop in
aveasonable amount of time, we citn ot ceochude that it wart stop, The questionis: * how loag
we can wit ... 7 . The waiting ime may be long enough to exhaust whole life. So, we can nod
take it ns easber 8¢ it scems o be. We want specifio answer., efther "YES™ or "NO”, and heoc:
some algorithm 1o decide the answez.
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Now, we analyse the following :
1. 1f H outputs *YES" and says that Q halts then Q biselfl would Joop ( thar's how we
constcted it ).
2. [fHoutputs "NO" and says that Q Joops then O outpats "YES" and will halts.
Since . tn either case H gives the wrang answer foe Q. Therefoee, H cannot work inall cases
and bence can't answer right for all the inpets. This contradicts our assumption made cadier for
HP. Hence, HP s usdecidsble.

Theorem : HP of TM is endecidable.
Proof : 1P of TM means to dackde whether or not = T bt for some input w. We can prove
this fallowing the similar steps discussed inabave theorem

8.6 UNIVERSAL TURING MACHINE

The Church - Tusing thesis comjectured tha anything that can be dooe on nny exasting digital
computer can &0 be dane by & TM. To prove this conecture. A M. Turing wasahlks to constnact
2 single T™ which is the thearetical anajogue of @ getersd purpose digital computer. This mockane
iscalied & Univensal Turing Machine (L7TA). He showod that the UTM is capable of iniiating
the openation of any other TM, that is, it is a reprogrammable THM. We can defing (kismachine in
more formal way as follows :

Definition ; AUnh-asal'l'uringMachinc(denMal%U]‘M]isanilm(cmtdcca.sinpman
arbiteary T™ 7, with an acbitrnry iput for 7, sl then perfionm the execution of 7, onits inpet.

What Tueing thus showed thet & skaghe T can acts like a general purpose coenputer that stores
aprogram and its data in memory and then executes the program. Ve cun describe UTMasa 3

- tape T™ where the description of TM, T, sl ftsinput string x ¢ 4" are stored initially on the
fsttape, r,, The second wpe, ¢, used 1o hold the simulated tape of 7', , using the same focenat
as nsed for describing the TM, T, . The third tape , 1, holds the state of T,
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Now, suppose that a Turing machine, 7, is consisting of a finite number of configurstions,
denctod by, O, 6. Cavee €, and ot &, G, Ty F, repeesent the enceding of them. Then, we
can defire the encoding of ¥, as follows:

TGATE NN RE”
Here, * and @ s used only as separntors, and cannot sppes elsewhere, We use pprir of *% o
enclose the enceding of each contiguration of TM, 7,

The case where 8(x,a) is undefined can be encoded as follows |

30508 ¢
where thesymbols 5, 7 ad F stand foc the encoding of symbels, s , 2 snd] B { Blank character],
respectively,

Working of UTM

(iven adescription of 0 T™, T, and its inputs tepresentation on the UTM tape, ¢, and the

starting symbol on tape , ¢, the UTM starts executing the quintuples of the encoded TM™ as

fodlows :

1. The UTM gets the current stae from tape, ¢, and the catrent inpat symbel from sspe 1 .

2. then, it mviches the cusrent tate - symbol pair to the stae symbol pedrs in the proggmm listed
oniape, .
if no match oceurs, the UTM halts, otherwise it copies the next state info the current state
cell of tepe, ¢;, and perforn the comesponding write und move opanitions on tape, 1, .

. ifthe curment state on tape, 1, i the halt stage, then the UTM halts, atberwise the UTM goss

back Lo step 2.

8.7 POST'S CORRESPONDENCE PROBLEM (PCP)

Post's correspondence problem isa combiastorial problem formulated by Emil Post in 1946
Thiz problem has many spplications i the field theary of formal langunges.

Definition !

A corsespondence system P is e fimte set of cedered pairs of nonempty strings over some alphabet,
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ch_‘,, B -l Uy =a u=abe, I, e, W =C,
We bave s sobution wo wy up = Ly oy =cbca.

12 TURING REDUCHRLITY
Redictioa is otechmique I which if a probkem A 75 neshsced 1o pecblem B than cay whaiow of B

solbvec 4. Tn geneval, il we have s b ctlon Lo eotvedt ome Susians: of problem A to sorme
instmnce ofprobiemm B fhat barve tha $aeres sntwer thets [Lis callad A reduces to0 B,

Deftaition : Len Az B be lbe rwo pew sich bt 2, ¥ g & ofafursl cumbers. Then Al
Tiwipy redoetbds wy B aosl denctedm £< B,

TF dhvere s a0 ol rome bt tiad vonspirtes the charsseristic fimction of A when it s exacuted
withcrile maching for B.

Thiaiz alsn called g Ais B -récumtive xd B - ot pirtshle, T orache machine is an abstract
macfiine veed 1o study doacisms peoblem. It atse callad ss Tanine madhine wvith blwel Do
Tosy et Az Turing equivalent to Bandwilke dm- S f A Bl 8, A.

Properiies ©

. Everysctis Tuning e vakeot t0 i contiiensnl,

2 Every conpotbie st i Tucing equivaioot ko vveryether compuiable acl
3, A, Bawd 52, C thewt 52, 8,

3.9 DEFINITION OF P ANEY NP PROBLEMS

A prodlemm ks 3aid 10 ba satvable1f it has en algarithen to solve it, Protieres can be carcganized
inso twi groups dependiing on Bme tnken o thear eredustion.
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1. The problems whose solusion times sre bounded by polytiownials of small degree,
Example: bebbie sort algoritm cbuing o numbers in sorted arder in polynomial time

Piny = —2n+ | where n is the length of input. Hence, it comes wndee this group.,

Second group is made up of problens whose best known algoitha are non polymorsial
example, travelling salesman problem has complexity of Of # 1%) which isexponential
Hence, it comes under this group.

A peoblam can be sobved if there is an algodthm to sobve the given protilem aad time required is

expressed as & polynomial pn), n being length of inpu string, The problems of first gruup e af
thiskind

The prohlems of second group require large amount of time 10 execuls and even requise modenle
size so these problems are difficull W solve, Hence, problems of first kind ace tractsble or easy
und problems of second kind are intractable or hard.

89.1 P-Problem

P stands for deterministic potynomial time, A deterministic machine ot each time executes an
instruction. Depending on instruction, it then goes to next state which is i

Henee, time complexity of deterministic TM i the maximun pumberof moves mede by M is
processing any input string of leagth o, taken over all npuss of length n.

Definition : A language L is said to be in class Pif there exists a ( deserministic YIMM sxch
that M i of time conyplexity P(n) for some polynomiat P and M sccepts -
Class P consists of thase problem that ¢ solvable in polyncenisl fime by DTM.

£9.2 NP -Problem

NP stands for nondesermmiristic po&yfwmial tme.

The class NP consists of those problemns that are verifiable in polynomizl time. What we msan
here is that if \we are given certilicate of a solution then we can verify that the cortificase is comect
iy polyncmial time in size of input problem,
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8.10 NP - COMPLETE AND NP . HARD PROBLEMS

A problem § is said o be NP-Cansplete peoblem if it satisfies the following two conditions
I, Se¥NP/,and

2. For every othes problems S, o NP for some 7 =1, 2, », there is polynomial - time
wmsformation freen 8, te S L e eveypeobiem in NP chss polynoenial - imesedocbic o S,
We conclude one thing here that if 8 18 NP - complete then S is also NP - Complese,

As n consequence, if we could fisd a polynominl time algorithen for S, then we cansoive all NP
problems in polynomial time, because all problems in NP class are polynomial - time reducible w0
each other.

*A problem P is suid 1o be NP - Hard if it satisfies the second condition 2 NP - Complete, but
not necessarily the finst condition.”,

The rotion of NP - hardness plays s important role in the discussion abomt the rektionship
between the complexity classes P and NP, 1t is also ofien used to define the complexity class NP
- Complese which is the imtersection of N and NP - Hard, Consequently, the class NP - Hard
can he understood as the cluss of problems that ane NP - camplete or harder,

Example © AnNP- Hard probliem isthe decision problem SUBSET - SUM which is & follows,

" Given a set of integers, do any non empty subset of them add up to zero? Thisis ayes /o
question, and happens to be NP« coenplete ™.

There s also desision problems that sre NP - Haed butnot NP - Coeplete , for example, the
halting problem of Turing mechine. [t is sy to prove that the halting problem is NP - Hord bt
1ot NP - Complete, [t is alsa easy to see that halting problem is not in NP sinco all problems in
NP are decidable but the halting problem s not { voilating the condition first given for NP -
complete Lngusges ).

1 Complexity theory, the NP complete problems ane the hardest problems ia NP class, in the
sense that they are the ones most likely not 10 be in Pclass. The resson is that if we could find a
waty 1o sobve iy NP - complete problem gquickly, then youcould use that algorithm to solve all
NP problems quickly,

At present e, 8l known aligosithms for NP - compllete problems mquire time which s exponential
in the inpud size. 1t ks unknown whetber there are any fasier algorithms for these are not
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