
UNIT I

PROJECT

A general definition of project is: “It is an temporary endeavor with set of well-defined activities

that leads achievement of a specific goal(s)”. A Project has following characteristics:

• Project has specific goal(s)

• It has a definite start date and end date

• It is not group of routine tasks or daily activities rather involves planned activities

• Unlike routine activities, project comes to end when its goal(s) is achieved

• Every project requires enough resources in terms of time, skilled workforce, budget,

material and other support

•

What is Software Project?

https://en.wikipedia.org/wiki/Project

A Software Project can be considered as a subset of general Project. It involves the process

managing software life-cycle right from software requirement gathering, designing, to testing and

maintenance, carried out according to a given project management methodologies, in a stipulated

time frame to achieve intended software product/service delivery.

What is Software Project Management

 “Software Project Management is the art and science of planning and leading software projects. It

is a sub-discipline of project management in which software projects are planned, implemented,

monitored and controlled.”

Why Is Software Project Management Required?

Unlike machines or buildings, software does not have a physical form or it is not a tangible

product. Today organizations are using software to drive business processes. One can imagine the

complexity involved in mapping business process to a software. Also business process for one

organization can not be same for other, it means requirement of a software for one organization

will be different from other. Given the rapid changes in the technology platform as well as

globalized but integrated economies induce element of risks in the software already developed or

under development. Hence to reduce the risk factor and ensure project delivery will meet

stakeholder’s expectations, there is a need to follow structured, process based approach; which is

nothing but software project management.

ACTIVITIES COVERED BY SOFTWARE PROJECT MANAGEMENT

 1.Feasibility Study: Feasibility study is need to determine that project is worth(useful) starting.

The development, operational cost, benefits are estimated.

2. Planning: Once feasibility study is done, then project planning can be started. For Larger project

it is not possible to do all the planning in the beginning. Planning is done for different stages.

3. Project Execution: Project execution include design and implementation.

http://zilicus.com/Resources/blog-2015/Managing-enterprise-it-project-lean-approach-project-governance.html
https://en.wikipedia.org/wiki/Software_project_management
http://zilicus.com/features/project-management-system.html

4. Requirement Analysis: which investigates what the potential(work done) users and their

managers and employers require as features and qualities of the new system.

5. Architecture Design:This maps the requirements to the components of the system that is to be

built.(system architecture, software requirements, software components).

6. Detailed Design:Each software component is made up of a number of software units that can

be separately coded and tested. Design of these units is carried out sepetately.

7. Code and Test:This could refer to writing code for each software unit in a procedural language

such as java,c,python etc,Application builder such as Microsoft access.

8. Integration: Integration could be at the level of software where different software components

are combined. Such as the hardware platforms and networks and the user procedures are brought

together.

9.Qualification Testing: The system, Including the software components, has to be tested

carefully.(to fulfilled requirements)

10.Installation:This is the process of making the new system operational.(such as payroll

details(salary))

11.Acceptance support: This is the resolving(solve) of problems with the newly installed system,

including the correction of any error that might have crepts into the system and any extensions and

improvememts that are required.

CHALLENGES IN SOFTWARE PROJECTS

Extremely high competition:The competition is extremely high both at the local and international

level and it affects software business in terms of pricing, customer reach and retention(store),etc..

Project managers have to work closely with business owners and other stakeholders to identify the

right market segment.

Old legacy systems:Software companies often spend significant resources on maintaining and

upgrading the old legancy systems.

Having invested a lot of financial and human resources, stakeholders become resistant and don’t

want to change the existing systems, even when it no longer meets their needs.

High-level software expertise: When it comes to software selection and implementation, the best

variant for business owners is finding project managers with the relevant software expertise.

Third-party integration:Modern companies are no longer interested in standalone solutions and

look for third party integration.In general,it looks like implementing multiple systems in one

project.

Multiple level users: Most companies look for systems that allow different types of users- from

basic users to strictly IT users.

Project managers who are responsible for the system implementation,must be familiar with all

types of users.

Quality testing :Successful system implementation requires numerous` testing iterations to ensure

that the final outcomes align with the desired results.

Project manager need to make sure all bugs are discovered and all issues are fixed before the

system goes live.

STAKEHOLDERS

The term Software Project Stakeholder refers to, “a person, group or company that is directly or

indirectly involved in the project and who may affect or get affected by the outcome of the

project”.

What is Stakeholder Identification?

It is the process of identifying a person, group or a company which can affect or get affected by a

decision, activity or the outcome of the software project. It is important in order to identify the

exact requirements of the project and what various stakeholders are expecting from the project

outcome.

Type of Stakeholders:

1. Internal Stakeholder:

An internal stakeholder is a person, group or a company that is directly involved in the project.

For example,

Project Manager:

Responsible for managing the whole project. Project Manager is generally never involved in

producing the end product but he/she controls, monitors and manages the activities involved in the

production.

Project Team:

Performs the actual work of the project under the Project Manager inluding development, testing,

etc.

Company:

Organisation who has taken up the project and whose employees are directly involved in the

development of the project.

Funders:

Provides funds and resources for the successful completion of the project.

2. External Stakeholder:

An external stakeholder is the one who is linked indirectly to the project but has significant

contribution in the successful completion of the project.

For example,

Customer:

Specifies the requirements of the project and helps in the elicitation process of the requirement

gathering phase. Customer is the one for whom the project is being developed.

Supplier:

Supplies essential services and equipment for the project.

Government:

Makes policies which helps in better working of the organisation.

GOALS AND OBJECTIVES

Goals and objectives are statements that describe what the project will accomplish, or the business

value the project will achieve.

Goals are high level statements that provide overall context for what the project is trying to

achieve, and should align to business goals.

Objectives are lower level statements that describe the specific, tangible products and deliverables

that the project will deliver.

The definition of goals and objectives is more of an art than a science, and it can be difficult to

define them and align them correctly.

Goals

Goals are high-level statements that provide the overall context for what the project is trying to

accomplish. Let’s look at an example and some of the characteristics of a goal statement. One of

the goals of a project might be to “increase the overall satisfaction levels for clients calling to the

company helpdesk with support needs”.

Because the goal is at a high-level, it may take more than one project to achieve. In the above

example, for instance, there may be a technology component to increasing client satisfaction. There

may also be new procedures, new training classes, reorganization of the helpdesk department and

modification of the company rewards system. It may take many projects over a long period of time

to achieve the goal.

The goal should reference the business benefit in terms of cost, speed and / or quality. In this

example, the focus is on quality of service. Even if the project is not directly in support of the

business, there should be an indirect tie. For instance, an IT infrastructure project to install new

web servers may ultimately allow faster client response, better price performance, or other business

benefit. If there is no business value to the project, the project should not be started.

Generally, non-measurable: If you can measure the achievement of your goal, it is probably at too

low a level and is probably more of an objective.

If your goal is not achievable through any combination of projects, it is probably written at too

high a level. In the above example, you could envision one or more projects that could end up

achieving a higher level of client satisfaction. A goal statement that says you are trying to achieve a

perfect client experience is not possible with any combination of projects. It may instead be a

vision statement, which is a higher level statement showing direction and aspiration, but which

may never actually be achieved.

It is important to understand business and project goal statements, even though goals are not a part

of the TenStep Project Definition. Goals are most important from a business perspective. The

project manager needs to understand the business goals that the project is trying to contribute to.

However, you do not need to define specific project goals. On the other hand, objectives definitely

are important.

Objectives

Objectives are concrete statements describing what the project is trying to achieve. The objective

should be written at a lower level, so that it can be evaluated at the conclusion of a project to see

whether it was achieved or not. Goal statements are designed to be vague. Objectives should not be

vague. A well-worded objective will be Specific, Measurable, Attainable/Achievable, Realistic and

Time-bound (SMART).

An example of an objective statement might be to “upgrade the helpdesk telephone system by

December 31 to achieve average client wait times of no more than two minutes”.

Note that the objective is much more concrete and specific than the goal statement.

The objective is measurable in terms of the average client wait times the new phone system is

trying to achieve.

We must assume that the objective is achievable and realistic.

The objective is time-bound, and should be completed by December 31.

Objectives should refer to the deliverables of the project. In this case, it refers to the upgrade of the

telephone system. If you cannot determine what deliverables are being created to achieve the

objective, then the objective may be written at too high a level. On the other hand, if an objective

describes the characteristics of the deliverables, they are written at too low a level. If they describe

the features and functions, they are requirements, not objectives.

PROJECT PLANNING

PROJECT SCOPE: Project scope describes what work should be performed to meet all those

requirements.

Narrative:It is used as a written confirmation of what your project is going to produce and how whats

the key is useful projects scope statement.

REQUIREMENTS: Requirements is condition or capability that is required to be present in a product,

service or result to satisfy a contact or other formally imposed specifications.

Delivarables:Today we are talking about what our project deliverables.we here that term all the time on

projects so whether you are the project manager asking your team members what the status of their

deliverables are or the team member with your project manager asking you for the status or may be

even you asking you other team members what status of their deliverables .

Delivarbles: something produced or provided as result of a process.

Process: so if we look at the process we get inputs and even the input into the process could be

deliverables it could be taking some form of information,some type of documents from project,a plan,

maybe even some equipment or money,even software that’s not all the different types but these are

examples of a input you could take into the process and outputs you may get something like a

consultation,you may get a project plan,some type of tool or appor software test results or may be even

a contract.if you look these again these are just examples but in a project you are producing deliverables

that are either a product or service and with those you want to be sure that you get a due date for each

deliverables make sure that it is specific or measurable.

1

 CSE

UNIT II

Software Development Life Cycle Models and Methodologies

 Introduction
Software development life cycle (SDLC) is a series of phases that provide a common

understanding of the software building process. How the software will be realized and developed

from the business understanding and requirements elicitation phase to convert these business

ideas and requirements into functions and features until its usage and operation to achieve the

business needs. The good software engineer should have enough knowledge on how to choose

the SDLC model based on the project context and the business requirements.

Therefore, it may be required to choose the right SDLC model according to the specific concerns

and requirements of the project to ensure its success. I wrote another article on how to choose the

right SDLC, you can follow this link for more information. Moreover, to learn more

about Software Testing life cycles and SDLC phases you follow the links highlighted here.

In this article, we will explore the different types of SDLC models and the advantages and

disadvantages of each one and when to use them.

You can think of SDLC models as tools that you can use to better deliver your software project.

Therefore, knowing and understanding each model and when to use it, the advantages and

disadvantages of each one are important to know which one is suitable for the project context.

Types of Software developing life cycles (SDLC)

• Waterfall Model

• V-Shaped Model

• Evolutionary Prototyping Model

• Spiral Method (SDM)

• Iterative and Incremental Method

• Agile development

Waterfall Model

Description

The Waterfall Model is a linear sequential flow. In which progress is seen as flowing steadily

downwards (like a waterfall) through the phases of software implementation. This means that

any phase in the development process begins only if the previous phase is complete. The

waterfall approach does not define the process to go back to the previous phase to handle

http://melsatar.blog/2017/06/13/what-do-you-need-to-know-about-the-eight-software-development-phases/
http://melsatar.blog/2012/03/21/choosing-the-right-software-development-life-cycle-model/
http://melsatar.blog/2018/04/02/software-testing-fundamentals/
http://melsatar.blog/2017/06/13/what-do-you-need-to-know-about-the-eight-software-development-phases/
http://melsatar.blog/2018/02/16/the-waterfall-model-a-different-perspective/
https://melsatar.blog/2018/08/27/the-validation-and-verification-model-the-v-model/
http://en.wikipedia.org/wiki/Software_prototyping
http://en.wikipedia.org/wiki/Spiral_model
http://en.wikipedia.org/wiki/Software_development_methodology
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Agile_software_development
http://melsatar.blog/2018/02/16/the-waterfall-model-a-different-perspective/

2

 CSE

changes in requirement. The waterfall approach is the earliest approach and most widely known

that was used for software development.

The usage

Projects which not focus on changing the requirements, for example, projects initiated from a

request for proposals (RFPs), the customer has a very clear documented requirements

Advantages and Disadvantages

Advantages Disadvantages

• Easy to explain to the users.

• Structures approach.

• Stages and activities are well defined.

• Helps to plan and schedule the project.

• Verification at each stage ensures early

detection of errors/misunderstanding.

• Each phase has specific deliverables.

• Assumes that the requirements

of a system can be frozen.

• Very difficult to go back to any

stage after it finished.

• A little flexibility and adjusting

scope is difficult and expensive.

• Costly and required more time,

in addition to the detailed plan.

http://en.wikipedia.org/wiki/Request_for_proposal

3

 CSE

V-Shaped Model

Description

It is an extension of the waterfall model, Instead of moving down in a linear way, the process

steps are bent upwards after the implementation and coding phase, to form the typical V shape.

The major difference between the V-shaped model and waterfall model is the early test planning

in the V-shaped model.

The usage

• Software requirements clearly defined and known

• Software development technologies and tools are well-known

Advantages and Disadvantages

Advantages Disadvantages

• Simple and easy to use

• Each phase has specific deliverables.

• Higher chance of success over the

waterfall model due to the development of

test plans early on during the life cycle.

• Works well for where requirements

are easily understood.

• Verification and validation of the

product in the early stages of product

development.

• Very inflexible, like the waterfall

model.

• Adjusting scope is difficult and

expensive.

• The software is developed during

the implementation phase, so no early

prototypes of the software are

produced.

• The model doesn’t provide a clear

path for problems found during testing

https://melsatar.blog/2018/08/27/the-validation-and-verification-model-the-v-model/

4

 CSE

phases.

• Costly and required more time, in

addition to a detailed plan

Prototyping Model

Description

It refers to the activity of creating prototypes of software applications, for example, incomplete

versions of the software program being developed. It is an activity that can occur in software

development and It used to visualize some component of the software to limit the gap of

misunderstanding the customer requirements by the development team. This also will reduce the

iterations may occur in the waterfall approach and hard to be implemented due to the inflexibility

of the waterfall approach. So, when the final prototype is developed, the requirement is

considered to be frozen.

It has some types, such as:

• Throwaway prototyping: Prototypes that are eventually discarded rather than becoming a

part of the finally delivered software

• Evolutionary prototyping: prototypes that evolve into the final system through an

iterative incorporation of user feedback.

5

 CSE

• Incremental prototyping: The final product is built as separate prototypes. In the end, the

separate prototypes are merged in an overall design.

6

 CSE

• Extreme prototyping: used in web applications mainly. Basically, it breaks down web

development into three phases, each one based on the preceding one. The first phase is a static

prototype that consists mainly of HTML pages. In the second phase, the screens are

programmed and fully functional using a simulated services layer. In the third phase, the

services are implemented

The usage

• This process can be used with any software developing life cycle model. While this shall

be chosen when you are developing a system has user interactions. So, if the system does not

have user interactions, such as a system does some calculations shall not have prototypes.

Advantages and Disadvantages

Advantages Disadvantages

• Reduced time and costs, but this can be a

disadvantage if the developer loses time in

developing the prototypes.

• Improved and increased user involvement.

• Insufficient analysis. User

confusion of prototype and

finished system.

• Developer misunderstanding

of user objectives.

• Excessive development time

of the prototype.

• It is costly to implement the

prototypes

Spiral Model (SDM)

Description

It is combining elements of both design and prototyping-in-stages, in an effort to combine

advantages of top-down and bottom-up concepts. This model of development combines the

features of the prototyping model and the waterfall model. The spiral model is favored for large,

expensive, and complicated projects. This model uses many of the same phases as the waterfall

model, in essentially the same order, separated by planning, risk assessment, and the building of

prototypes and simulations.

7

 CSE

The usage

It is used in the large applications and systems which built-in small phases or segments.

Advantages and Disadvantages

Advantages Disadvantages

• Estimates (i.e. budget, schedule, etc.) become

more realistic as work progressed because important

issues are discovered earlier.

• Early involvement of developers.

• Manages risks and develops the system into

phases.

• High cost and time to

reach the final product.

• Needs special skills to

evaluate the risks and

assumptions.

• Highly customized

limiting re-usability

8

 CSE

Iterative and Incremental Model

Description

It is developed to overcome the weaknesses of the waterfall model. It starts with an initial

planning and ends with deployment with the cyclic interactions in between. The basic idea

behind this method is to develop a system through repeated cycles (iterative) and in smaller

portions at a time (incremental), allowing software developers to take advantage of what was

learned during the development of earlier parts or versions of the system. It can consist of mini

waterfalls or mini V-Shaped model

The usage

It is used in shrink-wrap application and large system which built-in small phases or segments.

Also, can be used in a system has separated components, for example, ERP system. Which we

can start with the budget module as a first iteration and then we can start with the inventory

module and so forth.

Advantages and Disadvantages

9

 CSE

Advantages Disadvantages

• Produces business value

early in the development

lifecycle.

• Better use of scarce

resources through proper

increment definition.

• Can accommodate some

change requests between

increments.

• More focused on customer

value than the linear

approaches.

• We can detect project

issues and changes earlier.

• Requires heavy documentation.

• Follows a defined set of processes.

• Defines increments based on function and

feature dependencies.

• Requires more customer involvement than the

linear approaches.

• Partitioning the functions and features might

be problematic.

• Integration between the iterations can be an

issue if it is not considered during the

development and project planning.

Agile Model

Description

It is based on iterative and incremental development, where requirements and solutions evolve

through collaboration between cross-functional teams.

Scrum Agile Model

The usage

10

 CSE

It can be used with any type of the project, but it needs more engagement from the customer and

to be interactive. Also, we can use it when the customer needs to have some functional

requirement ready in less than three weeks and the requirements are not clear enough. This will

enable more valuable and workable piece for software early which also increase the customer

satisfaction.

Advantages and Disadvantages

Advantages Disadvantages

• Decrease the time required to avail some

system features.

• Face to face communication and

continuous inputs from customer

representative leaves no space for guesswork.

• The end result is the high-quality software

in the least possible time duration and

satisfied customer.

• Scalability.

• The ability and collaboration of

the customer to express user needs.

• Documentation is done at later

stages.

• Reduce the usability of

components.

• Needs special skills for the

team.

Life cycle phases
Characteristic of a successful software development process is the well-defined separation
between "research and development" activities and "production" activities. Most unsuccessful
projects exhibit one of the following characteristics:

• An overemphasis on research and development

• An overemphasis on production.

Successful modern projects-and even successful projects developed under the conventional

process-tend to have a very well-defined project milestone when there is a noticeable

transition from a research attitude to a production attitude. Earlier phases focus on achieving

functionality. Later phases revolve around achieving a product that can be shipped to a

customer, with explicit attention to robustness, performance, and finish.

A modern software development process must be defined to support the following:

• Evolution of the plans, requirements, and architecture, together with well defined
synchronization points

• Risk management and objective measures of progress and quality

• Evolution of system capabilities through demonstrations of increasing functionality

 ENGINEERING AND PRODUCTION STAGES

To achieve economies of scale and higher returns on investment, we must move toward a
software manufacturing process driven by technological improvements in process automation

11

 CSE

and component-based development. Two stages of the life cycle are:

1. The engineering stage, driven by less predictable but smaller teams doing
design and synthesis activities

2. The production stage, driven by more predictable but larger teams doing
construction, test, and deployment activities

The transition between engineering and production is a crucial event for the various

stakeholders. The production plan has been agreed upon, and there is a good enough

understanding of the problem and the solution that all stakeholders can make a firm

commitment to go ahead with production.

Engineering stage is decomposed into two distinct phases, inception and elaboration, and the

production stage into construction and transition. These four phases of the life-cycle process

are loosely mapped to the conceptual framework of the spiral model as shown in Figure 5-1

 INCEPTION PHASE

The overriding goal of the inception phase is to achieve concurrence among
stakeholders on the life-cycle objectives for the project.

12

 CSE

PRIMARY OBJECTIVES

• Establishing the project's software scope and boundary conditions, including an
operational concept, acceptance criteria, and a clear understanding of what is and is
not intended to be in the product

• Discriminating the critical use cases of the system and the primary scenarios of
operation that will drive the major design trade-offs

• Demonstrating at least one candidate architecture against some of the primary scenanos

• Estimating the cost and schedule for the entire project (including
detailed estimates for the elaboration phase)

• Estimating potential risks (sources of unpredictability)

ESSENTIAL ACTMTIES

• Formulating the scope of the project. The information repository should be
sufficient to define the problem space and derive the acceptance criteria for the end
product.

• Synthesizing the architecture. An information repository is created that is sufficient
to demonstrate the feasibility of at least one candidate architecture and an, initial
baseline of make/buy decisions so that the cost, schedule, and resource estimates
can be derived.

• Planning and preparing a business case. Alternatives for risk management, staffing,
iteration plans, and cost/schedule/profitability trade-offs are evaluated.

PRIMARY EVALUATION CRITERIA

• Do all stakeholders concur on the scope definition and cost and schedule estimates?

• Are requirements understood, as evidenced by the fidelity of the critical use cases?

• Are the cost and schedule estimates, priorities, risks, and development processes credible?

• Do the depth and breadth of an architecture prototype demonstrate the preceding
criteria? (The primary value of prototyping candidate architecture is to provide a
vehicle for understanding the scope and assessing the credibility of the
development group in solving the particular technical

problem.)

• Are actual resource expenditures versus planned expenditures acceptable

 ELABORATION PHASE

At the end of this phase, the "engineering" is considered complete. The elaboration phase
activities must ensure that the architecture, requirements, and plans are stable enough, and the
risks sufficiently mitigated, that the cost and schedule for the completion of the development
can be predicted within an acceptable range. During the elaboration phase, an executable
architecture prototype is built in one or more iterations, depending on the scope, size, & risk.

PRIMARY OBJECTIVES

• Baselining the architecture as rapidly as practical (establishing a configuration-managed
snapshot in which all changes are rationalized, tracked, and maintained)

13

 CSE

• Baselining the vision

• Baselining a high-fidelity plan for the construction phase

• Demonstrating that the baseline architecture will support the vision at a reasonable cost

in a reasonable time

ESSENTIAL ACTIVITIES

• Elaborating the vision.

• Elaborating the process and infrastructure.

• Elaborating the architecture and selecting components.

PRIMARY EVALUATION CRITERIA

• Is the vision stable?

• Is the architecture stable?

• Does the executable demonstration show that the major risk elements have been
addressed and credibly resolved?

• Is the construction phase plan of sufficient fidelity, and is it backed up with a credible

basis of estimate?

• Do all stakeholders agree that the current vision can be met if the current plan is
executed to develop the complete system in the context of the current architecture?

• Are actual resource expenditures versus planned expenditures acceptable?

 CONSTRUCTION PHASE

During the construction phase, all remaining components and application features are integrated

into the application, and all features are thoroughly tested. Newly developed software is integrated where

required. The construction phase represents a production process, in which emphasis is placed on

managing resources and controlling operations to optimize costs, schedules, and quality.

PRIMARY OBJECTIVES

• Minimizing development costs by optimizing resources and avoiding unnecessary scrap

and rework

• Achieving adequate quality as rapidly as practical

• Achieving useful versions (alpha, beta, and other test releases) as rapidly as practical

ESSENTIAL ACTIVITIES

• Resource management, control, and process optimization

• Complete component development and testing against evaluation criteria

• Assessment of product releases against acceptance criteria of the vision

PRIMARY EVALUATION CRITERIA

• Is this product baseline mature enough to be deployed in the user community?
(Existing defects are not obstacles to achieving the purpose of the next release.)

14

 CSE

• Is this product baseline stable enough to be deployed in the user community?
(Pending changes are not obstacles to achieving the purpose of the next release.)

• Are the stakeholders ready for transition to the user community?

• Are actual resource expenditures versus planned expenditures acceptable?

 TRANSITION PHASE
The transition phase is entered when a baseline is mature enough to be deployed in the end-
user domain. This typically requires that a usable subset of the system has been achieved with
acceptable quality levels and user documentation so that transition to the user will provide
positive results. This phase could include any of the following activities:

1. Beta testing to validate the new system against user expectations

2. Beta testing and parallel operation relative to a legacy system it is replacing

3. Conversion of operational databases

4. Training of users and maintainers

The transition phase concludes when the deployment baseline has achieved the complete

vision.

PRIMARY OBJECTIVES

• Achieving user self-supportability

• Achieving stakeholder concurrence that deployment baselines are complete and
consistent with the evaluation criteria of the vision

• Achieving final product baselines as rapidly and cost-effectively as practical

ESSENTIAL ACTIVITIES

• Synchronization and integration of concurrent construction increments into
consistent deployment baselines

• Deployment-specific engineering (cutover, commercial packaging and
production, sales rollout kit development, field personnel training)

• Assessment of deployment baselines against the complete vision and
acceptance criteria in the requirements set

EVALUATION CRITERIA

• Is the user satisfied?

• Are actual resource expenditures versus planned expenditures acceptable?

6. Artifacts of the process

 THE ARTIFACT SETS

To make the development of a complete software system manageable, distinct collections of
information are organized into artifact sets. Artifact represents cohesive information that
typically is developed and reviewed as a single entity.

15

 CSE

Life-cycle software artifacts are organized into five distinct sets that are roughly
partitioned by the underlying language of the set: management (ad hoc textual formats),
requirements (organized text and models of the problem space), design (models of the
solution space), implementation (human-readable programming language and associated
source files), and deployment (machine-process able languages and associated files). The
artifact sets are shown in Figure 6-1.

 THE MANAGEMENT SET
The management set captures the artifacts associated with process planning and

execution. These artifacts use ad hoc notations, including text, graphics, or whatever

representation is required to capture the "contracts" among project personnel (project

management, architects, developers, testers, marketers, administrators), among

stakeholders (funding authority, user, software project manager, organization manager,

regulatory agency), and between project personnel and stakeholders. Specific artifacts

included in this set are the work breakdown structure (activity breakdown and financial

tracking mechanism), the business case (cost, schedule, profit expectations), the release

specifications (scope, plan, objectives for release baselines), the software development

plan (project process instance), the release descriptions (results of release baselines), the

status assessments (periodic snapshots of project progress), the software change orders

(descriptions of discrete baseline changes), the deployment documents (cutover plan,

training course, sales rollout kit), and the environment (hardware and software tools,

process automation, & documentation).

Management set artifacts are evaluated, assessed, and measured through a combination of the

following:

• Relevant stakeholder review

• Analysis of changes between the current version of the artifact and previous versions

• Major milestone demonstrations of the balance among all artifacts and, in

particular, the accuracy of the business case and vision artifacts

16

 CSE

 THE ENGINEERING SETS
The engineering sets consist of the requirements set, the design set, the
implementation set, and the deployment set.

Requirements Set

Requirements artifacts are evaluated, assessed, and measured through a combination of the
following:

• Analysis of consistency with the release specifications of the management set

• Analysis of consistency between the vision and the requirements models

• Mapping against the design, implementation, and deployment sets to evaluate the
consistency and completeness and the semantic balance between information in the
different sets

• Analysis of changes between the current version of requirements artifacts and
previous versions (scrap, rework, and defect elimination trends)

• Subjective review of other dimensions of quality

Design Set

UML notation is used to engineer the design models for the solution. The design set

contains varying levels of abstraction that represent the components of the solution space

(their identities, attributes, static relationships, dynamic interactions). The design set is

evaluated, assessed, and measured through a combination of the following:

• Analysis of the internal consistency and quality of the design model

• Analysis of consistency with the requirements models

• Translation into implementation and deployment sets and notations (for example,

traceability, source code generation, compilation, linking) to evaluate the

consistency and completeness and the semantic balance between information in the

sets

• Analysis of changes between the current version of the design model and previous

versions (scrap, rework, and defect elimination trends)

• Subjective review of other dimensions of quality

Implementation set

The implementation set includes source code (programming language notations) that represents

the tangible implementations of components (their form, interface, and dependency

relationships)

Implementation sets are human-readable formats that are evaluated, assessed, and
measured through a

combination of the following:

17

 CSE

• Analysis of consistency with the design models

• Translation into deployment set notations (for example, compilation and linking) to
evaluate the consistency and completeness among artifact sets

• Assessment of component source or executable files against relevant evaluation

criteria through inspection, analysis, demonstration, or testing

• Execution of stand-alone component test cases that automatically compare expected

results with actual results

• Analysis of changes between the current version of the implementation set and

previous versions (scrap, rework, and defect elimination trends)

• Subjective review of other dimensions of quality

Deployment Set

The deployment set includes user deliverables and machine language notations, executable

software, and the build scripts, installation scripts, and executable target specific data

necessary to use the product in its target environment.

Deployment sets are evaluated, assessed, and measured through a combination of the
following:

• Testing against the usage scenarios and quality attributes defined in the requirements
set to evaluate the consistency and completeness and the~ semantic balance between
information in the two sets

• Testing the partitioning, replication, and allocation strategies in mapping
components of the implementation set to physical resources of the deployment
system (platform type, number, network topology)

• Testing against the defined usage scenarios in the user manual such as installation,
user-oriented dynamic reconfiguration, mainstream usage, and anomaly
management

• Analysis of changes between the current version of the deployment set and previous
versions (defect elimination trends, performance changes)

• Subjective review of other dimensions of quality

Each artifact set is the predominant development focus of one phase of the life cycle; the other
sets take on check and balance roles. As illustrated in Figure 6-2, each phase has a
predominant focus: Requirements are the focus of the inception phase; design, the elaboration
phase; implementation, the construction phase; and deploy- ment, the transition phase. The
management artifacts also evolve, but at a fairly constant level across the life cycle.

Most of today's software development tools map closely to one of the five artifact sets.
1. Management: scheduling, workflow, defect tracking,

change management, documentation, spreadsheet,
resource management, and presentation tools

2. Requirements: requirements management tools

3. Design: visual modeling tools

4. Implementation: compiler/debugger tools, code analysis tools, test coverage
analysis tools, and test management tools

5. Deployment: test coverage and test automation tools, network management tools,
commercial components (operating systems, GUIs, RDBMS, networks, middleware),

18

 CSE

and installation tools.

Implementation Set versus Deployment Set

The separation of the implementation set (source code) from the deployment set (executable
code) is important because there are very different concerns with each set. The structure of the
information delivered to the user (and typically the test organization) is very different from
the structure of the source code information. Engineering decisions that have an impact on the
quality of the deployment set but are relatively incomprehensible in the design and
implementation sets include the following:

• Dynamically reconfigurable parameters (buffer sizes, color palettes, number of
servers, number of simultaneous clients, data files, run-time parameters)

• Effects of compiler/link optimizations (such as space optimization versus speed

optimization)

• Performance under certain allocation strategies (centralized versus distributed,
primary and shadow threads, dynamic load balancing, hot backup versus
checkpoint/rollback)

• Virtual machine constraints (file descriptors, garbage collection, heap size,
maximum record size, disk file rotations)

• Process-level concurrency issues (deadlock and race conditions)

• Platform-specific differences in performance or behavior

 ARTIFACT EVOLUTION OVER THE LIFE CYCLE

Each state of development represents a certain amount of precision in the final system
description. Early in the life cycle, precision is low and the representation is generally high.
Eventually, the precision of representation is high and everything is specified in full detail.
Each phase of development focuses on a particular artifact set. At the end of each phase, the
overall system state will have progressed on all sets, as illustrated in Figure 6-3.

19

 CSE

The inception phase focuses mainly on critical requirements usually with a secondary

focus on an initial deployment view. During the elaboration phase, there is much greater

depth in requirements, much more breadth in the design set, and further work on

implementation and deployment issues. The main focus of the construction phase is

design and implementation. The main focus of the transition phase is on achieving

consistency and completeness of the deployment set in the context of the other sets.

 TEST ARTIFACTS
• The test artifacts must be developed concurrently with the product from inception

through deployment. Thus, testing is a full-life-cycle activity, not a late life-cycle
activity.

• The test artifacts are communicated, engineered, and developed within the same
artifact sets as the developed product.

• The test artifacts are implemented in programmable and repeatable formats (as software

programs).

• The test artifacts are documented in the same way that the product is documented.

• Developers of the test artifacts use the same tools, techniques, and training as the

software engineers developing the product.

Test artifact subsets are highly project-specific, the following example clarifies the

relationship between test artifacts and the other artifact sets. Consider a project to perform

seismic data processing for the purpose of oil exploration. This system has three fundamental

subsystems: (1) a sensor subsystem that captures raw seismic data in real time and delivers

these data to (2) a technical operations subsystem that converts raw data into an organized

database and manages queries to this database from (3) a display subsystem that allows

workstation operators to examine seismic data in human-readable form. Such a system would

result in the following test artifacts:

• Management set. The release specifications and release descriptions capture the
objectives, evaluation criteria, and results of an intermediate milestone. These

20

 CSE

artifacts are the test plans and test results negotiated among internal project teams.
The software change orders capture test results (defects, testability changes,
requirements ambiguities, enhancements) and the closure criteria associated with
making a discrete change to a baseline.

• Requirements set. The system-level use cases capture the operational concept for
the system and the acceptance test case descriptions, including the expected
behavior of the system and its quality attributes. The entire requirement set is a test
artifact because it is the basis of all assessment activities across the life cycle.

• Design set. A test model for nondeliverable components needed to test the product
baselines is captured in the design set. These components include such design set
artifacts as a seismic event simulation for creating realistic sensor data; a "virtual
operator" that can support unattended, after- hours test cases; specific
instrumentation suites for early demonstration of resource usage; transaction rates
or response times; and use case test drivers and component stand-alone test drivers.

• Implementation set. Self-documenting source code representations for test
components and test drivers provide the equivalent of test procedures and test
scripts. These source files may also include human-readable data files representing
certain statically defined data sets that are explicit test source files. Output files
from test drivers provide the equivalent of test reports.

• Deployment set. Executable versions of test components, test drivers, and data files are

provided.

 MANAGEMENT ARTIFACTS
The management set includes several artifacts that capture intermediate results and
ancillary information necessary to document the product/process legacy, maintain the
product, improve the product, and improve the process.

Business Case

The business case artifact provides all the information necessary to determine whether
the project is worth investing in. It details the expected revenue, expected cost, technical
and management plans, and backup data necessary to demonstrate the risks and realism
of the plans. The main purpose is to transform the vision into economic terms so that an
organization can make an accurate ROI assessment. The financial forecasts are
evolutionary, updated with more accurate forecasts as the life cycle progresses. Figure 6-
4 provides a default outline for a business case.

Software Development Plan

The software development plan (SDP) elaborates the process framework into a fully
detailed plan. Two indications of a useful SDP are periodic updating (it is not stagnant
shelfware) and understanding and acceptance by managers and practitioners alike.
Figure 6-5 provides a default outline for a software development plan.

21

 CSE

Work Breakdown Structure

Work breakdown structure (WBS) is the vehicle for budgeting and collecting costs. To

monitor and control a project's financial performance, the software project man1ger must have

insight into project costs and how they are expended. The structure of cost accountability is a

22

 CSE

serious project planning constraint.

Software Change Order Database

Managing change is one of the fundamental primitives of an iterative development process.
With greater change freedom, a project can iterate more productively. This flexibility
increases the content, quality, and number of iterations that a project can achieve within a
given schedule. Change freedom has been achieved in practice through automation, and
today's iterative development environments carry the burden of change management.
Organizational processes that depend on manual change management techniques have
encountered major inefficiencies.

Release Specifications

The scope, plan, and objective evaluation criteria for each baseline release are derived from

the vision statement as well as many other sources (make/buy analyses, risk management

concerns, architectural considerations, shots in the dark, implementation constraints, quality

thresholds). These artifacts are intended to evolve along with the process, achieving greater

fidelity as the life cycle progresses and requirements understanding matures. Figure 6-6

provides a default outline for a release specification

Release Descriptions

Release description documents describe the results of each release, including performance
against each of the evaluation criteria in the corresponding release specification. Release
baselines should be accompanied by a release description document that describes the
evaluation criteria for that configuration baseline and provides substantiation (through
demonstration, testing, inspection, or analysis) that each criterion has been addressed in an
acceptable manner. Figure 6-7 provides a default outline for a release description.

Status Assessments

Status assessments provide periodic snapshots of project health and status, including the

software project manager's risk assessment, quality indicators, and management indicators.

23

 CSE

Typical status assessments should include a review of resources, personnel staffing, financial

data (cost and revenue), top 10 risks, technical progress (metrics snapshots), major milestone

plans and results, total project or product scope & action items

Environment

An important emphasis of a modern approach is to define the development and maintenance

environment as a first-class artifact of the process. A robust, integrated development

environment must support automation of the development process. This environment should

include requirements management, visual modeling, document automation, host and target

programming tools, automated regression testing, and continuous and integrated change

management, and feature and defect tracking.

Deployment

A deployment document can take many forms. Depending on the project, it could include
several document subsets for transitioning the product into operational status. In big
contractual efforts in which the system is delivered to a separate maintenance organization,
deployment artifacts may include computer system operations manuals, software installation
manuals, plans and procedures for cutover (from a legacy system), site surveys, and so forth.
For commercial software products, deployment artifacts may include marketing plans, sales
rollout kits, and training courses.

Management Artifact Sequences

In each phase of the life cycle, new artifacts are produced and previously developed artifacts
are updated to incorporate lessons learned and to capture further depth and breadth of the
solution. Figure 6-8 identifies a typical sequence of artifacts across the life-cycle phases.

24

 CSE

ENGINEERING ARTIFACTS
Most of the engineering artifacts are captured in rigorous engineering notations such as UML,
programming languages, or executable machine codes. Three engineering artifacts are
explicitly intended for more general review, and they deserve further elaboration.

Vision Document

25

 CSE

The vision document provides a complete vision for the software system under development
and. supports the contract between the funding authority and the development organization. A
project vision is meant to be changeable as understanding evolves of the requirements,
architecture, plans, and technology. A good vision document should change slowly. Figure 6-
9 provides a default outline for a vision document.

Architecture Description

The architecture description provides an organized view of the software architecture under
development. It is extracted largely from the design model and includes views of the design,
implementation, and deployment sets sufficient to understand how the operational concept of
the requirements set will be achieved. The breadth of the architecture description will vary
from project to project depending on many factors. Figure 6-10 provides a default outline for
an architecture description.

Software User Manual

The software user manual provides the user with the reference documentation necessary to

support the delivered software. Although content is highly variable across application

domains, the user manual should include installation procedures, usage procedures and

guidance, operational constraints, and a user interface description, at a minimum. For software

products with a user interface, this manual should be developed early in the life cycle because

it is a necessary mechanism for communicating and stabilizing an important subset of

26

 CSE

requirements. The user manual should be written by members of the test team, who are more

likely to understand the user's perspective than the development team.

 PRAGMATIC ARTIFACTS

• People want to review information but don't understand the language of the artifact.

Many interested reviewers of a particular artifact will resist having to learn the engineering

language in which the artifact is written. It is not uncommon to find people (such as veteran

software managers, veteran quality assurance specialists, or an auditing authority from a

regulatory agency) who react as follows: "I'm not going to learn UML, but I want to review

the design of this software, so give me a separate description such as some flowcharts and text

that I can understand."

• People want to review the information but don't have access to the tools. It is not very
common for the

development organization to be fully tooled; it is extremely rare that the/other stakeholders

have any capability to review the engineering artifacts on-line. Consequently, organizations

are forced to exchange paper documents. Standardized formats (such as UML, spreadsheets,

Visual Basic, C++, and Ada 95), visualization tools, and the Web are rapidly making it

economically feasible for all stakeholders to exchange information

electronically.
• Human-readable engineering artifacts should use rigorous notations that are complete,
consistent, and used in a self-documenting manner. Properly spelled English words should
be used for all identifiers and descriptions. Acronyms and abbreviations should be used only
where they are well accepted jargon in the context of the component's usage. Readability
should be emphasized and the use of proper English words should be required in all
engineering artifacts. This practice enables understandable representations, browse able
formats (paperless review), more-rigorous notations, and reduced error rates.

• Useful documentation is self-defining: It is documentation

that gets used.
• Paper is tangible; electronic artifacts are too easy to change. On-line and Web-based

artifacts can be changed easily and are viewed with more skepticism because of their inherent

volatility.

UNIT III

EFFORT ESTIMATION & ACTIVITY PLANNING

EFFORT ESTIMATION:

Software effort estimation techniques

• Algorithm or parametric model

• Analog model

• Expert judgment

• Parkinson

• Price to win

• Top-down

• Bottom-up

Functional Point (FP) Analysis

FPA provides standardized method to functionally size the software work product. This work product is the output of software new

development and improvement projects for subsequent releases. It is the software which is relocated to the production application at project

implementation. It measures functionality from the users point of view i.e. on the basis of what the user requests and receives in return.

Function Point Analysis (FPA) is a method or set of rules of Functional Size Measurement. It assesses the functionality delivered to its users,

based on the user’s external view of the functional requirements. It measures the logical view of an application not the physically

implemented view or the internal technical view.

The Function Point Analysis technique is used to analyse the functionality delivered by software and Unadjusted Function Point (UFP) is

the unit of measurement.

Objectives of FPA:

1. The objective of FPA is to measure functionality that the user requests and receives.

2. The objective of FPA is to measure software development and maintenance independently of technology used for

implementation.

3. It should be simple enough to minimize the overhead of the measurement process.

4. It should be a consistent measure among various projects and organizations.

 Types of FPA:

1. Transactional Functional Type –

(i) External Input (EI): EI processes data or control information that comes from outside the application’s

boundary. The EI is an elementary process.

(ii) External Output (EO): EO is an elementary process that generates data or control information sent

outside the application’s boundary.

(iii) External Inquiries (EQ): EQ is an elementary process made up of an input-output combination that

results in data retrieval.

 2. Data Functional Type –

(iv) Internal Logical File (ILF): A user identifiable group of logically related data or control information

maintained within the boundary of the application.

(v) External Interface File (EIF): A group of user recognizable logically related data allusion to the

software but maintained within the boundary of another software.

Benefits of FPA:

• FPA is a tool to determine the size of a purchased application package by counting all the functions included in the package.

• It is a tool to help users discover the benefit of an application package to their organization by counting functions that

specifically match their requirements.

• It is a tool to measure the units of a software product to support quality and productivity analysis.

• It s a vehicle to estimate cost and resources required for software development and maintenance.

• It is a normalization factor for software comparison.

IFPUG

• PURCHAGE_ORDER

• PURCHAGE _ORDER_ ITEM

COCOMO II

COCOMO II

• COCOMO 81 makes a variety of assumptions about

the software development process in order to produce

its estimates. The latter will only be somewhat

accurate when the project uses the waterfall process

model and every line of code is produced from

scratch. It also fails to take into account that

nowadays higher-level programming languages are

employed, supported by various automated tools. We

will not elaborate on this version, since it has been

obsolete by COCOMO 2.

The Application Composition model involves prototyping efforts to resolve potential high-risk issues

such as user interfaces, software/system interaction, performance, or technology maturity. The costs of

this type of effort are best estimated by the Applications Composition model.

The Early Design model involves exploration of alternative software/system architectures and concepts

of operation. At this stage, not enough is generally known to support fine-grain cost estimation. The

corresponding COCOMO II capability involves the use of function points and a course-grained set of 7

cost drivers (e.g. two cost drivers for Personnel Capability and Personnel Experience in place of the 6

COCOMO II Post-Architecture model cost drivers covering various aspects of personnel capability,

continuity, and experience).

The Post-Architecture model involves the actual development and maintenance of a software product.

This stage proceeds most cost-effectively if a software life-cycle architecture has been developed;

validated with respect to the system’s mission, concept of operation, and risk; and established as the

framework for the product. The corresponding COCOMO II model has about the same granularity as the

previous COCOMO and Ada COCOMO models. It uses source instructions and / or function points for

sizing, with modifiers for reuse and software breakage; a set of 17 multiplicative cost drivers; and a set

of 5 factors determining the project’s scaling exponent. These factors replace the development modes

(Organic, Semidetached, or Embedded) in the original COCOMO model, and refine the four exponent-

scaling factors in Ada COCOMO.

The post-architecture level: Once the system architecture has been designed a reasonably accurate

estimate of the software size can be made. The estimate as this level uses a more extensive set of

multipliers reflecting personnel capabilities, product and project characteristics.

Pm= A* *()* ()*………. *()

UNIT V

PROJECT MONITORING & CONTROL, RESOURCE ALLOCATION

Monitoring and control processes continually track, review, adjust and report on the project’s

performance. It’s important to find out how a project’s performing and whether it’s on time, as

well as implement approved changes. This ensures the project remains on track, on budget and

on time.

What is project control?

According to the PMBOK® Guide (the Project Management Body of Knowledge), project

control is a “project management function that involves comparing actual performance with

planned performance and taking appropriate corrective action (or directing others to take this

action) that will yield the desired outcome in the project when significant differences exist.”

Essentially, project controls are a series of tools that help keep a project on schedule. Combined

with people skills and project experience, they deliver information that enables accurate decision

making. The project control process mainly focuses on:

 Measuring planned performance vs actual performance.

 Ongoing assessment of the project’s performance to identify any preventive or corrective

actions needed.

 Keeping accurate, timely information based on the project’s output and associated

documentation.

 Providing information that supports status updates, forecasting and measuring progress.

 Delivering forecasts that update current costs and project schedule.

 Monitoring the implementation of any approved changes or schedule amendments.

Importance of project monitoring and control

https://www.bestpracticebookstore.com/geolocate/usa/products/pmi-books/a-guide-to-the-project-management-body-of-knowledge-pmbok-guide-sixth-edition

Monitoring and control keeps projects on track. The right controls can play a major part in

completing projects on time. The data gathered also lets project managers make informed

decisions. They can take advantage of opportunities, make changes and avoid crisis management

issues.

Put simply, monitoring and control ensures the seamless execution of tasks. This improves

productivity and efficiency.

Monitoring and control method

When setting up a project’s monitoring and control process, first establish the project baselines.

This includes the scope, schedule and budget. Use this information to benchmark the project’s

progress throughout the lifecycle.

Use a Work Breakdown Structure (WBS) to break a project down into small units of work, or

sub-tasks. This makes the work easier to manage and evaluate. This enables easier detection of

issues, keeps the project under control and allows for easier progress verification. It also helps

prevent team members from feeling overwhelmed.

With a WBS in place, follow this sequence throughout the project’s lifecycle:

Monitoring and control techniques

There are a range of monitoring and control techniques that can be used by project managers,

including:

A Requirements Traceability Matrix (RTM). This maps, or traces, the project’s requirements

to the deliverables. The matrix correlates the relationship between two baseline documents. This

makes the project’s tasks more visible. It also prevents new tasks or requirements being added to

the project without approval.

This makes the project’s tasks more visible. It also prevents new tasks or requirements being

added to the project without approval.

A control chart monitors the project’s quality. There are two basic forms of control chart – a

univariate control chart displays one project characteristic, while a multivariate chart displays

more than one.

Review and status meetings further analyse problems, finding out why something happened.

They can also highlight any issues that might happen later.

1. Creating framework

Project control cycle

Responsibility

Project steering committee



Project board



Reporting formal or informal

Project reporting structures.

Reporting may be oral or written, formal or informal, or regular or ad hoc and some examples of each

type are given in Table 9.1. While any effective team leader or project manager will be in touch with

team members and available to discuss problems, any such informal reporting of project progress

must be complemented by formal reporting procedures - and it is those we are concerned with in this

chapter.

Assessing progress

Progress assessment will normally be made on the basis of information collected and collated at

regular intervals or when specific events occur. Wherever possible, this information will be objective

and tangible - whether or not a particular report has been delivered, for example. However, such end-

of-activity deliverables might Short, Monday morning team progress meetings are a common way of

motivating staff to meet short term targets.

not occur sufficiently frequently throughout the life of the project. Here progress assessment will have

to rely on the judgement of the team members who are carrying out the project activities.

Setting checkpoints

Regular



Tied to specific events

 Setting checkpoints

It is essential to set a series of checkpoints in the initial activity plan. Checkpoints may be:

• tied to specific events such as the production of a report or other deliverable.

Taking snapshots

 Review points or control points



 Assess progress daily

The frequency with which a manager needs to receive information about progress will depend upon

the size and degree of risk of the project or that part of the project under their control. Team leaders,

for example, need to assess progress daily (particularly when employing inexperienced staff) whereas

project managers may find weekly or monthly reporting appropriate. In general, the higher the level,

the less frequent and less detailed the reporting needs to be.

There are, however, strong arguments in favour of formal weekly collection of information from staff

carrying out activities. Collecting data at the end of each week ensures that information is provided

while memories are still relatively fresh and provides a mechanism for individuals to review and reflect

upon their progress during the past few days.

Major, or project-level, progress reviews will generally take place at particular points during the life of

a project - commonly known as review points or control points. PRINCE 2, for example, designates a

series of checkpoints where the status of work in a project or for a team is reviewed. At the end of

each project Stage, PRINCE 2 provides for an End Stage Assessment where an assessment of the

project and consideration of its future are undertaken.

COLLECTING DATA

• Partial completion reporting

• Risk reporting

PARTIAL COMPLETION REPORTING

RISK REPORTING

VISUALIZING PROGRESS

 The Gantt chart

 The Slip chart

 Ball charts

 The timeline

THE GANTT CHART

THE SLIP CHARTTHE SLIP CHART

THE SLIP CHART

Software Project Management 25

The Slip Chart

 Add a slip line on the Gantt chart

 The slip line indicates those activities
that are either ahead or behind the
schedule

 Too much bending indicates a need for
rescheduling of the overall plan

Software Project Management 26

The Slip Chart (cont’d)

12 13 14 15 16 17 18 19 20

Zobel

module A

Peter

module B

Paul

module C

Kelvin

module F

Planned time (week number)

Completed Scheduled
T
o
d
a
y

BALL CHARTS

A somewhat more striking way of showing w hether or not targets have been met is to use a ball

chart as in Figure 9.7. In this version of the ball chart, the circles indicate start and completion

points for activities. The circles initially contain the original scheduled dales. Whenever revisions

are produced these arc added as second dates in the appropriate circle until an activity is

actually started

THE TIMELINE

Software Project Management 27

The Timeline

 A plot of the elapsed time against the
planned time of the activities indicating

 the actual progress of the activities; and

 the rescheduled activities by the end of
each week

 show where and when the targets have
changed through the life of a project

Software Project Management 29

The Timeline (cont’d)

 Can show the slippage of the activities
through the life of the project

 The Gantt chart cannot

 Help to analyze and understand the
trends and reason for changes

 to avoid slippage in future projects

COST MONITORING

 EARNED VALUE ANALYSIS
Objective:

 To measure the progress of an activity, deliverable and/or project by

comparing the actual value to planned value, thereby indicating the probability

of meeting the scope, time & cost budget of the activity, deliverable and/or

project, and need for any corrective actions.

 To analyze the project performance, calculate the variance for schedule and

cost and indicates where the project stands in comparison to the estimates

calculated earlier for this point in time.

Many a times one could easily be on time, however may overspend, or may be on

time & within budget however scope may be incomplete. In simple terms, EV

analysis is better than comparing actual to planned results or by simply guessing

the project status.

EARNED VALUE ANALYSIS

• The baseline budget

• Monitoring earned value

• Schedule variance(SV)

• Cost variance(CV)

• Performance ratios

Ref: http://www.spmbook.com/downloads/slides/pdf/c03.08-09-executionmonitoringcontrol.key.pdf

Definitions

http://www.spmbook.com/downloads/slides/pdf/c03.08-09-executionmonitoringcontrol.key.pdf

Planned Value (PV) or Budgeted Cost of

Work Scheduled (BCWS)

Originally planned cost of the work that

should have been done by this time

Actual Cost (AC) or Actual Cost of

Work Performed (ACWP)

Actual cost expenses on this project upto this

time

Earned Value (EV) or Budgeted cost of

Work Performed (BCWP)

Estimated cost of budgeted work completed

Budget at Completion (BAC) Total budget for the project

Estimate At Completion (EAC) Estimated final cost of the project

Estimate To Completion (ETC)
Estimated cost of the remaining work of the

project

Description EVA Formulas Result

Cost

Variance

(CV)

CV = EV – AC Positive value is good. Negative value unfavourable.

Schedule

Variance

(SV)

SV = EV – PV

Value below 1.0 = below par performance. Value above 1.0

= above par performance The further away the ratio is from

1.0 the more urgent need to investigate

Cost

Performance

CPI = EV / AC,

compares
 >1 means project efficient, <1 means project inefficient

Indicator

(CPI)

performed to actual

cost

Schedule

Performance

Indicator

(SPI)

SPI = EV / PV,

compares work

performed to work

planned

 >1 means project ahead of schedule, <1 means project

behind schedule

Estimate At

Completion

(EAC)

EAC = BAC/CPI

Estimate To

Complete

(ETC)

ETC = (BAC – EV)

/ CPI

Example

Assume a project that has exactly one task. The task was baselined at 100 hours,

but 110 hours have been spent and the estimate to complete is 10 additional hours.

The task was to have been completed already. Assume an hourly rate of $100 per

hour.

Description Formulae Result

PV
Hourly Rate * Total Hours

Planned or Scheduled
100*100 = 10,000

AC Hourly Rate * Total Hours Spent 100*110 = 11,000

% Complete

AC divided by estimated cost at

completion which is 11,000 plus

cost of 10 additional hours

11000/(11000+1000) = 91.667%

EV
Baselined Cost * % Complete

Actual

9166.667 (baseline of 10,000 *

91.667% complete)

BAC
Baselined Effort in hours *

Hourly Rate

10000 (100 hours * 100) indicates

initially budget signed off for the

project

EAC AC + ETC
12000 (11000 + 1000) notice this

is over budget

VAC BAC – EAC

-2000 (10000 – 12000) indicates

additional funds required to

complete work

% Completed

Planned
PV / BAC 100% (10000/10000)

% Completed

Actual
AC / EAC

91.7% (11000/12000) lesser than

planned completion

SV
Earned Value (EV) – Planned

Value (PV)

-833.33 (9166.667 –

10000) negative schedule

variance or behind schedule

SPI SPI = EV / PV

0.9167 (9166.667 / 10000)

 indicating poor schedule

performance

CV
Earned Value (EV) – Actual Cost

(AC)

-1.833.33 (9166.67 –

11000) indicating a cost overrun

CPI
Earned Value (EV) /Actual Cost

(AC)

0.833 (9166.667 /

11000) indicating over budget

 RESOURCE ALLOCATION

Effective Resource Management for Team Projects and Goals

Project Insight gives project managers power over the management of resource allocation for

software development, marketing, product development teams and more. Assigning

teammembers to business goals, projects and individual tasks is simple and easy with our PMI

and PMBOK® Guide compliant solution. Mass assign team members’ tasks grouped by skill set,

department or resource type, or handle resource allocation management for a single person. It

is equally simple to change a resource on a set of project tasks as well.

Our portfolio system allows resource allocation managers and project managers to use project

level and/or cross project resource allocation to manage workloads in order to achieve their

goals. The software application reports evenly divide the work (hours) among the workdays

(duration) scheduled for the tasks to calculate the total work or effort assigned to a resource

within a specified date range.

Efficient Resource Allocation and Workload Management

Resource information may be accessed from the ‘Resources’ tab within a project to review the

availability of resources. Project Insight, web project management software provides real-time

resource allocation data based on the allocation of their assignments to project tasks systemwide.

Project managers can also view all resources across all projects in Project Insight. This

information

is accessed in ‘My Reports,’ ‘Cross Project Resource Allocation.’ Data may be hidden or

displayed

according to each person’s preferences, supporting a wide variety of applications for these

reports. Hundreds of permutations of resource allocation reports are available.

Other project management software applications claim to have extensive resource allocation

capabilities in their marketing materials; however, they often fall short. Project Insight not only

allows resource managers or project managers to see the total workload each resource has per

day, week or other time period, it allows them to drill down on all of the projects and tasks that

are causing the over allocation in one view. Tasks can easily be reassigned using Project

Insight’s

simple drag and drop functionality. It’s perfect for the management of all kinds of goals, tasks

and projects including IT projects, interactive or marketing projects, product development

projects,

professional services and more. All tasks are efficiently managed with proper resource allocation

and tracking, down to the last detail.

Notes If your goal is to make sure that you’re on top of resource allocation, then Project

Insight’s powerful resource management applications will make it happen.

 IDENTIFYING RESOURCE REQUIREMENTS

As you plan for application compatibility testing, keep in mind the future state of your

computing

environment. Are you planning to upgrade some of your software to versions that fully use new

Windows 2000 features? Are you planning to implement new standard desktop configurations

or use Terminal Services? Issues such as these determine the resources that are required and the

applications that are to be tested as a suite.

If you plan to deploy new applications with Windows 2000 during the rollout, test these

applications with the current applications.

You can facilitate testing by setting up a lab where testers can conduct their tests. In such a

lab, you can have the necessary tools and equipment available at all times. Some organizations

have a lab for testing applications that is separate from the Windows 2000 lab. If you do not

have the budget for a separate lab, you might share a lab with another project or with

training. If you share a lab, try to choose one that has compatible scheduling and equipment
requirements.

SCHEDULING RESOURCES

In this unit we will learn about scheduling resources in projects. We will begin by discussing the

nature of resource requirements (both people and machines) and the problems associated with

managing resources in a project environment. Given the finite nature of resource availability, a

project plan may have to be modified so that it is practical. This is the major thrust of resource

planning and management. In this unit, we will examine, at some length, the four major stages

of the resource scheduling process. These stages are resource definition, resource

allocation, resource aggregation, and resource leveling. Resource definition involves

identifying

the critical resources that need to be planned and managed for the successful completion of the

project. In a multi-project environment as projects are competing for scarce resources, resource

allocation addresses the problem of the optimum use and timing of the assignment of these

resources to the various project activities. Resource aggregation involves determining the

aggregate

resources that will be needed, period by period, to complete all project activities. Having

identified

the necessary resource requirements, the last stage in the process is resource leveling. In this

stage,

we attempt to ensure that the demand for resources does not exceed availability. Specifically,

demand for resources is smoothed to ensure that the peaks and valleys are reduced. In this

lesson, we will also learn about the “critical chain approach” to tackle resource dependencies

that occur in projects due to reduced slack.

UNIT VI

SOFTWARE QUALITY

INTRODUCTION

PLACE OF SOFTWARE QUALITY IN PROJECT MANAGEMENT

IMPORTANCE OF SOFTWARE QUALITY

DEFINING THE SOFTWARE QUALITY

Quality is rather vague term and we need to define carefully what we mean by it

ISO 9126

