UNIT |
PROJECT

A general definition of project is: “It is an temporary endeavor with set of well-defined activities

that leads achievement of a specific goal(s)”. A Project has following characteristics:

Project has specific goal(s)

It has a definite start date and end date

It is not group of routine tasks or daily activities rather involves planned activities

Unlike routine activities, project comes to end when its goal(s) is achieved

Every project requires enough resources in terms of time, skilled workforce, budget,
material and other support

What is management?

This involves the following activities:

» Planning - deciding what is to be done

» Organizing - making arrangements

» Staffing - selecting the right people for the job

» Directing - giving instructions

» Monitoring - checking on progress

» Controlling - taking action to remedy hold-ups

» Innovating - coming up with solutions when
problems emerge

gpresenting - liaising with clients, users,

P other stakeholders

What is Software Project?

https://en.wikipedia.org/wiki/Project

A Software Project can be considered as a subset of general Project. It involves the process
managing software life-cycle right from software requirement gathering, designing, to testing and
maintenance, carried out according to a given project management methodologies, in a stipulated

time frame to achieve intended software product/service delivery.

What is Software Project Management

“Software Project Management is the art and science of planning and leading software projects. It
is a sub-discipline of project management in which software projects are planned, implemented,

monitored and controlled.”

Why Is Software Project Management Required?

Unlike machines or buildings, software does not have a physical form or it is not a tangible
product. Today organizations are using software to drive business processes. One can imagine the
complexity involved in mapping business process to a software. Also business process for one
organization can not be same for other, it means requirement of a software for one organization
will be different from other. Given the rapid changes in the technology platform as well as
globalized but integrated economies induce element of risks in the software already developed or
under development. Hence to reduce the risk factor and ensure project delivery will meet
stakeholder’s expectations, there is a need to follow structured, process based approach; which is

nothing but software project management.

ACTIVITIES COVERED BY SOFTWARE PROJECT MANAGEMENT

1.Feasibility Study: Feasibility study is need to determine that project is worth(useful) starting.
The development, operational cost, benefits are estimated.

2. Planning: Once feasibility study is done, then project planning can be started. For Larger project
it is not possible to do all the planning in the beginning. Planning is done for different stages.

3. Project Execution: Project execution include design and implementation.

http://zilicus.com/Resources/blog-2015/Managing-enterprise-it-project-lean-approach-project-governance.html
https://en.wikipedia.org/wiki/Software_project_management
http://zilicus.com/features/project-management-system.html

4. Requirement Analysis: which investigates what the potential(work done) users and their
managers and employers require as features and qualities of the new system.

5. Architecture Design:This maps the requirements to the components of the system that is to be
built.(system architecture, software requirements, software components).

6. Detailed Design:Each software component is made up of a number of software units that can
be separately coded and tested. Design of these units is carried out sepetately.

7. Code and Test: This could refer to writing code for each software unit in a procedural language
such as java,c,python etc,Application builder such as Microsoft access.

8. Integration: Integration could be at the level of software where different software components
are combined. Such as the hardware platforms and networks and the user procedures are brought
together.

9.Qualification Testing: The system, Including the software components, has to be tested
carefully.(to fulfilled requirements)

10.Installation:This is the process of making the new system operational.(such as payroll
details(salary))

11.Acceptance support: This is the resolving(solve) of problems with the newly installed system,
including the correction of any error that might have crepts into the system and any extensions and
improvememts that are required.

Feasibility Study

&

Plan

\

Project Execution

CHALLENGES IN SOFTWARE PROJECTS

Extremely high competition: The competition is extremely high both at the local and international
level and it affects software business in terms of pricing, customer reach and retention(store),etc..

Project managers have to work closely with business owners and other stakeholders to identify the
right market segment.

Old legacy systems:Software companies often spend significant resources on maintaining and
upgrading the old legancy systems.

Having invested a lot of financial and human resources, stakeholders become resistant and don’t
want to change the existing systems, even when it no longer meets their needs.

High-level software expertise: When it comes to software selection and implementation, the best
variant for business owners is finding project managers with the relevant software expertise.
Third-party integration:Modern companies are no longer interested in standalone solutions and
look for third party integration.In general,it looks like implementing multiple systems in one
project.

Multiple level users: Most companies look for systems that allow different types of users- from
basic users to strictly IT users.

Project managers who are responsible for the system implementation,must be familiar with all
types of users.

Quality testing :Successful system implementation requires numerous' testing iterations to ensure
that the final outcomes align with the desired results.

Project manager need to make sure all bugs are discovered and all issues are fixed before the
system goes live.

STAKEHOLDERS

The term Software Project Stakeholder refers to, “a person, group or company that is directly or
indirectly involved in the project and who may affect or get affected by the outcome of the
project”.

What is Stakeholder Identification?

It is the process of identifying a person, group or a company which can affect or get affected by a
decision, activity or the outcome of the software project. It is important in order to identify the
exact requirements of the project and what various stakeholders are expecting from the project
outcome.

Stakeholder

Internal
Stakeholder

External
Stakeholder

* Project Manager * Customer
* Project Team * Government
* Company * Supplier
* Funder
Type of Stakeholders:

1. Internal Stakeholder:

An internal stakeholder is a person, group or a company that is directly involved in the project.
For example,

Project Manager:

Responsible for managing the whole project. Project Manager is generally never involved in
producing the end product but he/she controls, monitors and manages the activities involved in the
production.

Project Team:

Performs the actual work of the project under the Project Manager inluding development, testing,
etc.

Company:

Organisation who has taken up the project and whose employees are directly involved in the
development of the project.

Funders:

Provides funds and resources for the successful completion of the project.

2. External Stakeholder:

An external stakeholder is the one who is linked indirectly to the project but has significant
contribution in the successful completion of the project.

For example,

Customer:

Specifies the requirements of the project and helps in the elicitation process of the requirement
gathering phase. Customer is the one for whom the project is being developed.

Supplier:

Supplies essential services and equipment for the project.

Government:

Makes policies which helps in better working of the organisation.

GOALS AND OBJECTIVES

Goals and objectives are statements that describe what the project will accomplish, or the business
value the project will achieve.

Goals are high level statements that provide overall context for what the project is trying to
achieve, and should align to business goals.

Obijectives are lower level statements that describe the specific, tangible products and deliverables
that the project will deliver.

The definition of goals and objectives is more of an art than a science, and it can be difficult to
define them and align them correctly.

Goals

Goals are high-level statements that provide the overall context for what the project is trying to
accomplish. Let’s look at an example and some of the characteristics of a goal statement. One of
the goals of a project might be to “increase the overall satisfaction levels for clients calling to the
company helpdesk with support needs”.

Because the goal is at a high-level, it may take more than one project to achieve. In the above
example, for instance, there may be a technology component to increasing client satisfaction. There
may also be new procedures, new training classes, reorganization of the helpdesk department and
modification of the company rewards system. It may take many projects over a long period of time
to achieve the goal.

The goal should reference the business benefit in terms of cost, speed and / or quality. In this
example, the focus is on quality of service. Even if the project is not directly in support of the
business, there should be an indirect tie. For instance, an IT infrastructure project to install new
web servers may ultimately allow faster client response, better price performance, or other business
benefit. If there is no business value to the project, the project should not be started.

Generally, non-measurable: If you can measure the achievement of your goal, it is probably at too
low a level and is probably more of an objective.

If your goal is not achievable through any combination of projects, it is probably written at too
high a level. In the above example, you could envision one or more projects that could end up
achieving a higher level of client satisfaction. A goal statement that says you are trying to achieve a
perfect client experience is not possible with any combination of projects. It may instead be a
vision statement, which is a higher level statement showing direction and aspiration, but which
may never actually be achieved.

It is important to understand business and project goal statements, even though goals are not a part
of the TenStep Project Definition. Goals are most important from a business perspective. The
project manager needs to understand the business goals that the project is trying to contribute to.
However, you do not need to define specific project goals. On the other hand, objectives definitely
are important.

Objectives

Objectives are concrete statements describing what the project is trying to achieve. The objective
should be written at a lower level, so that it can be evaluated at the conclusion of a project to see
whether it was achieved or not. Goal statements are designed to be vague. Objectives should not be
vague. A well-worded objective will be Specific, Measurable, Attainable/Achievable, Realistic and
Time-bound (SMART).

An example of an objective statement might be to “upgrade the helpdesk telephone system by
December 31 to achieve average client wait times of no more than two minutes”.

Note that the objective is much more concrete and specific than the goal statement.

The objective is measurable in terms of the average client wait times the new phone system is
trying to achieve.

We must assume that the objective is achievable and realistic.

The objective is time-bound, and should be completed by December 31.

Objectives should refer to the deliverables of the project. In this case, it refers to the upgrade of the
telephone system. If you cannot determine what deliverables are being created to achieve the
objective, then the objective may be written at too high a level. On the other hand, if an objective
describes the characteristics of the deliverables, they are written at too low a level. If they describe
the features and functions, they are requirements, not objectives.

PROJECT PLANNING

LA LIA) ’nvl L) llllv VNIV

-

Plan in outline first
Review More detail as time for activity
» approaches
Lower

level

detail
or each

activity

Step Activities within step
0 Select project
1 Identify project scope and objectives

1.1 Identify objectives and measures of effectiveness in meeting them
1.2 Establish a project authority

1.3 Identify stakeholders

14 Modify objectives in the light of stakeholder analysis

1.5 Establish methods of communication with all parties

|dentify project infrastructure

2.1 Establish relationship between project and strategic planning
2.2 |dentify installation standards and procedures

23 |dentify project team organization

Analyse project characteristics

3.1 Distinguish the project as either objective- or product-driven

3.2 Analyse other project characteristics

3.3 Identify high-level project risks

34 Take into account user requirements concerning implementation
35 Select general life-cycle approach

36 Review overall resource estimates

Identify project products and activities

4.1 |dentify and describe project products (including quality criteria)
42 Document generic product flows

4.3 Recognize product instances

44 Produce ideal activity network

45 Modify ideal to take into account need for stages and checkpoints
Estimate effort for each activity

5.1 Carry out bottom-up estimates

5.2 Revise plan to create controllable activities

|dentify activity risks

6.1 Identify and quantify activity-based risks

6.2 Plan risk reduction and contingency measures where appropriate
6.3 Adjust plans and estimates to take account of risks

Allocate resources

1.1 Identify and allocate resources

7.2 Revise plans and estimates to take account of resource constraints

~ Review/publicize plan

Scope of Project:

Project scope defines the concept and ra
the proposed solution, and limitations id
certain capabilities that the product will
include. Clarifying the scope and limitations h
to establish realistic stakeholder’s expectati
Propose requirements that are out of scope m
be rejected. Keep a record of these requiremen
and why they were rejected, as they have a w.
| of reappearing.
PROJECT SCOPE: Project scope describes what work should be performed to meet all those
requirements.

Narrative:lt is used as a written confirmation of what your project is going to produce and how whats
the key is useful projects scope statement.

REQUIREMENTS: Requirements is condition or capability that is required to be present in a product,
service or result to satisfy a contact or other formally imposed specifications.

Delivarables:Today we are talking about what our project deliverables.we here that term all the time on
projects so whether you are the project manager asking your team members what the status of their
deliverables are or the team member with your project manager asking you for the status or may be
even you asking you other team members what status of their deliverables .

Delivarbles: something produced or provided as result of a process.

Process: so if we look at the process we get inputs and even the input into the process could be
deliverables it could be taking some form of information,some type of documents from project,a plan,
maybe even some equipment or money,even software that’s not all the different types but these are
examples of a input you could take into the process and outputs you may get something like a
consultation,you may get a project plan,some type of tool or appor software test results or may be even
a contract.if you look these again these are just examples but in a project you are producing deliverables
that are either a product or service and with those you want to be sure that you get a due date for each
deliverables make sure that it is specific or measurable.

- De\’Ne\rab\e. -;WB(Q oduced o Dowided

25 3 fesuls oF 3 Drocess.
Lot o
Trnhmatw Qeocess Consul 4atim
Docurtnety Voect Plan
. il oo}
e Qe
m‘ Ter+Ruulks

r?rolcc+
Vormt Dot
L‘-‘:‘:w:h \ L >
+
I Projec -
= =
Dewerables |
?n',v.b Tan “;:::.:
’&9«: é fox "
s A:::au\.wx
L Track Due Daks (Milestones) ‘
7. Neasure outcone: <L :‘ \

P 3‘US¢3n omline Wre\'d'.\s\)\-,l @

2.6 ldentify project products and activities

The following activities are:

7 Identify and describe project products (or deliverables)
The products will form the hierarchy. The main product will have sets of

component products which in twm may have sub-component products and so on.

This relationship can be documented in a Product Breakdown Structure (PBS). It

is shown as in the figure.

Project
products
System Module Management
products products products
Module Module Progress
design code report
documents
Orverall Inte gration Tested

integration

specification case
software

Fig. A framework of a product breakdown strueture for a svstem developanent task

» Document generic product flows
Some products will need one or more other products to exist first before they can
be created. For example, a program design must be created before the program
can be written and the program specification must exist before the design can be
concerned. These relationships can be shown by the Product Flow Diagram

(PFD). It is shown as in figure.

User
requirements

Orwverall system
specification

/\

Module design Lnte gration system
test cases

Module code

Integrated rested
software

Fig. A framework of a PFI for o softwere development fask
= Recognize [rodiect instances
There may be delaved to later in the product when more information is known.
F o Produce ideal activity network

It is explained by an example of activities network.

Design

integ ration

teat cases
Specify Dresign Code Test

Q overall module A | module A inte grated

system software

Design | [Code

module B module B

Fig. An example af an activity netweork

F Modify the ideal 1o take into account need for sages and checkpoins

There might be a need to modify this by dividing the project into stages and

introduces checkpoint activities. These are activities which draw together the

products activities to check that they are compatible.

There could be some key attributes, or milestones. which represent the completion

of important stages of the project of which they would want to take particular

noie.

2.7 Estimate effort for each activity
The following activities are:

7 Carry out bottom-up estimates

At this point, estimates of the staff effort required. the probable elapsed time and

the non-staff resources needed for each activity will need to be produced.

Effort is the amount of work that needs to be done.

Elapsed time is the time between the start and end of a task.

Revise plan to create controllable activities

¥ Try to make activities about the length of the reponting period used for

monitoring and controlling the project.

UNIT II

Software Development Life Cycle Models and Methodologies

Introduction

Software development life cycle (SDLC) is a series of phases that provide a common
understanding of the software building process. How the software will be realized and developed
from the business understanding and requirements elicitation phase to convert these business
ideas and requirements into functions and features until its usage and operation to achieve the
business needs. The good software engineer should have enough knowledge on how to choose
the SDLC model based on the project context and the business requirements.

Therefore, it may be required to choose the right SDLC model according to the specific concerns
and requirements of the project to ensure its success. | wrote another article on how to choose the
right SDLC, you can follow this link for more information. Moreover, to learn more

about Software Testing life cycles and SDLC phases you follow the links highlighted here.

In this article, we will explore the different types of SDLC models and the advantages and
disadvantages of each one and when to use them.

You can think of SDLC models as tools that you can use to better deliver your software project.
Therefore, knowing and understanding each model and when to use it, the advantages and
disadvantages of each one are important to know which one is suitable for the project context.

Types of Software developing life cycles (SDLC)

Waterfall Model

V-Shaped Model

Evolutionary Prototyping Model
Spiral Method (SDM)

Iterative and Incremental Method
Aqgile development

Waterfall Model

Description

The Waterfall Model is a linear sequential flow. In which progress is seen as flowing steadily
downwards (like a waterfall) through the phases of software implementation. This means that
any phase in the development process begins only if the previous phase is complete. The
waterfall approach does not define the process to go back to the previous phase to handle

CSE

http://melsatar.blog/2017/06/13/what-do-you-need-to-know-about-the-eight-software-development-phases/
http://melsatar.blog/2012/03/21/choosing-the-right-software-development-life-cycle-model/
http://melsatar.blog/2018/04/02/software-testing-fundamentals/
http://melsatar.blog/2017/06/13/what-do-you-need-to-know-about-the-eight-software-development-phases/
http://melsatar.blog/2018/02/16/the-waterfall-model-a-different-perspective/
https://melsatar.blog/2018/08/27/the-validation-and-verification-model-the-v-model/
http://en.wikipedia.org/wiki/Software_prototyping
http://en.wikipedia.org/wiki/Spiral_model
http://en.wikipedia.org/wiki/Software_development_methodology
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Agile_software_development
http://melsatar.blog/2018/02/16/the-waterfall-model-a-different-perspective/

changes in requirement. The waterfall approach is the earliest approach and most widely known
that was used for software development.

Requirements |

Design

Execution

’ Testing ’

’ Release |

The usage

Projects which not focus on changing the requirements, for example, projects initiated from a
request for proposals (REPS), the customer has a very clear documented requirements

Advantages and Disadvantages

Advantages Disadvantages
. Assumes that the requirements

. Easy to explain to the users. of a system can be frozen.
. Structures approach. . Very difficult to go back to any
. Stages and activities are well defined. stage after it finished.
. Helps to plan and schedule the project. . A little flexibility and adjusting
. Verification at each stage ensures early scope is difficult and expensive.

detection of errors/misunderstanding. . Costly and required more time,

Each phase has specific deliverables. in addition to the detailed plan.

CSE

http://en.wikipedia.org/wiki/Request_for_proposal

V-Shaped Model

Description

It is an extension of the waterfall model, Instead of moving down in a linear way, the process
steps are bent upwards after the implementation and coding phase, to form the typical V shape.
The major difference between the V-shaped model and waterfall model is the early test planning

in the V-shaped model.

Planning

The usage

Software requirements clearly defined and known
Software development technologies and tools are well-known

Advantages and Disadvantages

Advantages

Simple and easy to use

Each phase has specific deliverables.

Higher chance of success over the
waterfall model due to the development of
test plans early on during the life cycle.

Works well for where requirements
are easily understood.

Verification and validation of the
product in the early stages of product
development.

Disadvantages

Very inflexible, like the waterfall
model.

Adjusting scope is difficult and
expensive.

The software is developed during
the implementation phase, so no early
prototypes of the software are
produced.

The model doesn’t provide a clear
path for problems found during testing

CSE

https://melsatar.blog/2018/08/27/the-validation-and-verification-model-the-v-model/

phases.
. Costly and required more time, in
addition to a detailed plan

Prototyping Model

Description

It refers to the activity of creating prototypes of software applications, for example, incomplete
versions of the software program being developed. It is an activity that can occur in software
development and It used to visualize some component of the software to limit the gap of
misunderstanding the customer requirements by the development team. This also will reduce the
iterations may occur in the waterfall approach and hard to be implemented due to the inflexibility
of the waterfall approach. So, when the final prototype is developed, the requirement is
considered to be frozen.

It has some types, such as:

. Throwaway prototyping: Prototypes that are eventually discarded rather than becoming a
part of the finally delivered software

Initital
Analyaia

Analyai
nalgals Dummy Protobype

Deaign
Implementation

Implementation

FEOTOTVFE EUILCIMG

l Syakem
T thadatagy T
. Evolutionary prototyping: prototypes that evolve into the final system through an

iterative incorporation of user feedback.

CSE

Requirement

Gathering

L
el ’.i Ana!yﬁjs } 1

Suggested Prototype
Improved devolopment
Client
Evaluation
Design
Coding
Integration
and testing

Evolutionary Prototyping Model

| Maintenance

Incremental prototyping: The final product is built as separate prototypes. In the end, the
separate prototypes are merged in an overall design.

STAGED / INCREMENTAL MODEL OF SDLC

DEVELOP/BUILD

DEVELOP/BUILD

DEVELOP/BUILD

DEPLOY/RELEASE |(mam

DEPLOY/RELEASE MAINTAIN

DEPLOY/RELEASE

CSE

. Extreme prototyping: used in web applications mainly. Basically, it breaks down web
development into three phases, each one based on the preceding one. The first phase is a static
prototype that consists mainly of HTML pages. In the second phase, the screens are
programmed and fully functional using a simulated services layer. In the third phase, the
services are implemented

The usage

. This process can be used with any software developing life cycle model. While this shall
be chosen when you are developing a system has user interactions. So, if the system does not
have user interactions, such as a system does some calculations shall not have prototypes.

Advantages and Disadvantages

Advantages Disadvantages

. Insufficient analysis. User
confusion of prototype and
finished system.

. Developer misunderstanding
of user objectives.

. Reduced time and costs, but thiscanbea e Excessive development time
disadvantage if the developer loses time in of the prototype.
developing the prototypes. . It is costly to implement the
. Improved and increased user involvement. prototypes

Spiral Model (SDM)

Description

It is combining elements of both design and prototyping-in-stages, in an effort to combine
advantages of top-down and bottom-up concepts. This model of development combines the
features of the prototyping model and the waterfall model. The spiral model is favored for large,
expensive, and complicated projects. This model uses many of the same phases as the waterfall
model, in essentially the same order, separated by planning, risk assessment, and the building of
prototypes and simulations.

CSE

cuMMULATIVE Ah
coST

DETERMINE
OBJECTIVES,

ALTERNATIVES,
CONSTRAINTS

COMMITMENT
PARTITION,

REVIEW 4

/,_..--——b THROUGH

RISK ANALYSIS

EVALUATE
ALTERNATIVES

IDENTIFY,
RESOLVE RISKS

RISK ANALYSIS

ROQTS PLAN
LIFE CYCLE
PLAN

DEVELOP-

INTEGRATION
PLAN NEXT
PHASES

TATION

The usage

REQUIREMENTS
VALIDATION

DESIGN VALIDATION
AND VERIFICATION

IMPLEMEN- | ANCE TEST

DETAILED
DESIGN

SOFTWARE
PRODUCT
DESIGN

~
UNIT
“ TEST
INTEGRA-™

TIONAND
\ accepr-\ TEST

DEVELOP, VERIFY
MEXT LEVEL PRODUCT

It is used in the large applications and systems which built-in small phases or segments.

Advantages and Disadvantages

Advantages

issues are discovered earlier.

Estimates (i.e. budget, schedule, etc.) become
more realistic as work progressed because important

Disadvantages

. High cost and time to

reach the final product.
Needs special skills to

evaluate the risks and

. Early involvement of developers. assumptions.
Manages risks and develops the system into . Highly customized
phases. limiting re-usability

CSE

[terative and Incremental Model

Description

It is developed to overcome the weaknesses of the waterfall model. It starts with an initial
planning and ends with deployment with the cyclic interactions in between. The basic idea
behind this method is to develop a system through repeated cycles (iterative) and in smaller
portions at a time (incremental), allowing software developers to take advantage of what was
learned during the development of earlier parts or versions of the system. It can consist of mini
waterfalls or mini VV-Shaped model

Mini Waterfall 1

~

Mini Waterfall n

~

Mini Waterfall n+1

~

Final Waterfall

The usage

It is used in shrink-wrap application and large system which built-in small phases or segments.
Also, can be used in a system has separated components, for example, ERP system. Which we
can start with the budget module as a first iteration and then we can start with the inventory
module and so forth.

Mini V-Model 1 —l
Mini V-Model n —l
Mini V-Model n+1 —l

Final V-Model

Advantages and Disadvantages

CSE

Advantages Disadvantages

. Produces business value
early in the development
lifecycle.
. Better use of scarce . Requires heavy documentation.

resources through proper
increment definition.

Follows a defined set of processes.
Defines increments based on function and

. Can accommodate some feature dependencies.
change requests between . Requires more customer involvement than the
increments. linear approaches.

. More focused on customer e Partitioning the functions and features might
value than the linear be problematic.
approaches. . Integration between the iterations can be an

. We can detect project issue if it is not considered during the
issues and changes earlier. development and project planning.

Agile Model

Description

It is based on iterative and incremental development, where requirements and solutions evolve
through collaboration between cross-functional teams.

Daily 1
Scrum @\Pay
Product Sprint 2-4
Backlog Backlog Weeks
0 P Valuable
Product

Grooming

Scrum Agile Model

The usage

CSE

It can be used with any type of the project, but it needs more engagement from the customer and
to be interactive. Also, we can use it when the customer needs to have some functional
requirement ready in less than three weeks and the requirements are not clear enough. This will
enable more valuable and workable piece for software early which also increase the customer
satisfaction.

Advantages and Disadvantages

Advantages Disadvantages
. Scalability.
. Decrease the time required to avail some The ability and collaboration of
system features. the customer to express user needs.
. Face to face communication and . Documentation is done at later
continuous inputs from customer stages.
representative leaves no space for guesswork. e Reduce the usability of
. The end result is the high-quality software components.
in the least possible time duration and . Needs special skills for the
satisfied customer. team.

L ife cycle phases

Characteristic of a successful software development process is the well-defined separation
between "research and development” activities and "production™ activities. Most unsuccessful
projects exhibit one of the following characteristics:

e An overemphasis on research and development

e An overemphasis on production.
Successful modern projects-and even successful projects developed under the conventional
process-tend to have a very well-defined project milestone when there is a noticeable
transition from a research attitude to a production attitude. Earlier phases focus on achieving
functionality. Later phases revolve around achieving a product that can be shipped to a
customer, with explicit attention to robustness, performance, and finish.
A modern software development process must be defined to support the following:

e Evolution of the plans, requirements, and architecture, together with well defined
synchronization points

¢ Risk management and objective measures of progress and quality
¢ Evolution of system capabilities through demonstrations of increasing functionality

ENGINEERING AND PRODUCTION STAGES

To achieve economies of scale and higher returns on investment, we must move toward a
software manufacturing process driven by technological improvements in process automation

10

CSE

and component-based development. Two stages of the life cycle are:
1. The engineering stage, driven by less predictable but smaller teams doing
design and synthesis activities

2. The production stage, driven by more predictable but larger teams doing
construction, test, and deployment activities

TABLE 5-1. The two stages of the life cycle: engineering and production
LIFE-CYCLE ENGINEERING STAGE PR T T

o1 5% 1 ‘ ODUCTION N2
ASPECT EMPHASIS g ON STAGE
Risk reduction Schedule, technical feasibility Cost

Products

Architecture baseline Product release baselines

Analysis, design, planning

Activities !
Implementation, resting

Demonstration, inspection, analysis

Assessment Tesring

Economics

Exploiting economies of scale

Resolving diseconomies of scale

Manageme i ’
gement Planning Operations

The transition between engineering and production is a crucial event for the various
stakeholders. The production plan has been agreed upon, and there is a good enough
understanding of the problem and the solution that all stakeholders can make a firm
commitment to go ahead with production.

Engineering stage is decomposed into two distinct phases, inception and elaboration, and the
production stage into construction and transition. These four phases of the life-cycle process
are loosely mapped to the conceptual framework of the spiral model as shown in Figure 5-1

= 1
L Engineering Stage l Production Stage

i —

|

Inception i Elaboration ‘ Construction Transition

|
| . e / - ~
-~ . ' / N
| | . C ~ /
'
|
\ '

L Idea | Architecture I Beta Releases f Products

| & I Vi 5 L

FIGURE S5-1. The !.’{"-’.\L',‘ of the 11/:'--(\& /!'/,'rtrcc';»_\

INCEPTION PHASE

The overriding goal of the inception phase is to achieve concurrence among
stakeholders on the life-cycle objectives for the project.

11

CSE

PRIMARY OBJECTIVES

e Establishing the project's software scope and boundary conditions, including an
operational concept, acceptance criteria, and a clear understanding of what is and is
not intended to be in the product

e Discriminating the critical use cases of the system and the primary scenarios of
operation that will drive the major design trade-offs

e Demonstrating at least one candidate architecture against some of the primary scenanos

e Estimating the cost and schedule for the entire project (including
detailed estimates for the elaboration phase)

e Estimating potential risks (sources of unpredictability)

ESSENTIAL ACTMTIES

e Formulating the scope of the project. The information repository should be
sufficient to define the problem space and derive the acceptance criteria for the end
product.

e Synthesizing the architecture. An information repository is created that is sufficient
to demonstrate the feasibility of at least one candidate architecture and an, initial
baseline of make/buy decisions so that the cost, schedule, and resource estimates
can be derived.

e Planning and preparing a business case. Alternatives for risk management, staffing,
iteration plans, and cost/schedule/profitability trade-offs are evaluated.

PRIMARY EVALUATION CRITERIA
e Do all stakeholders concur on the scope definition and cost and schedule estimates?
e Are requirements understood, as evidenced by the fidelity of the critical use cases?
e Are the cost and schedule estimates, priorities, risks, and development processes credible?

e Do the depth and breadth of an architecture prototype demonstrate the preceding
criteria? (The primary value of prototyping candidate architecture is to provide a
vehicle for understanding the scope and assessing the credibility of the
development group in solving the particular technical

problem.)
e Are actual resource expenditures versus planned expenditures acceptable

ELABORATION PHASE

At the end of this phase, the "engineering” is considered complete. The elaboration phase
activities must ensure that the architecture, requirements, and plans are stable enough, and the
risks sufficiently mitigated, that the cost and schedule for the completion of the development
can be predicted within an acceptable range. During the elaboration phase, an executable
architecture prototype is built in one or more iterations, depending on the scope, size, & risk.

PRIMARY OBJECTIVES

e Baselining the architecture as rapidly as practical (establishing a configuration-managed
snapshot in which all changes are rationalized, tracked, and maintained)

12

CSE

e Baselining the vision

e Baselining a high-fidelity plan for the construction phase
e Demonstrating that the baseline architecture will support the vision at a reasonable cost
in a reasonable time

ESSENTIAL ACTIVITIES
e Elaborating the vision.
e Elaborating the process and infrastructure.
e Elaborating the architecture and selecting components.

PRIMARY EVALUATION CRITERIA
e Is the vision stable?
e Is the architecture stable?

e Does the executable demonstration show that the major risk elements have been
addressed and credibly resolved?

e Is the construction phase plan of sufficient fidelity, and is it backed up with a credible
basis of estimate?

e Do all stakeholders agree that the current vision can be met if the current plan is
executed to develop the complete system in the context of the current architecture?

e Are actual resource expenditures versus planned expenditures acceptable?

CONSTRUCTION PHASE

During the construction phase, all remaining components and application features are integrated
into the application, and all features are thoroughly tested. Newly developed software is integrated where
required. The construction phase represents a production process, in which emphasis is placed on
managing resources and controlling operations to optimize costs, schedules, and quality.

PRIMARY OBJECTIVES

e Minimizing development costs by optimizing resources and avoiding unnecessary scrap
and rework

e Achieving adequate quality as rapidly as practical

e Achieving useful versions (alpha, beta, and other test releases) as rapidly as practical
ESSENTIAL ACTIVITIES

e Resource management, control, and process optimization
e Complete component development and testing against evaluation criteria

e Assessment of product releases against acceptance criteria of the vision

PRIMARY EVALUATION CRITERIA

e |s this product baseline mature enough to be deployed in the user community?
(Existing defects are not obstacles to achieving the purpose of the next release.)

13

CSE

e |s this product baseline stable enough to be deployed in the user community?
(Pending changes are not obstacles to achieving the purpose of the next release.)

¢ Are the stakeholders ready for transition to the user community?
e Are actual resource expenditures versus planned expenditures acceptable?

TRANSITION PHASE

The transition phase is entered when a baseline is mature enough to be deployed in the end-
user domain. This typically requires that a usable subset of the system has been achieved with
acceptable quality levels and user documentation so that transition to the user will provide
positive results. This phase could include any of the following activities:

1. Beta testing to validate the new system against user expectations
2. Beta testing and parallel operation relative to a legacy system it is replacing
3. Conversion of operational databases

4. Training of users and maintainers
The transition phase concludes when the deployment baseline has achieved the complete
vision.

PRIMARY OBJECTIVES
e Achieving user self-supportability

e Achieving stakeholder concurrence that deployment baselines are complete and
consistent with the evaluation criteria of the vision

e Achieving final product baselines as rapidly and cost-effectively as practical

ESSENTIAL ACTIVITIES

e Synchronization and integration of concurrent construction increments into
consistent deployment baselines

e Deployment-specific engineering (cutover, commercial packaging and
production, sales rollout kit development, field personnel training)

e Assessment of deployment baselines against the complete vision and
acceptance criteria in the requirements set

EVALUATION CRITERIA
e |s the user satisfied?

« Are actual resource expenditures versus planned expenditures acceptable?

6. Artifacts of the process

THE ARTIFACT SETS

To make the development of a complete software system manageable, distinct collections of
information are organized into artifact sets. Artifact represents cohesive information that
typically is developed and reviewed as a single entity.

14

CSE

Life-cycle software artifacts are organized into five distinct sets that are roughly
partitioned by the underlying language of the set: management (ad hoc textual formats),
requirements (organized text and models of the problem space), design (models of the
solution space), implementation (human-readable programming language and associated
source files), and deployment (machine-process able languages and associated files). The
artifact sets are shown in Figlure 6-1.

‘ Requirements Set | Design Set Implementation Set Deployment Set
1. Vision document 1. Design model(s) 1. Source code 1. Integrated product
‘ 2. Requirements 2. Test model baselines executable
model(s) 3. Software 2. Associated baselines
architecture compile-time 2. Associated
} description files run-time files
3. Component 3. User manual

‘ executables

: Management Set
Planning Artifacts Operational Artifacts

' 1. Work breakdown struciure Release descriptions

2. Business case Status assessments

3. Release specifications
4. Software development plan

DN

. Deployment documents
. Environment

|

. SBoftware change order database

FIGURE 6-1. Quwervieww of the artifact sets

THE MANAGEMENT SET

The management set captures the artifacts associated with process planning and
execution. These artifacts use ad hoc notations, including text, graphics, or whatever
representation is required to capture the "contracts” among project personnel (project
management, architects, developers, testers, marketers, administrators), among
stakeholders (funding authority, user, software project manager, organization manager,
regulatory agency), and between project personnel and stakeholders. Specific artifacts
included in this set are the work breakdown structure (activity breakdown and financial
tracking mechanism), the business case (cost, schedule, profit expectations), the release
specifications (scope, plan, objectives for release baselines), the software development
plan (project process instance), the release descriptions (results of release baselines), the
status assessments (periodic snapshots of project progress), the software change orders
(descriptions of discrete baseline changes), the deployment documents (cutover plan,
training course, sales rollout kit), and the environment (hardware and software tools,
process automation, & documentation).
Management set artifacts are evaluated, assessed, and measured through a combination of the
following:

¢ Relevant stakeholder review

e Analysis of changes between the current version of the artifact and previous versions

e Major milestone demonstrations of the balance among all artifacts and, in

particular, the accuracy of the business case and vision artifacts

15

CSE

THE ENGINEERING SETS

The engineering sets consist of the requirements set, the design set, the
implementation set, and the deployment set.

Requirements Set

Requirements artifacts are evaluated, assessed, and measured through a combination of the
following:

e Analysis of consistency with the release specifications of the management set
e Analysis of consistency between the vision and the requirements models

e Mapping against the design, implementation, and deployment sets to evaluate the
consistency and completeness and the semantic balance between information in the
different sets

e Analysis of changes between the current version of requirements artifacts and
previous versions (scrap, rework, and defect elimination trends)
e Subjective review of other dimensions of quality

Design Set

UML notation is used to engineer the design models for the solution. The design set
contains varying levels of abstraction that represent the components of the solution space
(their identities, attributes, static relationships, dynamic interactions). The design set is
evaluated, assessed, and measured through a combination of the following:

¢ Analysis of the internal consistency and quality of the design model

¢ Analysis of consistency with the requirements models

e Translation into implementation and deployment sets and notations (for example,
traceability, source code generation, compilation, linking) to evaluate the
consistency and completeness and the semantic balance between information in the
sets

e Analysis of changes between the current version of the design model and previous
versions (scrap, rework, and defect elimination trends)

e Subjective review of other dimensions of quality

Implementation set

The implementation set includes source code (programming language notations) that represents
the tangible implementations of components (their form, interface, and dependency
relationships)

Implementation sets are human-readable formats that are evaluated, assessed, and
measured through a

combination of the following:

16

CSE

e Analysis of consistency with the design models

e Translation into deployment set notations (for example, compilation and linking) to
evaluate the consistency and completeness among artifact sets

e Assessment of component source or executable files against relevant evaluation
criteria through inspection, analysis, demonstration, or testing

e Execution of stand-alone component test cases that automatically compare expected
results with actual results

e Analysis of changes between the current version of the implementation set and
previous versions (scrap, rework, and defect elimination trends)

e Subjective review of other dimensions of quality

Deployment Set

The deployment set includes user deliverables and machine language notations, executable
software, and the build scripts, installation scripts, and executable target specific data

necessary to use the product in its target environment.

thIe loyment sets are evaluated, assessed, and measured through a combination of the
ollowing:

e Testing against the usage scenarios and quality attributes defined in the requirements
set to evaluate the consistency and completeness and the~ semantic balance between
information in the two sets

e Testing the partitioning, replication, and allocation strategies in mapping
components of the implementation set to physical resources of the deployment
system (platform type, number, network topology)

e Testing against the defined usage scenarios in the user manual such as installation,
user-oriented dynamic reconfiguration, mainstream usage, and anomaly
management

e Analysis of changes between the current version of the deployment set and previous
versions (defect elimination trends, performance changes)

e Subjective review of other dimensions of quality
Each artifact set is the predominant development focus of one phase of the life cycle; the other
sets take on check and balance roles. As illustrated in Figure 6-2, each phase has a
predominant focus: Requirements are the focus of the inception phase; design, the elaboration
phase; implementation, the construction phase; and deploy- ment, the transition phase. The
management artifacts also evolve, but at a fairly constant level across the life cycle.
Most of today's software development tools map closely to one of the five artifact sets.
1. Management: scheduling, workflow, defect tracking,
change management, documentation, spreadsheet,
resource management, and presentation tools

Requirements: requirements management tools

. Design: visual modeling tools

Implementation: compiler/debugger tools, code analysis tools, test coverage

analysis tools, and test management tools

5. Deployment: test coverage and test automation tools, network management tools,
commercial components (operating systems, GUIs, RDBMS, networks, middleware),

LFRIN

17

CSE

and installation tools.

Inception Elaboration Construction Transition

Management E;‘;ii"?i'i’_:_ ']5'_—;;-'_--:. i I e oy 7 7 J

Requirements

-

Design ' .

Bt vy ==
Implementation _FRAE g e
Deployment AMHENT __'_»__J /I

FIGURE 6-2. Life-cycle focus on artifact sets

Implementation Set versus Deployment Set

The separation of the implementation set (source code) from the deployment set (executable
code) is important because there are very different concerns with each set. The structure of the
information delivered to the user (and typically the test organization) is very different from
the structure of the source code information. Engineering decisions that have an impact on the
quality of the deployment set but are relatively incomprehensible in the design and
implementation sets include the following:

e Dynamically reconfigurable parameters (buffer sizes, color palettes, number of
servers, number of simultaneous clients, data files, run-time parameters)

e Effects of compiler/link optimizations (such as space optimization versus speed
optimization)
e Performance under certain allocation strategies (centralized versus distributed,

primary and shadow threads, dynamic load balancing, hot backup versus
checkpoint/rollback)

e Virtual machine constraints (file descriptors, garbage collection, heap size,
maximum record size, disk file rotations)
¢ Process-level concurrency issues (deadlock and race conditions)

e Platform-specific differences in performance or behavior

ARTIFACT EVOLUTION OVER THE LIFE CYCLE

Each state of development represents a certain amount of precision in the final system
description. Early in the life cycle, precision is low and the representation is generally high.
Eventually, the precision of representation is high and everything is specified in full detail.
Each phase of development focuses on a particular artifact set. At the end of each phase, the
overall system state will have progressed on all sets, as illustrated in Figure 6-3.

18

CSE

Engineering Stage Production Stage

Inception Elaboration Construction Transition

8. | B € s e[e I i
g | B |F | E : %’ =2 |8 e
E 2 = S, o i c :
0 il | I Q I o ‘r:.)
| =) Q = .El
| @ [
|§’ | 2|3 | s | 3
B . | B
I B Sy | | it I ~
| F - [~: ‘ .
|"__k.anaqenu_~m | Maﬂl}t ment e M‘W j

FIGURE 6-3. Life-cycle evolution of the artifact sets

The inception phase focuses mainly on critical requirements usually with a secondary
focus on an initial deployment view. During the elaboration phase, there is much greater
depth in requirements, much more breadth in the design set, and further work on
implementation and deployment issues. The main focus of the construction phase is
design and implementation. The main focus of the transition phase is on achieving
consistency and completeness of the deployment set in the context of the other sets.

TEST ARTIFACTS
e The test artifacts must be developed concurrently with the product from inception
through deployment. Thus, testing is a full-life-cycle activity, not a late life-cycle
activity.
e The test artifacts are communicated, engineered, and developed within the same
artifact sets as the developed product.

e The test artifacts are implemented in programmable and repeatable formats (as software
programs).
e The test artifacts are documented in the same way that the product is documented.
e Developers of the test artifacts use the same tools, techniques, and training as the
software engineers developing the product.
Test artifact subsets are highly project-specific, the following example clarifies the
relationship between test artifacts and the other artifact sets. Consider a project to perform
seismic data processing for the purpose of oil exploration. This system has three fundamental
subsystems: (1) a sensor subsystem that captures raw seismic data in real time and delivers
these data to (2) a technical operations subsystem that converts raw data into an organized
database and manages queries to this database from (3) a display subsystem that allows
workstation operators to examine seismic data in human-readable form. Such a system would
result in the following test artifacts:

e Management set. The release specifications and release descriptions capture the
objectives, evaluation criteria, and results of an intermediate milestone. These

19

CSE

artifacts are the test plans and test results negotiated among internal project teams.
The software change orders capture test results (defects, testability changes,
requirements ambiguities, enhancements) and the closure criteria associated with
making a discrete change to a baseline.

e Requirements set. The system-level use cases capture the operational concept for
the system and the acceptance test case descriptions, including the expected
behavior of the system and its quality attributes. The entire requirement set is a test
artifact because it is the basis of all assessment activities across the life cycle.

e Design set. A test model for nondeliverable components needed to test the product
baselines is captured in the design set. These components include such design set
artifacts as a seismic event simulation for creating realistic sensor data; a "virtual
operator" that can support unattended, after- hours test cases; specific
instrumentation suites for early demonstration of resource usage; transaction rates
or response times; and use case test drivers and component stand-alone test drivers.

e Implementation set. Self-documenting source code representations for test
components and test drivers provide the equivalent of test procedures and test
scripts. These source files may also include human-readable data files representing
certain statically defined data sets that are explicit test source files. Output files
from test drivers provide the equivalent of test reports.

e Deployment set. Executable versions of test components, test drivers, and data files are

provided.
MANAGEMENT ARTIFACTS

The management set includes several artifacts that capture intermediate results and
ancillary information necessary to document the product/process legacy, maintain the
product, improve the product, and improve the process.

Business Case

The business case artifact provides all the information necessary to determine whether
the project is worth investing in. It details the expected revenue, expected cost, technical
and management plans, and backup data necessary to demonstrate the risks and realism
of the plans. The main purpose is to transform the vision into economic terms so that an
organization can make an accurate ROl assessment. The financial forecasts are
evolutionary, updated with more accurate forecasts as the life cycle progresses. Figure 6-
4 provides a default outline for a business case.

Software Development Plan

The software development plan (SDP) elaborates the process framework into a fully
detailed plan. Two indications of a useful SDP are periodic updating (it is not stagnant
shelfware) and understanding and acceptance by managers and practitioners alike.
Figure 6-5 provides a default outline for a software development plan.

20

CSE

. Context (domain, market, scope)
ll. Technical approach
A. Feature set achievement plan
B. Quality achievement plan
C. Engineering trade-offs and technical risks
lll. Management approach
A. Schedule and schedule risk assessment
B. Objective measures of success
IV. Evolutionary appendixes
A. Financial forecast
1. Cost estimate
2. Revenue estimate
3. Bases of estimates

FIGURE 6-4. Typical business case outline

I Context (scope, objectives)
Il. Software development process
A. Project primitives
1. Life-cycle phases
2. Arnifacts
3. Workflows
4. Checkpoints
B. Major milestone scope and content
C. Process improvement procedures
L. Software engineering environment
A. Process automation (hardware and software resource configuration)
B. Resource allocation procadures (sharing across organizations, security
access)
IV. Software change management
A. Configuration control board plan and procedures
B. Software change order definitions and procedures
C. Configuration baseline definitions and proceduras
V. Software assessment
A. Metrics collection and reporting procedures
B. Risk managemen! procedures (risk identification, tracking, and resolution)
C. Status assessment plan
D. Acceptance test plan
VIi. Standards and procedures
A. Standards and procedures for technical artifacts
Vil. Evolutionary appendixes
A. Minor milestone scope and content
B. Human resources (organization, staffing plan, training plan)

FIGURE 6-5. Typical software development plan outline

Work Breakdown Structure
Work breakdown structure (WBS) is the vehicle for budgeting and collecting costs. To
monitor and control a project's financial performance, the software project manlger must have
insight into project costs and how they are expended. The structure of cost accountability is a

21

CSE

serious project planning constraint.

Software Change Order Database

Managing change is one of the fundamental primitives of an iterative development process.
With greater change freedom, a project can iterate more productively. This flexibility
increases the content, quality, and number of iterations that a project can achieve within a
given schedule. Change freedom has been achieved in practice through automation, and
today's iterative development environments carry the burden of change management.
Organizational processes that depend on manual change management techniques have
encountered major inefficiencies.

Release Specifications

The scope, plan, and objective evaluation criteria for each baseline release are derived from
the vision statement as well as many other sources (make/buy analyses, risk management
concerns, architectural considerations, shots in the dark, implementation constraints, quality
thresholds). These artifacts are intended to evolve along with the process, achieving greater
fidelity as the life cycle progresses and requirements understanding matures. Figure 6-6
provides a default outline for a release specification

Iteration content
Measurable objectives

A Evaluation criteria

B. Followthrough approach

(]| Demonstration plan
A Schedule of activities
B Team responsibilities
V. Operational scenarios (use cases demonsirated)
A Demonstration procedures
B. Traceability to vision and business case
FIGURE 6-6. Iyvpical release specificatior: owtline

Release Descriptions

Release description documents describe the results of each release, including performance
against each of the evaluation criteria in the corresponding release specification. Release
baselines should be accompanied by a release description document that describes the
evaluation criteria for that configuration baseline and provides substantiation (through
demonstration, testing, inspection, or analysis) that each criterion has been addressed in an
acceptable manner. Figure 6-7 provides a default outline for a release description.

Status Assessments

Status assessments provide periodic snapshots of project health and status, including the
software project manager's risk assessment, quality indicators, and management indicators.

22

CSE

Typical status assessments should include a review of resources, personnel staffing, financial
data (cost and revenue), top 10 risks, technical progress (metrics snapshots), major milestone
plans and results, total project or product scope & action items

. Context
A Release baseline content
B. Release metrics
. Release Nnotes
A Release-specific constraints or limitations
. Assessmenlt results
A Substantiation of passed evaluation critaeria
B. Folilow-up plans for failled evaluation critena
& Recommendations for next releasea
v, Outstanding issues
FaX Action items
=1 Post-morteam summary of lessons leameaed
FiIGuRrE 6-7. Ivprical release descrigriior: owetirne
Environment

An important emphasis of a modern approach is to define the development and maintenance
environment as a first-class artifact of the process. A robust, integrated development
environment must support automation of the development process. This environment should
include requirements management, visual modeling, document automation, host and target
programming tools, automated regression testing, and continuous and integrated change
management, and feature and defect tracking.

Deployment

A deployment document can take many forms. Depending on the project, it could include
several document subsets for transitioning the product into operational status. In big
contractual efforts in which the system is delivered to a separate maintenance organization,
deployment artifacts may include computer system operations manuals, software installation
manuals, plans and procedures for cutover (from a legacy system), site surveys, and so forth.
For commercial software products, deployment artifacts may include marketing plans, sales
rollout Kits, and training courses.

Management Artifact Sequences

In each phase of the life cycle, new artifacts are produced and previously developed artifacts
are updated to incorporate lessons learned and to capture further depth and breadth of the
solution. Figure 6-8 identifies a typical sequence of artifacts across the life-cycle phases.

23

CSE

/2 Informal version
A Controlled baseline

Inception Elaboration Construction } Transition

ltoration 1| leration 2 | lisration 3 | leration 4 | teration 5 [heration 6 | Iteration 7

A A

A A
A A A A A

A

A

Management Set
1. Wark breakdown structure

2. Business case
3. Release specifications

4. Software development plan

> b > p

5. Release descriptions AR
6. Status assassments N X AN NN O AN R T
7. Software change order data A A

8. Deployment documents

9. Enviranment

Requirements Set
1. Vision document A
A

2. Requirements modeal(s)

Design Set
1. Dasign modsl(s) N

2, Test model PAY
3. Architecture description

Implementation Set
1. Source code basslines

2. Assaciated compile-time files
3. Component executables

Deployment Set

1. Integrated product-executable
baselines

> > > p
> > > p
> > > prp

2. Associated run-time files

N S N S N S
>> > B> BB r B Byl

3. User manual

FIGURE 6-8. Artifact sequences across a typical life cycle

ENGINEERING ARTIFACTS o o _
Most of the engineering artifacts are captured in rigorous engineering notations such as UML,

programming languages, or executable machine codes. Three engineering artifacts are
explicitly intended for more general review, and they deserve further elaboration.

Vision Document
24

CSE

The vision document provides a complete vision for the software system under development
and. supports the contract between the funding authority and the development organization. A
project vision is meant to be changeable as understanding evolves of the requirements,
architecture, plans, and technology. A good vision document should change slowly. Figure 6-
9 provides a default outline for a vision document.

i Fealture set description
AL Precedence and priority
il Quality attributes and ranges
1. Required constraints
AL External interfaces
V. Evolutionary appendixes
A Use cases
i Primary scenarios
2. Acceptance criteria and tolerances
B. Desired freedoms (potential change scenarios)
FIGURE 6-9. Typical isiort docurmernit outiine

Architecture Description

The architecture description provides an organized view of the software architecture under
development. It is extracted largely from the design model and includes views of the design,
implementation, and deployment sets sufficient to understand how the operational concept of
the requirements set will be achieved. The breadth of the architecture description will vary
from project to project depending on many factors. Figure 6-10 provides a default outline for
an architecture description.

I Architecture overview
A Objectives
1 B Constraints
| C. Freedoms
1. Architecture views
A Design view
B. Process view
C. Component view
D Deployment view
‘ Hi. Architectural interactions
4 A Operational concept undear primary scenarios
= Operational concept under secondary scenarios
C. Operational concept under anomalous conditions
V. Architecture performance
V. Rationale, trade-offs, and other substantiation
\ S S T 4OF 3 -
FIGURE 6-10. Typical architectiere descriptior: oetlirze

Software User Manual

The software user manual provides the user with the reference documentation necessary to
support the delivered software. Although content is highly variable across application
domains, the user manual should include installation procedures, usage procedures and
guidance, operational constraints, and a user interface description, at a minimum. For software
products with a user interface, this manual should be developed early in the life cycle because
it is a necessary mechanism for communicating and stabilizing an important subset of

25

CSE

requirements. The user manual should be written by members of the test team, who are more
likely to understand the user's perspective than the development team.

PRAGMATIC ARTIFACTS
ePeople want to review information but don't understand the language of the artifact.

Many interested reviewers of a particular artifact will resist having to learn the engineering
language in which the artifact is written. It is not uncommon to find people (such as veteran
software managers, veteran quality assurance specialists, or an auditing authority from a
regulatory agency) who react as follows: "I'm not going to learn UML, but | want to review
the design of this software, so give me a separate description such as some flowcharts and text
that I can understand.”

ePeople want to review the information but don't have access to the tools. It is not very

common for the
development organization to be fully tooled; it is extremely rare that the/other stakeholders
have any capability to review the engineering artifacts on-line. Consequently, organizations
are forced to exchange paper documents. Standardized formats (such as UML, spreadsheets,
Visual Basic, C++, and Ada 95), visualization tools, and the Web are rapidly making it
economically feasible for all stakeholders to exchange information

electronically.

eHuman-readable engineering artifacts should use rigorous notations that are complete,
consistent, and used in a self-documenting manner. Properly spelled English words should
be used for all identifiers and descriptions. Acronyms and abbreviations should be used only
where they are well accepted jargon in the context of the component's usage. Readability
should be emphasized and the use of proper English words should be required in all
engineering artifacts. This practice enables understandable representations, browse able
formats (paperless review), more-rigorous notations, and reduced error rates.

-Useful documentation is self-defining: It is documentation
that gets used.

ePaper is tangible; electronic artifacts are too easy to change. On-line and Web-based
artifacts can be changed easily and are viewed with more skepticism because of their inherent
volatility.

26

CSE

\

UNIT I

EFFORT ESTIMATION & ACTIVITY PLANNING

EFFORT ESTIMATION:

Software Effort Estimation

Successful project is that the system is
delivered on time and within budget and
with the required guality.

Software effort estimation
!Ls]
Difficulties in Software estimation

» Subjective Nature of estimating

» Political Implications

» Changing Technology

» Lack of homogeneity of project experience

INOoter s
SLOC -« Source Number of Lines
WVNAT - WVor ke drs Mot

Project Data

]

esigrn Ceonding Tesving Toreaal
Projecrt vy (%) ey (%) s (%) o SLL.OoOC
- 395 23 53 (33 7.3 a3 16.7 0S50
b 2.7 «2 134 «(S9)» 6.S (26) 22.6 S363
< 3.5 «11) 268 (83) 1.9 (6> 322 13333
L= o.s «21) 2.4 (62) 0.7 (18 3.9 5942
< 1.8 C1O) Dl 43 7.8 (45) 17.3 33s
L 4 190 (28 29.7 (43 190 (28 7.7 3IN9ORS
= 2.1 «21) 7.4 «(73) L s> 1012 38614
h 1.3 « 2.7 (66) s3 27 193 12762
. 8.S 13> 22.7 (38) 282 47> 59.5 26500

Where are estimates done‘.m

Estimates are carried out at various stages of
software project.
Strategic Planning
~ Decide priority to each project.
Feasibility Study
~ Benefits of potential system
System Specification
+ Detailed requirement analysis at design stage.
Evaluation of Suppliers Proposals
~ Tender Management
Project Planning

+ Detailed estimates of smaller work components during
implementation.

Software effort estimation techniques

e Algorithm or parametric model
o Analog model

e Expert judgment

e Parkinson

e Price towin

e Top-down

Bottom-up
Bottom-up Estimating

hp shde

Work Breakdown Structure

Assumptions about characteristics of final
system

Number and Size of software modules.
Appropriate at detailed stages of project
rlanning.

VWhen a project is completely novel or no
historical data available.

Expert Judgment
=

Asking for estimate of task effort from
someone who is knowledgeable about either
application or development environment.

Experts use the combination of informal
analogy approach where similar projects
from past are identified and bottom up
estimating.

Top-down Approach and [Cip siide

Parametric Models
|

Effort = (system size) * (productivity rate)
System size in the form of KLOC

Productivity rate 40 days per KLOC

Software module to be constructed is 2 KLOC
Effort = 2 * 80 = 160 days

Estimating by Analogy
T _——S——_—__—__—S_—S___—_—____S_S—— —_——8e=——™—™——
Called “Case Based Analogy”

Estimator identifies completed projects
source cases with similar characteristics to
new project (target case)

Effort of the source case used as base
estimate for target.

TOOL — ANGEL software tool

Measuring Euclidean Distance between the
cases

Functional Point (FP) Analysis

FPA provides standardized method to functionally size the software work product. This work product is the output of software new
development and improvement projects for subsequent releases. It is the software which is relocated to the production application at project
implementation. It measures functionality from the users point of view i.e. on the basis of what the user requests and receives in return.

Function Point Analysis (FPA) is a method or set of rules of Functional Size Measurement. It assesses the functionality delivered to its users,
based on the user’s external view of the functional requirements. It measures the logical view of an application not the physically
implemented view or the internal technical view.

The Function Point Analysis technique is used to analyse the functionality delivered by software and Unadjusted Function Point (UFP) is
the unit of measurement.
Objectives of FPA:
1. The objective of FPA is to measure functionality that the user requests and receives.
2. The objective of FPA is to measure software development and maintenance independently of technology used for
implementation.
3. It should be simple enough to minimize the overhead of the measurement process.
4. It should be a consistent measure among various projects and organizations.
Types of FPA:
1. Transactional Functional Type —
(i) External Input (El): EI processes data or control information that comes from outside the application’s
boundary. The El is an elementary process.
(ii) External Output (EO): EO is an elementary process that generates data or control information sent
outside the application’s boundary.
(iii) External Inquiries (EQ): EQ is an elementary process made up of an input-output combination that
results in data retrieval.

2. Data Functional Type —
(iv) Internal Logical File (ILF): A user identifiable group of logically related data or control information
maintained within the boundary of the application.
(v) External Interface File (EIF): A group of user recognizable logically related data allusion to the
software but maintained within the boundary of another software.

Other applications
(Harddisk , CD, Server etc.)

i~

EF £l 6 [
— £
EQ -

USERS

EQ

Application being included

Benefits of FPA:
e FPAis atool to determine the size of a purchased application package by counting all the functions included in the package.
e ltisatool to help users discover the benefit of an application package to their organization by counting functions that
specifically match their requirements.
It is a tool to measure the units of a software product to support quality and productivity analysis.
It s a vehicle to estimate cost and resources required for software development and maintenance.
It is a normalization factor for software comparison.

IFPUG
e PURCHAGE_ORDER

e PURCHAGE _ORDER_ITEM

Table 5.3 TFPUG file twpe complexiry
Number of record rypes Number of data rvpes
<200 20t 50 =50
o low average
2105 low average high

>5 average high high

Function Points Mark II s

=7
Sponsored by CCTA(Central Computer and
Telecommunications Agency)
Mark II — Improvement and replacement in
Albrecht method

In Albrecht method

Information Processing Size is measured in
UFPs(Unadjusted Functional Points)

Then TCA(Technical Complexity Adjustment) is
applied

From Oul Return
ml— Process _'E..m s

Figure 5.2 Model of a transaction.

For each transaction the UFPs are calculated:

W, x (number of input data element types) +
W, x (number of entity types referenced) +
W, x (number of output data element types)

For each transaction UFPs are
calculated

UFPs = W, * (number of input data element types)+ W,
* (number of entity types referenced)+ W, * (number of
output data element types)

W, W, W, are weightings derived by asking
the developers the proportions of effort

spent.

FP counters use industry averages which are:
W, =0.58
W, = 1.66

e

W, =0.26

COSMIC Full Function Poirl e

Cosmic deals with decomposing the system
architecture into hierarchy of software layers.

Inputs and outputs are aggregated into data
groups

Each data group brings together data items that
relate to the same object of interest.

Data Groups can be moved in 4 ways:
Entries(E)
Exits (X)
Reads (R)
Writes(VW)

COCOMO (Constructive Cost Model)-Boehm

Formula :
(effort) =c(size)*
Effort o d in pn(of p th)
Sizo in kdsi (Thousands of delivered source code Imstructions)
C.K constants

C and K are from

SystemType |G |x

Organic 2.49 1.08
Semi-detached 3.0 1.12
Embedded 3.6 1.20

Organic Mode:

o Small teams develop software in a highly
familiar environment (Small & Flexible)

Embedded Mode:

o Operate within very tight constraints and
changes to the system very costly

Semi-Detached Mode:
o Combined elements of both

COCoMO 11

COCOMO I

+ COCOMO 81 makes a variety of assumptions about
the software development process in order to produce
its estimates. The latter will only be somewhat
accurate when the project uses the waterfall process
model and every line of code is produced from
scratch. It also fails to take into account that
nowadays higher-level programming languages are
employed, supported by various automated tools. We
will not elaborate on this version, since it has been
obsolete by COCOMO 2.

The Application Composition model involves prototyping efforts to resolve potential high-risk issues
such as user interfaces, software/system interaction, performance, or technology maturity. The costs of
this type of effort are best estimated by the Applications Composition model.

The Early Design model involves exploration of alternative software/system architectures and concepts
of operation. At this stage, not enough is generally known to support fine-grain cost estimation. The
corresponding COCOMO Il capability involves the use of function points and a course-grained set of 7
cost drivers (e.g. two cost drivers for Personnel Capability and Personnel Experience in place of the 6
COCOMO Il Post-Architecture model cost drivers covering various aspects of personnel capability,
continuity, and experience).

The Post-Architecture model involves the actual development and maintenance of a software product.
This stage proceeds most cost-effectively if a software life-cycle architecture has been developed;
validated with respect to the system’s mission, concept of operation, and risk; and established as the
framework for the product. The corresponding COCOMO Il model has about the same granularity as the
previous COCOMO and Ada COCOMO models. It uses source instructions and / or function points for
sizing, with modifiers for reuse and software breakage; a set of 17 multiplicative cost drivers; and a set
of 5 factors determining the project’s scaling exponent. These factors replace the development modes
(Organic, Semidetached, or Embedded) in the original COCOMO model, and refine the four exponent-
scaling factors in Ada COCOMO.

The post-architecture level: Once the system architecture has been designed a reasonably accurate
estimate of the software size can be made. The estimate as this level uses a more extensive set of
multipliers reflecting personnel capabilities, product and project characteristics.

Pm= A*size’/ *(em,)* (emy)*.......... *(em,,)

The activity-based approach

The activity based approach consists of creating a list of
all activities that the project is thought to involve. How?

Brainstorming session involving the whole project team

I'he analysis of similar past projects

One usetul way is to divide you projects into stages and think
what activities might be required at each stage

On way of creating the activity or task list is to create

WEBS (Work Breakdown Structurg).

The activity-based approach (cont’d)

In WBS we:
Identify the main (high level) tasks (activities) required to
complete a project
Then break each of these down into a set of lower-level
tasks.

The activity-based approach (cont’d)

The activity-based approach (cont’d)

Advantages

When preparing the WBS:
[oo great depth should be avoided. Why?

¢ Will result in a large number of tasks that will need to be
managed
Too shallow structure should be avoided. Why?

¢ 'This will provide insufficient detail for project control.

The product-based approach

[t consists of producing a product breakdown structure PBS,
and a product flow diagram PFD.

Product Breakdown Structure (PBS)
¢ 1o show how a syvstem can be broken down into different
products for development

¢ Advantage: Itis less likely to omit a product.

Formulating A Network Model

- Constructing Precedence Network Rules
- A project network stiould have only one start node

- More than one activity starting at once? Invent a ‘start’ activity with
zero duration

- A project network should have only one end node
- If necessary, invent an ‘end’ activity

+ A node has duration

- Links normally have no duration

- Precedents are the immediate preceding activities
- All have to be completed before an activity can be started

+ Time moves from left to right

- A network may not contain loops

- A network should not contain dangles
- If necessary, connect to the final node

More likely to obtain a task catalogue that is

¢ Complete and L&

¢ Composed of non-overlapping tasks e 42

WS represents a structure that can be refined as the project
Proc eeds

¢ Early in the project, It can start shallow. w220 4

loped as information becomes available e.8. during project

analysis and specification phases. ,& Jualiy laY

Once the project activities have been identified (whether using the
WBS or not) they will need to be sequenced

The product-based approach
(cont’d)

Product Flow Diagram (PFD)

¢ Once a product breakdown structure has been created,
work can then begin on creating a product flow diagram
which identifies the order of precedence of products
and will typically include multiple and complex parallel
paths.

Fragment of Precedence Network

- Installation cannot start until program testing is completed

- Program test cannot start until both code and data take-
on have been completed

Code
Program stal |
test
Dats /
take-on

In the precedence networks:
¢ The nodes represent activities.

¢ The lines between nodes represent dependencies.

Install

- .
Program test

Data take-on

Network Contains Loop

- Aloop is an error in that it represents a situation that
cannot occur in practice
« Program testing cannot start until errors have been corrected?

Code Test Release
program peogram peogram
Correct Dagnose
erron emons

Formulating A Network Model
A Dangle

- A dangling activity such as “write user manual” should not
exist as it is likely to lead to errors in subsequent analysis

Design Code Test Install
progaam progaam program program
Write wser
manuad
=11 =

=]

PIGUre 6.10 A I0Op repretents an IMHOLDMe MU =

A network may not contain loops Figure 6,10 demonstrates a loop in a
network. A loop is an error in that it represents a situation that cannot occur in
practice, While loops, In the sense of iteration, may occur in practice, they cannot
be directly represented in a project network.

A network should not contain dangles. A dangling activity such as "Write user
manual’ in Figure 6.11 should not exist as it is likely to lead to errors in sub-
sequent analysis.

Redraw the network with a final completion activity — which, at least in this case,
is probably a more accurate

=1

A danghe

Dewar
g

Figure 6.11

Precedence Networks (cont’d)

Rules and Conventions
* A project network should have only one start node.

* A project network should have only one end node.

* A node has duration.

* Links have no duration

* Precedents are referred to the immediate preceding activities
* Time moves from left to nght

* A network may not contain loops

* A network should not contain dangles

Precedence Networks (cont’d)

Loops can't be directly represented in a project network.

¢ Ifyou know the number of times we expect to repeat a set
of activities, then

4 we can draw them in a sequence repeating them for the
appropriate number of times.

Design Code o Test Install
program program program program
o Write user
manusl

A dangle: Here what is meant by the diagram is: that the
project will be finished once we “the program has been
installed” and “the user manual is written”.

“Write user manual” is a dangling activity.

Formulating A Network Model
Resolving The Dangle

- The figure implies that the project is complete once the
software has been installed and the user manual written
+ We should redraw the network with a final completion activity

Deslgn_.Code‘Test‘hmll_’SI
program program progam program

\Wrte user

7| manwl

* Representing lagged activities

* Wi might come across situations where we wished 1o undertake two activities in parallel so
long 25 there Is a lag between the two. We might wish to document amendments 10 2
Program as t was being tested - particularly o evalsating a prototype.

* Whaere activities con occur in paraliel with a time lag between them we represent the lag
with a duration on the knking arrow as shown in Figure 6.13. This indicates that documentieg
amendments can start one day after the start of proto-type testing and will be comgleted
two days after prototype testing is completed

=1
+

L=

Representing Lagged Activities

¢ Lag activities: are two activities that will be
undertaken in parallel but there is a lag between them.

¢ Here tow activities will be undertaken at the same time
with some lag between them.

¢ “Document amendments” will start one day after
“Test prototype” starts and finish two days after “Test
prototype” ends

Flgure 6.13 Indecating lags

Adding The Time Dimension

Adding the Time Dimension

- The critical path approach
« Planning the project in such way that it is completed as
quickly as possible
- Identifying delayed activities
- The method requires the estimation of duration of
each activity
- Forward pass: calculate the earliest dates at which
activities may commence and the project completed

- Backward pass: calculate the latest start dates for
activities and the critical path

¢ After we create the logical network model showing the activities and
the interrelationships between those activities. We should think of
when each activity will be undertaken

¢ The cntical path approach is concerned with:

P].mn:nﬁ the project in a way that it will be completed as quickly
as possible

Identifying the activities where a delay in their execution is likely
to affect

& The overall end date of the project or
¢ Later activities start dates

ding the I'itme Dimension

(cont’d)

For each activity we Wil et

¢ The network is then analyzed by carrying out the forward pass and a
backward pass

¢ The forward pass:
Calculates the earliest dates at which activities may be started, finished
Project completion time.

¢ The backward pass:

Calculates the latest dates at which activities may be started, finished,
the float and
The critical path

6.9 Adding The Time Dimension

« The critical path approach

- Planning the project in such way that it is completed
as quickly as possible

- ldentifying delayed activities
« The method requires the estimation of duration
of each activity

- Forward pass: calculate the earliest dates at which
activities may commence and the project completed

- Backward pass: calculate the latest start dates for
activities and the critical path

6.10 The Forward Pass
The Calculation of Earliest Start Date [1/4]

« Activities A, B and F may start
immediately

- The earliest date for their start is zero
« Activity A will take 6 weeks

- The earliest it can finish is week 6
« Activity F will take 10 weeks

- The earliest it can finish is week 10

Activity Deration (weeks) Precedents
A Hardware selection b

B System configuration 4

C Install hardware 3 A

D Data migration) B

E Draftoffice procedures 3 B

F Recruit stalf 0

6 Usertraining 3 EF

H Install and test system 2 CD

6.10 The Forward Pass
The Calculation of Earliest Start Date [2/4]

« Activity C can start as soon as A has finished
- Its earliest start date is week 6

- It will take 3 weeks, so the earliest it can finish is
week 9

+ Activities D and E can start as soon as B is
complete

- The earliest they can each start is week 4

- Activity D will take 4 weeks, so the earliest it can
finish is week 8

- Activity E will take 3 weeks, so the earliest it can
finish is week 7

6.10 The Forward Pass
The Calculation of Earliest Start Date [4/4]

+ The project will be complete when both
activities H and G have been completed

- The earliest project completion date will the
later of weeks 11 and 13 - that is, week 13

A | C |

[desion dware

8 | 4wk L dwds | [H | 2uks

0 | Software | 4 Code |3 9 | lesal |IN
San deugn software andte

3 1 10wks | 3wk | [G |
0 User |10 e 7 10] e |13
] manwal [wkeon [T [T | trining [

6.10 The Forward Pass
The Calculation of Earliest Start Date [3/4]

« Activity G cannot start until both E and F
have been completed

- It cannot start until week 10 - the later of
weeks 7 (activity E) and 10 (for activity F)

- It takes 3 weeks and finishes in week 13
« Similarly, activity H cannot start until
week 9 - the later of the two earliest

finished dates for the preceding activities
CandD

6.11 The Backward Pass
The Latest Activity Dates Calculation [1/3]

The latest completion date for activities G and
H is assumed to be week 13

Activity H must therefore start at week 11 at
the latest (13-2) and the latest start date for
activity G is vweek 10 {(13-3)

= The latest completion date for activities C and

D is the latest date at which activity H must
start - that is week 11

= The latest start date of week 8 (11-3), and week 7
{(10-3) respectively

A | 6wl C |

0 |Hardware| 6 (1 Bud |9

7] desn T [Pdeae 7]

8 L dws | [0 | dwhs] [H | 2wis
- 0 [sctware[4 | [4 | Code [8] [9 [naat |11

3 deign [7 wlware " M andtet 3

[TN N N T N (R

0 Ue [10] [4] Re F 0 ke |13

-] —

0 | ™ o] 7] o] [10] ™ |1

6.11 The Backward Pass

The Latest Activity Dates Calculation [2/3]

» Activities E and F must be completed by
week 10
- The earliest start dates are weeks 7 (10-3)
and 0 (10-10) respectively

« Activity B must be completed by week 7
(the latest start date for both activities D
and E)

- The latest start is week 3 (7-4)

6.12 Identifying The Critical Path
The Critical Path [1/3]

 Critical path: One path through the

network that defines the duration of the

project
« Any delay to any activity of this critical

path will delay the completion of the
project

6.11 The Backward Pass
The Latest Activity Dates Calculation [3/3]

« Activity A must be completed by week 8
(the latest start date for activity C)

- Its latest start is week 2 (8-6)

» The latest start date for the project start
is the earliest of the latest start dates for
activities A, Band F

- This week is week zero

- It tells us that if the project does not start
on time it won't finish on time

6.12 ldentifying The Critical Path
The Critical Path [2/3]

« Activity’s float: the difference between an
activity’s earliest start date and its latest start
date (or, equally, the difference between its
earliest and latest finish dates)

- A measure of how much the start date or completion
of an activity may be delayed without affecting the
end date of the project

» Activity span: the difference between the
earliest start date and the latest finish date

- Measure of maximum time allowable for the activity

A I éwis | [C | 3w

0 |Hardware] 6 6 Build |9

| design hardware [|

£ | dwis D | | 2wiks

0 | Software | 4 K Code |8 Install | 11 ;
Start design software and test Rinish

F | 10 wks £ | 3wks | 6whs

0 User 10 K File 7 User 13

|]

Lo
MAVLYS

Lupwg These -f‘mvd.a' ‘7"""’\'

redackion alfw-'-pis oue wode

maiurn
Mmaurn

e ——

o

X
="
§
3

¢
]
£

e
"

2N

Az
(rie 6t
-f;,x-.“{‘z

UNIT V

PROJECT MONITORING & CONTROL, RESOURCE ALLOCATION

Monitoring and control processes continually track, review, adjust and report on the project’s
performance. It’s important to find out how a project’s performing and whether it’s on time, as
well as implement approved changes. This ensures the project remains on track, on budget and

on time.

What is project control?

According to the PMBOK® Guide (the Project Management Body of Knowledge), project

control is a “project management function that involves comparing actual performance with
planned performance and taking appropriate corrective action (or directing others to take this

action) that will yield the desired outcome in the project when significant differences exist.”

Essentially, project controls are a series of tools that help keep a project on schedule. Combined
with people skills and project experience, they deliver information that enables accurate decision
making. The project control process mainly focuses on:

e Measuring planned performance vs actual performance.

e Ongoing assessment of the project’s performance to identify any preventive or corrective
actions needed.

o Keeping accurate, timely information based on the project’s output and associated
documentation.

e Providing information that supports status updates, forecasting and measuring progress.
o Delivering forecasts that update current costs and project schedule.

e Monitoring the implementation of any approved changes or schedule amendments.

Importance of project monitoring and control

https://www.bestpracticebookstore.com/geolocate/usa/products/pmi-books/a-guide-to-the-project-management-body-of-knowledge-pmbok-guide-sixth-edition

Monitoring and control keeps projects on track. The right controls can play a major part in
completing projects on time. The data gathered also lets project managers make informed
decisions. They can take advantage of opportunities, make changes and avoid crisis management

issues.

Put simply, monitoring and control ensures the seamless execution of tasks. This improves

productivity and efficiency.

Monitoring and control method

When setting up a project’s monitoring and control process, first establish the project baselines.
This includes the scope, schedule and budget. Use this information to benchmark the project’s

progress throughout the lifecycle.

Use a Work Breakdown Structure (WBS) to break a project down into small units of work, or
sub-tasks. This makes the work easier to manage and evaluate. This enables easier detection of
issues, keeps the project under control and allows for easier progress verification. It also helps

prevent team members from feeling overwhelmed.

With a WBS in place, follow this sequence throughout the project’s lifecycle:

Monitoring and control techniques

There are a range of monitoring and control techniques that can be used by project managers,

including:

A Requirements Traceability Matrix (RTM). This maps, or traces, the project’s requirements
to the deliverables. The matrix correlates the relationship between two baseline documents. This
makes the project’s tasks more visible. It also prevents new tasks or requirements being added to

the project without approval.

This makes the project’s tasks more visible. It also prevents new tasks or requirements being

added to the project without approval.

A control chart monitors the project’s quality. There are two basic forms of control chart — a
univariate control chart displays one project characteristic, while a multivariate chart displays

more than one.

Review and status meetings further analyse problems, finding out why something happened.
They can also highlight any issues that might happen later.

1. Creating framework
Project control cycle

Responsibility

Project steering committee

Project board

Reporting formal or informal
Project reporting structures.
Reporting may be oral or written, formal or informal, or regular or ad hoc and some examples of each

type are given in Table 9.1. While any effective team leader or project manager will be in touch with

team members and available to discuss problems, any such informal reporting of project progress

must be complemented by formal reporting procedures - and it is those we are concerned with in this
chapter.

Assessing progress

Progress assessment will normally be made on the basis of information collected and collated at
regular intervals or when specific events occur. Wherever possible, this information will be objective
and tangible - whether or not a particular report has been delivered, for example. However, such end-
of-activity deliverables might Short, Monday morning team progress meetings are a common way of
motivating staff to meet short term targets.

not occur sufficiently frequently throughout the life of the project. Here progress assessment will have
to rely on the judgement of the team members who are carrying out the project activities.

s v
&
P
g
rd
/
Proioct:maoef

Team leader Team leader Team leader Team leader

¢ t ¢ $
A
i il T .
section

Setting checkpoints

Regular

Tied to specific events
Setting checkpoints
It is essential to set a series of checkpoints in the initial activity plan. Checkpoints may be:

e tied to specific events such as the production of a report or other deliverable.

Taking snapshots

Review points or control points

Assess progress daily

The frequency with which a manager needs to receive information about progress will depend upon

the size and degree of risk of the project or that part of the project under their control. Team leaders,
for example, need to assess progress daily (particularly when employing inexperienced staff) whereas
project managers may find weekly or monthly reporting appropriate. In general, the higher the level,

the less frequent and less detailed the reporting needs to be.

There are, however, strong arguments in favour of formal weekly collection of information from staff
carrying out activities. Collecting data at the end of each week ensures that information is provided
while memories are still relatively fresh and provides a mechanism for individuals to review and reflect

upon their progress during the past few days.

Major, or project-level, progress reviews will generally take place at particular points during the life of
a project - commonly known as review points or control points. PRINCE 2, for example, designates a
series of checkpoints where the status of work in a project or for a team is reviewed. At the end of
each project Stage, PRINCE 2 provides for an End Stage Assessment where an assessment of the

project and consideration of its future are undertaken.

COLLECTING DATA

Partial completion reporting

Risk reporting

PARTIAL COMPLETION REPORTING

Time Sheet
Staff___Jon Smith Week ending ... J6/3/0

Rechargeable hours
5 Hours this x
Camplete | completion | oovmbetion
b 1]
X

Project
7
FA

M4/ | MA'S
498 | A8

st
5

H-nn-r':-h-r?nbllhm
Code Creseription Howrs | Comunent & autharsatan
A day in e ¥ Authorized by F%

RISK REPORTING

Red/Amber/Green (RAG) reporting

Identify key tasks
Break down into sub-tasks

Assess subtasks as:
Green — ‘on target’

— ‘not on target but recoverable’

Red — ‘not on target and recoverable only with

difficulty’

Status of

‘critical’ tasks is particularly

important

“Traffic light technigque’ for risk reporting followed by IBM

Step 1:

Step 2:
Step 3:

Green(G)
Amber (A)
Red (R)

Step 4:

Step 5:

Identify the first level (higher level) key elements to assess the
work

Break down the first level key elements to second level elements

Judge each of the second level element’s progress in 3 scales as
below.

— As per target
— MNot as per target but can be brought back to control

— Mot as per target and cannot be brought back to
control without involving additional
cost/resource/time

Based on the second level assessment, judge the first level on the
same 3 point scale (Green/Amber/Red)

Review all the first level assessments to decide on the overall
assessment of the project

Risk Assessment Report

Name: Dated:
Project Name: Ref:
ProjectRiskLevel : __ R
First Level Activity-Risk Level

Week No. 1o |11 12 |13 |14 |13 16
First level activity risk assessment G G A JA R
Second level activity-Rask level
a)Screen handling G G G A |A
b)DB update G G A |G |A
c)Feedback message G A G |G |G
d)Compilation G G G |A R
e)Test Run G G A JA R
fDocumentation G A A |JA IR

VISUALIZING PROGRESS
e The Gantt chart
e The Slip chart
e Ball charts

e The timeline

THE GANTT CHART

WHAT IS CANTT CHART?

Gantt chart is a type of bar chart. In which a

series of horizontal lines shows the amount of
work done or production completed in certain
period of time in relation to the amount planned
for those period.

Creating a Gantt Chart:

There are two methods to creating a Gantt Chart (Maylor, 2005).

1. Using a Forward Schedule: starting with the list of activities
and a given start date (6'" Sept in previous example) follow them
forwards in time until you hit given deadline.

2. Using a Backward Schedule: look at the deadline, from that
date work in the logical list of activities.

Both of these methods allow you to ensure that all necessary
activities can possibly be completed within the given project
time frame.

Steps to Creating a Gantt Chart:

1. Determine Project start date and deadline.

2. Gather all information surrounding the list of activities within
a project — the Work Breakdown Structure may be useful for this.

3. Determine how long each activity will take
4. Evaluate what activities are dependant on others
5. Create Graph shell including the timeline and list of activities.

6. Using either Forward Scheduling or Backward Scheduling,
Begin to add bars ensuring to include dependencies and the full
duration for each activity.

Planned fme (week numbers) 7
12 | 1 14 | 1 1 % | 1? I %
G.vl“ Iﬁ .4 " ér | 4 { ! ’ T!LI;
Code & test module A
Purdy 1] | |
Code & test module B ol
Justin 1] | ‘ é | ‘ |
Code & test module C ju]
Spencer |

Code & test module D | | MM

Amanda 1[]] UL LCELELEELERLELELLL
Specity overall system
Check specifications
Check module C spec B I |

Review meetings 1] Lk | LU e

Figure 9.5 Part of Amanda’'s Gantt chart with the ‘today cursor’ in week 17.

THE SLIP CHARTTHE SLIP CHART

The Advantages:

* A useful tool for displaying time-based
information within a project.

* Very simple to create

* They provide a useful overview of project
activities, a good starting point for project
planning.

* The charts are widely used and understood.

* There exists several PC software packages that
allow you to build Gantt Charts.

THE SLIP CHART

i The Slip Chart

= Add a slip line on the Gantt chart

= The slip line indicates those activities
that are either ahead or behind the
schedule

= Too much bending indicates a need for
rescheduling of the overall plan

Software Project Management 25

The Slip Chart (cont'd)

Planned time (week number)
12 13 14 15 16

| | |

Kelvin
module F

Paul
module C

Peter
module B

Zobel
module A

l B Completed O Scheduledl |

Software Project Management 26

BALL CHARTS

A somewhat more striking way of showing w hether or not targets have been met is to use a ball
chart as in Figure 9.7. In this version of the ball chart, the circles indicate start and completion
points for activities. The circles initially contain the original scheduled dales. Whenever revisions
are produced these arc added as second dates in the appropriate circle until an activity is
actually started

31399\ Code & test module A [11/599
31399 21/599
Code & test module B8 /13599
17599

Code & test [12/699
1699

Figure 9.7 The ball wall chart provides an incentive for meeting targess.

Ball charts

__ Code and test module A

Code and test module B

2\ Code and test module C

Green: On time
Red: Missed the target

THE TIMELINE

i The Timeline

= A plot of the elapsed time against the
planned time of the activities indicating
=« the actual progress of the activities; and
= the rescheduled activities by the end of
each week
= show where and when the targets have
changed through the life of a project

Software Project Management 27

i The Timeline (cont'd)

= Can show the slippage of the activities
through the life of the project
= The Gantt chart cannot

= Help to analyze and understand the
trends and reason for changes
= to avoid slippage in future projects

Software Project Management 29

etre s timeline chart ar the end of week six.

Cost monitoring

A project could be late because the staff originally
committed, have not been deployed

In this case the project will be behind time but
under budget

A project could be on time but only because
additional resources have been added and so by
over budget

Need to monitor both achievements and costs

EARNED VALUE ANALYSIS

Objective:

« To measure the progress of an activity, deliverable and/or project by
comparing the actual value to planned value, thereby indicating the probability
of meeting the scope, time & cost budget of the activity, deliverable and/or
project, and need for any corrective actions.

. To analyze the project performance, calculate the variance for schedule and
cost and indicates where the project stands in comparison to the estimates
calculated earlier for this point in time.

Many a times one could easily be on time, however may overspend, or may be on

time & within budget however scope may be incomplete. In simple terms, EV

analysis is better than comparing actual to planned results or by simply guessing
the project status.

Earned value analysis

* Planned value (PV) or Budgeted cost of work
scheduled (BCWS) — original estimate of the

effort/cost to complete a task (compare with
idea of a ‘price’)

* Earned value (EV) or Budgeted cost of work
performed (BCWP) — total of PVs for the work
completed at this time

Earned value — an example

* Tasks
- Specify module 5 days
— Code module 8 days
— Test module 6 days

* At the beginning of day 20, PV = 19 days
* If everything but testing completed, EV = 13 days
* Schedule variance = EV-PV i.e. 13-19=-6

* Schedule performance indicator (SPI) = EV/PV
i.e13/19 = 0.68

Earned value analysis — actual cost

* Actual cost (AC) is also known as Actual cost of work
performed (ACWP)
* In previous example, if
— ‘Specify module’ actually took 3 days (planned 5 days)
— ‘Code module’ actually took 4 days (planned 8 days)
* Actual cost = 7 days
* Cost variance (CV) = EV-AC
i.e. 13-7 = 6 days
* Cost performance indicator (CPl) = EV/AC
i.e=13/7=1.86

* Positive CV or CPl > 1.00 means project under budget or the
work is completed better than planned

Earned value chart with revised forecasts

Original Revised
NOT completion completion
130 4 Time now date dote
Y i " SR S N 7> (iR 2
! Forecast ' Revised expenditure, -~ '
104 overspend ' forecast .~ ' ' §
]m - ‘----—----------‘ ----------- { 3
I : : |2
z " : HE
80 4 : HE
§ ' ' 3
z 2 (AC) acwe : :
= 60'1 oo~ A e LN SR :,‘L
5 50+ : :
b ' 1]
7 : :
30 4 ' H
204 - Forecast project
-) completion delay
10 7 i 1
' ' '
0- L) L} L) L) L) L) L) L} : L) L) L) L) L) L} Ll L) '. L) L) :
01 23 45 678 9101112131415161718 1920 21 2223

Month number

v
(Manrec Value!

A

Yanwrce

Schedule
YVardancoe

EY
[Eamed Value!

Yy Y

monitoniag planed end
date

EARNED VALUE ANALYSIS

The baseline budget
Monitoring earned value
Schedule variance(SV)
Cost variance(CV)
Performance ratios

Ref: http://www.spmbook.com/downloads/slides/pdf/c03.08-09-executionmonitoringcontrol.key.pdf
Definitions

http://www.spmbook.com/downloads/slides/pdf/c03.08-09-executionmonitoringcontrol.key.pdf

Work Scheduled (BCWS) should have been done by this time
Actual Cost (AC) or Actual Cost of Actual cost expenses on this project upto this
Work Performed (ACWP) time

Earned Value (EV) or Budgeted cost of

Work Performed (BCWP) Estimated cost of budgeted work completed

Budget at Completion (BAC) Total budget for the project

Estimate At Completion (EAC) Estimated final cost of the project

Estimate To Completion (ETC) Estimated cost of the remaining work of the

project
Cost
Variance CV=EV-AC Positive value is good. Negative value unfavourable.
(CV)
Schedule Value below 1.0 = below par performance. Value above :
Variance SV=EV-PV = above par performance The further away the ratio is frc
(SV) 1.0 the more urgent need to investigate
Cost CPI=EV/AC, >1 means project efficient, <1 means project inefficient

Performance compares

Indicator performed to actual

(CPI) cost
Schedule SPI=EV/PV,
Performance compares work >1 means project ahead of schedule, <1 means project
Indicator performed to work behind schedule
(SPI) planned
Estimate At
Completion EAC = BAC/CPI
(EAC)

Eét(')ﬂatlee tTe ° ETC=(BAC-EV)
P / CPI

(ETC)

Example
Assume a project that has exactly one task. The task was baselined at 100 hours,

but 110 hours have been spent and the estimate to complete is 10 additional hours.
The task was to have been completed already. Assume an hourly rate of $100 per

hour.

*
Hourly Rate * Total Hours 100*100 = 10,000

PV Planned or Scheduled

AC Hourly Rate * Total Hours Spent 100*110 = 11,000

AC divided by estimated cost at

% Complete completion which is 11,000 plus
cost of 10 additional hours

11000/(11000+1000) = 91.667%

Baselined Cost * % Complete

EV
Actual
1 1 *
BAC Baselined Effort in hours
Hourly Rate
EAC AC + ETC
VAC BAC - EAC
% Completed PV | BAC
Planned
% Completed AC | EAC
Actual
Earned Value (EV) — Planned
SV
Value (PV)
SPI SPI =EV /PV
oV Earned Value (EV) — Actual Cost

(AC)

9166.667 (baseline of 10,000 *
91.667% complete)

10000 (100 hours * 100) indicates

initially budget signed off for the
project

12000 (11000 + 1000) notice this
is over budget

-2000 (10000 — 12000) indicates
additional funds required to
complete work

100% (10000/10000)

91.7% (11000/12000) lesser than
planned completion

-833.33 (9166.667 —
10000) negative schedule
variance or behind schedule

0.9167 (9166.667 / 10000)
indicating poor schedule
performance

-1.833.33 (9166.67 —
11000) indicating a cost overrun

Earned Value (EV) /Actual Cost 0.833 (9166.667 /

CPI (AC) 11000) indicating over budget

RESOURCE ALLOCATION

Effective Resource Management for Team Projects and Goals
Project Insight gives project managers power over the management of resource allocation for
software development, marketing, product development teams and more. Assigning
teammembers to business goals, projects and individual tasks is simple and easy with our PMI
and PMBOK® Guide compliant solution. Mass assign team members’ tasks grouped by skill set,
department or resource type, or handle resource allocation management for a single person. It
is equally simple to change a resource on a set of project tasks as well.
Our portfolio system allows resource allocation managers and project managers to use project
level and/or cross project resource allocation to manage workloads in order to achieve their
goals. The software application reports evenly divide the work (hours) among the workdays
(duration) scheduled for the tasks to calculate the total work or effort assigned to a resource
within a specified date range.

Efficient Resource Allocation and Workload Management

Resource information may be accessed from the ‘Resources’ tab within a project to review the
availability of resources. Project Insight, web project management software provides real-time
resource allocation data based on the allocation of their assignments to project tasks systemwide.
Project managers can also view all resources across all projects in Project Insight. This
information
is accessed in ‘My Reports,” ‘Cross Project Resource Allocation.” Data may be hidden or
displayed
according to each person’s preferences, supporting a wide variety of applications for these
reports. Hundreds of permutations of resource allocation reports are available.
Other project management software applications claim to have extensive resource allocation
capabilities in their marketing materials; however, they often fall short. Project Insight not only
allows resource managers or project managers to see the total workload each resource has per
day, week or other time period, it allows them to drill down on all of the projects and tasks that
are causing the over allocation in one view. Tasks can easily be reassigned using Project
Insight’s

simple drag and drop functionality. It’s perfect for the management of all kinds of goals, tasks
and projects including IT projects, interactive or marketing projects, product development
projects,

professional services and more. All tasks are efficiently managed with proper resource allocation
and tracking, down to the last detail.

Notes If your goal is to make sure that you’re on top of resource allocation, then Project
Insight’s powerful resource management applications will make it happen.

IDENTIFYING RESOURCE REQUIREMENTS
As you plan for application compatibility testing, keep in mind the future state of your
computing
environment. Are you planning to upgrade some of your software to versions that fully use new
Windows 2000 features? Are you planning to implement new standard desktop configurations

or use Terminal Services? Issues such as these determine the resources that are required and the
applications that are to be tested as a suite.

If you plan to deploy new applications with Windows 2000 during the rollout, test these
applications with the current applications.

You can facilitate testing by setting up a lab where testers can conduct their tests. In such a

lab, you can have the necessary tools and equipment available at all times. Some organizations
have a lab for testing applications that is separate from the Windows 2000 lab. If you do not
have the budget for a separate lab, you might share a lab with another project or with

training. If you share a lab, try to choose one that has compatible scheduling and equipment
requirements.

SCHEDULING RESOURCES

In this unit we will learn about scheduling resources in projects. We will begin by discussing the
nature of resource requirements (both people and machines) and the problems associated with
managing resources in a project environment. Given the finite nature of resource availability, a
project plan may have to be modified so that it is practical. This is the major thrust of resource
planning and management. In this unit, we will examine, at some length, the four major stages
of the resource scheduling process. These stages are resource definition, resource

allocation, resource aggregation, and resource leveling. Resource definition involves
identifying

the critical resources that need to be planned and managed for the successful completion of the
project. In a multi-project environment as projects are competing for scarce resources, resource
allocation addresses the problem of the optimum use and timing of the assignment of these
resources to the various project activities. Resource aggregation involves determining the
aggregate

resources that will be needed, period by period, to complete all project activities. Having
identified

the necessary resource requirements, the last stage in the process is resource leveling. In this
stage,

we attempt to ensure that the demand for resources does not exceed availability. Specifically,
demand for resources is smoothed to ensure that the peaks and valleys are reduced. In this
lesson, we will also learn about the “critical chain approach” to tackle resource dependencies
that occur in projects due to reduced slack.

UNIT VI
SOFTWARE QUALITY
INTRODUCTION

Quality is generally agreed to be a good thing. In a practice the quality of a system
can be a vague, undefined, attribute. We therefore need to define precisely
what qualities were require of a system. However, this is not enough — we need to
objectively weather a system meet out quality requirements and this need
measurement.

PLACE OF SOFTWARE QUALITY IN PROJECT MANAGEMENT

Quality will be of concern at all stages of project planning and execution. But will
be of particular interest at the following points in the step wise framework

w

0. Select
Project
1. Identify 2. |dentify
Project scope Project
and objective g Infrastructure
3. Analyze
project
characteristics
4. Identify the
projects and
xﬂ@lﬂes
[10.Lower S. Estimate
| Level Planning efforts for
S
9. Execute 6. identify
Plan activity risk
8. Review / 7. Allocate

Publicize Plan |<eX | resources

Identify Project Scope and objective: Some objective could relate to the

qualities of the application to be delivered.

Identify project infrastructure: l|dentify the installation standard and
procedures. Some of these almost certainly be about quality

Analyze project characteristics: To identify the other qualities based
requirement.

Identify the products and activities of the project: It is at this point the entry,
exist and process requirement are identified for each activity

Review and publicize Plan: At his stage the overall quality aspects of the
project plan are reviewed

IMPORTANCE OF SOFTWARE QUALITY

We would expect quality to be concern of all procedures of goods and services.

= Increasing criticality of software: the end user of a software generally anxious
about the quality of software especially about the reliability. They are concern
about the safety because of their dependency on the software system such as
aircraft control system are more safety critical systems

* The intangibility of software: This make it difficulty to know that a particular
tasks in project has been completed satisfactory. The results of these tasks can be
made tangible by demanding that the developer produce deliverables that can
be examined for quality

= Accumulating errors during software development:

As computer system developed in made up of a number of steps where the output
from one step is the input to the next, the error in the earlier deliverables will be
added to those in the later steps leading to an accumulating determined effects. In
general the later in a project that an error is found the more expensive it will be to
fix. In addition because the number of errors in the system is unknown, the
debugging phases of a project are particularly difficult to control

DEFINING THE SOFTWARE QUALITY

Quiality is rather vague term and we need to define carefully what we mean by it

* A functional specification describing what the system is to do
* A quality specification concerned with how well the functions are to operate
* A resource specification concerned with how much in to be spent on the system

Attempt to identify specific product qualities that are appropriate to software, for
instance, grouped software qualities into three sets. Product operation qualities,
Products revision qualities and product transition qualities.

Product operation qualities

Correctness: The extent to which a program satisfy its specification and fulfil user
objective

Reliability: The extent to which a program can be expected to perform its
intended function with required precision

Efficiency: The amounts of computer resource required by software

Integrity: The extent to which access to software or data by unauthorized persons
can be controlled

Usability: The effort required to learn, operate, prepare input and interprets
output

Product revision qualities

Maintainability: the effort required to locate and fix an error in an operational
program

Testability: The effort required to test a program to ensure it performs its
intended function

Flexibility: The effort required to modify an operational program,
Product Transition qualities

Portability: The efforts required to transfer a program from one hardware
configuration and or software system environment to another

Reusability: The extent to which a program can be used in other applications.
Interoperability: The efforts required to couple one system to another

Table 12.1 Software quality criteria

Quality factor Software quality criteria
Correctness traceability, consistency, completeness
Reliability emor tolerance, consistency, accuracy, simplicity
Efficiency execution efficiency, storage efficiency

Integrity access control, access audit

Usability operability, training, communicativeness, input/output volume,
input/output rate

Maintainability consistency, simplicity, conciseness, modularity, self-
descriptiveness

Testability simplicity, modularity, instrumentation, self-descriptiveness

Flexibility modularity, generality, expandability, self-descriptiveness

Portability modularity, self-descriptiveness, machine independence,
software system independence

Reusability generality, modulanty, software system independence, machine
independence, self-descriptivencess

Interoperability modularity, communications commonality, data commonality

During quality is not enough. If we are to judge whether a system meets out
requirements we need to be able to measure its qualities. For each criterion, one
or more measure have to be invented the degree to which the quality is present.
In general the user of software would be concerned with measuring what McCall
called quality factors while the developers would be concerned with quality
criteria. The following should be laid down for each quality.

Scale - the unit of measurement

Test — the practical test of the extent to which the attribute quality exists
Worst — the worst acceptable value

Plan - the value that is planned to achieve

Best - the best value that appears to be feasible

Now - the values that applies currently

I1ISO 9126

_ISO 9126 standard was published in 1991 to tackle the question of the definition

of software quality this 13 pages document was designed as foundation upon
which further, more detailed standard could be built.

ISO 9126 identifies six software quality characteristics

* Functionality: which covers the functions that a software product provides to
satisfy user needs

* Reliability: Which relates to the capability of the software to maintain its level of
performance

* Usability: Efforts need to use a software
= Efficiency: physical resource used when a software is executed
* Maintainability: Effort needed to the make changes to the software

= Portability: Availability of the software to be transferred to a different
environment,

Functionality: which covers the functions that a software product provides to
satisfy user needs.

Functionality sub characteristics: suitability, Accuracy, Interoperability,
Compliance and Security.

Compliance refers to the degree to which the software adheres to application-
related standards or legal requirements. Typically these could be auditing
requirement. Interoperability refers to the ability of software to interact with
others.

Reliability: Which relates to the capability of the software to maintain its level of
performance

Reliability sub characteristics: Maturity, Fault Tolerance and recoverability.

Maturity refers to frequency of failures due to fault in software more
identification of fault more chances to remove them. Recoverability describe the
control of access to a system

Usability: Efforts need to use a software.
Usability sub characteristics: Understand ability, Learnability, operability.

Understand-ability is a clear quality to grasp, although the definition attributes
that bear on the user efforts for recognizing the logical concept and its
applicability in our view actually makes it less clear. Learnability has been
distinguished from operability. A software tool might be easy to learn but time-
consuming to use say it uses a large number of nested menus. This is for a
package that is used only intermittently but not where the system is used or
several hours each day by the end user. In this case learnability has been

incorporated at the expense of operability.

Efficiency: physical resource used when a software is executed
Efficiency sub characteristics: Time behaviour, Resource behaviour.

Maintainability: Effort needed to the make changes to the software

Maintainability sub characteristics: Analysability, Changeability, Stability and
Testability.

Analysability is the quality that McCall called diagnose ability, the ease with which
the cause of failure can be determined. Changeability is the quality that other
have called flexibility: the latter name is perhaps a better one as changeability has
a slightly different connotation in plain English It implies that the suppliers of the
software are always changing it. Stability, on the other hand, does not means that
the software never changes, It means that there is a low risk of a modification to
the software having unexpected effects.

Portability: Availability of the software to be transferred to a different
environment.

Portability sub characteristics: Adaptability, Install ability , Conformance and
Replace ability.

Conformance is distinguished from compliance relates to those standard that
have bearing on portability. The use of a standard programming language
common to many software/hardware environment is an example of conformance,
Replace ability refers to the factors that give upwards compatibility between old
software components and the new ones. Downwards compatibility is specifically
excluded from definition.

Quality Metrics selection: Measurements that correlate to the characteristics of
each quality have to be identified. No specific guidance is given by ISO 9129
standard on the applicability of the various measurements that might be used.

Rating Level Definition: The metrics used must be mapped onto scales that
indicate the degree to which the requirement have been satisfied for example in
one application time behaviour in the sense of response time might be important
for a key transaction actual response time might be mapped onto quality scale.

response time { seconds) quality score
<2 h]
2-3 4
4-5 3
67 2
8-9 1
>9 0

Assessment criteria definitions: The way that the quality scores are combined or
summarized or give an overall view of the product has to be defined. There
software product as now to be evaluated by measuring its qualities, converting
them to quality score or rating and summarising them the rating to obtain an
overall judgment.

Table 12.2 Quality rating scores

product A product B
. importance quality weighted wality weighted
product quality m’:‘ing ta) :orr (b) smrr‘(a xb) s:l'on' ('(') sron"(a xc)
usability 3 1 3 3 9
efficiency 4 2 8 2 8
maintainability 2 3 6 I 2
overall 17 19

Practical software quality measures : Below are some way of measuring
particular qualities.

Reliability: might be measure in terms of
Availability: the percentage of a particular time interval that a system is usable.

Means time between failures, the total service time divided by the number of
failures

Failure on demand: the probability that a system will not be available at the time
required on the probability that a transaction will fail.

Support activity: the number of fault reports that are dealt with

Maintainability: This is closely related to flexibility the ease with which the
software can be modified. The main deference is that before an amendment can
be made, the fault has to be diagnosed. Maintainability can therefore be seen as
flexibility plus a new quality, diagnose ability which might be defined as the
average amount of time needed to diagnose a fault.

Extendibility: This is a component of the more general quality of flexibility. It can
be defined as the productivity needed to incorporate a new feature into an
existing system expressed as a percentage of the normal productivity when

developing the software from scratch.

The original IOE maintenance billing system comprised 5000 SLOC and took 400
works-days to implement. An amendment t the core system caused by the
introduction of group accounts has lead to 100 SLOC being added which took 20
works days to implements thus

productivity for the original system = SO00/400
= |12.5 SLOC/staff day

productivity for the amendment = 100720

= 5 SLOC/staff day
extendibility =512.5 x 100

= 40%

Product Versus Process Quality Management

The measurement describe above can be taken only after the system is
operational. It might be too late to do anything to remedy problems. What would
be more helpful to someone like Amanda the IOE would be measurement and
other checks that can be take during development and that can help control what
the final system will be like. The system development process in made up of a
number of activities that are liked together so that the output from one activity is
the input to the next step. Thus, program testing will depend on there being a
program to test that will be the product of the program coding stage. Errors can
enter the process at any stage. They can be introduced either because of a defect
in the way a process is carried out as when programmers make mistakes in the
logic of their programs or because information has not been passed clearly and
unambiguously between stages.

Errors that creep in at the early stages are more expensive to correct at late staves
for the following reasons

The later the error is found the more rework at more stages of development.

The general tendency is for each successive stage of development to be more
detailed and less able to absorb change.

Error should therefore be eradicated by careful examination of the products of
each stage before they are passed on to the next. The following process
requirement should be specified for each activity.

Entry requirement. Which have to be in place before an activity can start.
Implementation requirement: Which define how the process is to be conducted.

Exit Requirement. Which have to be fulfilled before an activity is deemed to have
been completed.

—~—

S

s

J

[“ =

ek e CC e CLl e
%‘[k@rﬂ—%{ M

Pigure 103 An cuample of the sequence of processes ind defivesabics

