UNIX PROGRAMMING UNIT -1

INTRODUCTION TO UNIX

1.Brief History
The initial contributions to the development of Unix by The Bell Laboratory of AT & T and the
University of California, Berkeley (UCB) are notable.

1.Bell Laboratory's contribution

In 1965, Massachusetts Institute of Technology (MIT), General Electric and The Bell
Laboratories of AT&T worked on a joint venture project called Multics (Multiplexed
Information & Computing System), which intended to develop a multi-user operating system as
it is not satisfactory, AT&T withdrew itself from the Multics project in early 1969.

Ken Thompson and Dennis Ritchie worked on PDP-7 machine, developed an OS called UNICS (
Uniplexed Information and Computing System) during the latter period of 1969.UNICS was
developed in assembly language of PDP-7 and so it was not portable. To achieve portability,
Thompson worked on the implementation of the system in high level language called B.As the B
language didn't yield the expected results, Ritchie developed a higher level language called C in
1973. The researchers in AT&T showed interest in the Unix project (around 1970 UNICS
became Unix). During those days many text-processing utilities along with a text editor called
the ed editor and a simple command interpreter called the shell were developed. The ed editor
was a line editor and the then developed shell became the Bourne shell (sh), the grandfather of
almost all the currently available shells.

The results of the research and developments made at the Bell laboratory were first published in
the form of Unix Programmer's Manual in the late 1971.Since then, there have been a total of 10
editions of this manual. Each of these manuals correspond to a version of the Unix released by
AT&T. The 3rd edition published in early 1973 included the details of C compiler. Ritchie
completely rewrote the entire Unix system during the same year using C. Actually, around 95%
of this Unix system was written in C and the remaining was written in the assembly language.
The platform used was a PDP-11 machine. The details of the Unix implementation in C was
made public through a paper published in 1974 and it's authors, Thompson and Ritchie were later
awarded with the prestigious ACM Turing award.

A system called Unix System V was announced in 1983. With this release AT&T assured the
upward compatibility of all its future releases. System V has since then undergone many
revisions and releases. The most important of the releases is System V release 4(SVR4) in
1991.SVR4 brought all the important features of various operating systems like BSD,XENIX
and SUN operating systems together that were available by then. Early days of development of
Unix, AT&T was forbidden to manufacture and promote any equipment, that was not related to
telephone or telegraph services. However, it made Unix system available to universities,
commercial firms and defence laboratories either free of cost or at a nominal price.

K Varada Rajkumar 1
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

2.UCB's contribution

University of California at Berkeley (UCB) was one of the early universities that was interested
in the Unix operating system and it's development. It was responsible for many important
technical contributions and in development of useful utilities.

Ex: ex editor and Pascal compiler were developed during 1974 by Bill Joy and Chuck Haley,
then graduate student of UCB. Later the ex editor, which was also a line editor, was provided
with the screen-editing facilities and was called the vi editor. Another important contribution of
Bill Joy was the C-shell (csh). UCB released their own version of Unix, called BSD-Unix during
the spring of 1978.Since then UCB had several of BSD releases. These are referred to as 4.0BSD
(1980),4.1BSD (1981),4.2BSD (1983),4.3BSD (1986) and 4.4BSD(1993).

DARPA (Defence Advanced Research Projects Agency) funded Unix systems development
activities, was interested in the development and integration of TCP/IP network protocol suite.
The financial support of DARPA helped UCB to release it's BSD versions as listed above. UCB
technical contributions are Virtual Memory System (VMS), Fast File Systems (FFS),socket
facility, Larger file names and a reliable signals implementation and of course, the TCP/IP. After
4.4BSD,scarcity of funds ,competition from external commercial organizations, difficulties in the
management of large and complex system by a small group of researchers, made it difficult by
the UCB to further work on the development of Unix systems.

3.0Other's contribution

During the same period, many computer vendors had developed their own Unix systems. For
example, Sun Microsystems (a company that was promoted by Bill Joy) developed Sun
operating system, which was revised and renamed Solaris. Solaris 7 is one of the widely used OS
even today. Digital Equipment Corporation (DEC) developed a system called Ultrix, which was
revised and renamed Digital Unix. Microsoft developed a system called XENIX, the first unix
variant to be run on a PC. This OS was based on both AT&T and BSD systems. XENIX was
finally sold to SCO (Santa Cruz Operations). Later SCO developed it's own version of these
systems named SCO Unixware-7 and the SCO open server. Other important systems developed
are AIX (by IBM) , HP-UX (by HP) and IRIX (by Silicon Graphics).

4.Why so many variants?

From the mid 1970s there have been many variants of Unix system. One of the reason is, AT&T
being a telephone company, was not permitted to sell computer-based products. However, it
could do so free of cost or for a nominal fee.BSD also giving it's products free of cost, many
obtained the copies of Unix and worked on them. Another reason was that these systems were
developed mostly by researchers for researches and were revised constantly to suit different
requirements. All of these resulted in the development of many Unix variants as well as it's
confinement only to the portals of universities, research organizations and American Defense
Laboratories. One of the important points that worked against the popularity of any Unix variant

K Varada Rajkumar 2
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

for a long time was it's user-unfriendliness. However, the introduction of X Window system by
MIT during the second half of 1990s has made it user-friendly.

5.Are there any standards?

The first attempt was made by the IEEE standards board to standardize the Unix system.This
group came out with a set of rules that should be compiled with for an OS to be called standard
Unix.These set of rules are widely known as POSIX (Portable Operating System Unix). Now
POSIX has also undergone many revisions. The latest one is IEEE 1003.10.Infact, AT&T also
has its own standard called Unix International (UI).IBM and HP and DEC also formed a
consortium called Open Software Foundation for the same purpose. However, still there exist a
large number of Unix variants in the market.

6.Linux

In August 1991,a system called Linux was announced by Linus Torvalds in Finland.Actually, it
was based on a system called Minix (chiefly developed by Andrew S Tanenbaum) which again
was based on Unix.It brought in the speed, efficiency and flexibility of Unix to a PC
environment,thereby using the advantages of all the capabilities of Unix. In March
1994, Torvalds released the 1.0 kernel of the Linux. Actually, Linux is an open source program -
it's source code is freely available. Anyone can work on it and make enhancements to it and as a
result, it is under constant development. Like other Unix variants it was also initially popular
only among the researchers and programmers at universities and research environments.
However, at present, Linux has become widely popular among commercial and industrial circles
along with the universities and research organizations around the world. Today, Linux has many
flavors and can be found on computers ranging from desktops to corporate servers. Red Hat
Linux is one of the most popular flavors of Linux. All versions of Linux may be downloaded free
of cost from the Web.

2.What is UNIX?

Unix is an operating system. An OS is a software that acts as an interface between the user and
the computer hardware and also as resource manager.

e From a user's perspective, an OS is the means to run application programs such as word
processors, electronic spreadsheets, database management systems and the like. In other
words, application programs access the computer's hardware via an operating system like
Unix.

e From the system point of view, the concurrently running tasks are just different
processes- them belonging to the same user or to different users is immaterial.

K Varada Rajkumar 3
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

Salient features of Unix:
1) UNIX is a multi-tasking operating system.
e It has the ability to support concurrent execution of 2 or more active processes.
e Different tasks like processes running concurrently belong to one user.
2) UNIX is a multi-user operating system.

e [t has the ability to support more than 1 user to login into the system
simultaneously and execute programs. It presents virtual computer to every user
by creating simulated processors, multiple address spaces and the like.

e Different tasks belong to different users

3) Unix operating system supports multi-users. These users might be directly connected to
the same machine through different terminals or may be connected to different machines
that are interconnected. Though initially Unix had no interconnection networking with
different computers, the development of communication protocols like TCP/IP have
made this possible. Along with networking, the system has very good inter-machine
communication facilities. This has enabled different users connected to the computer
networks to exchange information in the form of e-mail and shared data.

4) Unix operating system is highly portable. Compared to other OS, it is very easy to port
Unix onto different hardware platforms with minimal or no modifications at all because a
larger chunk of Unix is built on the language C , which itself is highly portable.

5) Unix offers solid security at various levels, beginning from the system startup level to
accessing files as well as saving data in an encrypted form.

6) Unix has become popular since the early 1990s, it was started during early 1970s.The
good library of utilities and command, has made the development of newer application
programs easy and quick.

7) Unix system treats everything, including memory and I/O devices as file and has a very
well-organized file and directory system that allows users to organize and maintain these
files/directories easily and efficiently.Furthermore, as Unix views and treats everything as
a file it is device independent.

3.UNIX COMPONENTS

UNIX system consists of 3 major components. 1) The Kernel 2) The Shell 3) The file system
1)The Kernel

The Kernel is relatively a small piece of code that is embedded on the hardware, mostly written
in C and gets automatically loaded on to the memory as soon as the system is booted.

K Varada Rajkumar 4
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

Figure 1 The Kernel

It is the only component that can directly communicate with the hardware. It manages all the
system resources like memory and I/O devices , allocates time between users and processes in
the case of multi-user environment, decides process priorities, manages IPC and performs many
other tasks.

e Monolithic kernels

Earlier, all the programs that were part of a Kernel, were integrated together and moved
onto the memory during booting. Such integrated kernels are referred to as monolithic
kernels.

o Microkernel

The programs are grouped into different modules and only the necessary module is
moved onto the memory during booting. This just-necessary and sufficient module
consisting of a small set of Kernel programs is called a microkernel.The other modules
are moved in and out of the memory depending on the requirement.

2)The Shell

A shell is a program that sits on the Kernel and acts as an agent or interface between the users
and the Kernel and hence the hardware. It's similar to command.com in the MS-DOS
environment

K Varada Rajkumar 5
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

Figure 2. Unix system components

A Shell is a command interpreter or a processor. As soon as the system is booted successfully,
the Shell presents a command line prompt ($ or % symbol) at which the user can type in any
UNIX command.After accepting the command, the Shell generates a readily executable simple
command line by parsing it, evaluating variables, performs command substitution, interprets
metacharacters like * and ? and identifies the PATH. This simple command line is then passed
onto the Kernel for execution.

K Varada Rajkumar 6
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

Shell has programming capabilities, using this we can write shell programs (Shell scripts).
a)Types of Shells
e The Bourne shell (sh)
It has been named after it's author, Stephen Bourne at AT&T Bell Labs. This is
distributed as the standard shell on almost all Unix systems.
e The C shell (csh)
Bill Joy developed this shell at UCB as a part of the BSD release. It's syntax is very
similar to the C programming language and not compatible with Bourne shell.
Advantages
1. It has the capability to execute processes in the background.
2. A version of this Shell called tcsh is available free of cost under Linux.

e The Korn shell (ksh)
This Shell was developed by David Korn at AT&T Bell labs. It is built on the Bourne shell
and incorporates certain features of the C shell. At present it is the widely used shells.
It can run Bourne shell scripts without any modifications.
One of its versions, public-domain Korn shell (pdksh), comes with Linux free of cost.

e The Bourne-Again shell (bash)
This Shell was developed by B Fox and C Ramey at Free Software Foundation. Certain

Linux OS variants come with this Shell as it's default shell. this is clearly a freeware
shell.

b) Shell as a command processor
When interpreting a command line given at it's prompt, Shell follows 1 or more or all of the
following steps, depending on the contents of the command line given to it.
1. It parses the command line and identifies each and every word in it and removes
additional spaces or tabs present, if any.
2. Evaluates all the variables present that might be prefixed with a $.

3. If commands are present within back quotes, they are executed and their output is
substituted into the command line. In other words, command substitution takes place.

4. It then checks for any redirection of the input and/or output and establishes the
connectivity between the concerned files accordingly.

5. It then checks for the presence of wild card characters like *, ? and [,]. If any of these
characters are present, file name generation and substitution take place.

It then looks out for the required commands as well as files, retrieves them and hands them to the
Kernel for execution. The route or path to look for required variables are in PATH shell variable.

The semicolon that allows multiple commands and logical operators are taken care by the Shell.

K Varada Rajkumar 7
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

3) The File System

Unix treats everything- including hardware devices- as a file. All the files are organized in an
inverted tree-like hierarchial structure. The structured arrangement in which all the files are
stored is referred to as a file system from the user's point of view. Actually this is something
more for implementers and system administrators.

A file system could be local to a system or it could be distributed.

e Local file systems store and manage their data on devices directly connected to the
system.

e Distributed file systems allow a user to access files residing on remote machines.

4)USING UNIX

The process of getting into the UNIX environment is known as logging in into the system. After
the system is booted a daemon called init gets started along with some other daemons. This init
daemon spawns a process called getty for every terminal. Each of these gettys print the login
prompt on the respective terminal.

The sequence of events in a complete login process can be listed as follows.

1. The user enters a login name at the getty's login prompt on the terminal.
getty executes the login program with the login name as the argument.
login requests for a password and validates it against /etc/passed.
login sets up the TERM environment variable and runs a shell.

The Shell executed the appropriate startup files like .profile.

AN

The Shell then prints a prompt, usually a § or a % symbol and waits for further input.
This indicates the successful entry made into a Unix environment with a proper shell.

The above sequence of events during login process is schematically shown in figure.

I“&Eing out

Figure 3. The log process

K Varada Rajkumar 8
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

When a user completes the session with the system he comes out of the Unix environment. The
process of coming out of the Unix environment is known as logging out. After the logout, the
control returns to the init daemon, which in turn spawns a new getty on the corresponding
terminal. This facilitates a new user to login to the system.

1)The Shell Prompt

Successful login into a Unix system is indicated by the appearance of a prompt called the shell
prompt or system prompt on the terminal. The character that appears as a prompt depends on the
shell used.

Table shows a list of the default prompts employed by different shells.

List of Default Prompts
Prompt Shell
$ (dollar) Bourne and Korn shells (sh,bash and ksh)
% (percent) C shells (csh and tcsh)
(hash) Any shell as root
SYCOMMANDS IN UNIX

General features of UNIX commands

1. It is a program written to perform certain specific action. Example: To print today's date
the UNIX command is date. To create a small file or display the contents of a file cat.

2. Unix commands are written in lower case letters. For example cat, Is, who and so on.

3. The commands are cryptic. For example, cat stands for concatenation, Is stands for listing
and so on.

4. Unix commands can have zero, one or more number of arguments associated with them.
It can have format specifiers and options. Format specifiers, whenever present are
indicated by + character and options by hyphen (-).There could be many number of
options associated with a command.

6. In certain situations, a Unix command with it's arguments or a series of commands may
not fit in a single line (80 characters). In such cases it may overflow and is permitted. The
overflow is indicated by a special prompt in the form of a > symbol in the beginning of
the next line. Such a special prompt is known as the secondary prompt.

7. A current Unix command can be killed by using either <delete> or <ctrl-u> command.

K Varada Rajkumar 9
Assistant Professor
Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

8. Commands can be given to the system even when a command given earlier is being
executed in the background. This is not possible with the Bourne shell, sh.

1)Types of Unix Commands External Commands
A command with an independent existence in the form of a separate file is called an external
command. For example, programs for the commands such as cat, Is, exist independently in a
directory called the /bin directory. When these commands are given, the Shell reaches these
command files with the help of a system variable called the PATH variable and executes them.
Most of the UNIX commands are external commands.
Internal Commands
A command that doesn't have an independent existence is called an internal command. Actually
the routines for internal commands will be a part of another program or routine. For example, the
echo command is an internal command as it's routine will be a part of the shell's routine, sh.
These commands also called the built-in commands. cd and mkdir are examples of internal
commands.

6)SOME BASIC COMMANDS

Unix has several hundreds of commands within it. Most of them are simple and are
powerful.Some of the commands are general in nature from the user's point of view.A few of
those commands are

a)The echo command
The echo command is used to display messages and useful in developing interactive Shell
programs.

It takes 0,1 or more number of arguments. Arguments may be given either as a series of
individual symbols or as a string within a pair of double quotes (" ").

Examples
1. $echo
A Blank line is displayed
$

2. $echo I am studying computer science.
I am studying computer science.

The extra spaces between the arguments are adjusted and output is printed in a standard
form i.e., one blank between different arguments.

K Varada Rajkumar 10
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

3. $ echo I am studying computer science.

I am studying computer science.

$

4. $echo"l am studying computer science.".

I am studying computer science.

When the string is given as an argument, it is printed as it is, without the adjustments of
blanks.

$ echo The home directory is SHOME The home directory is /usr/mgv
$

If an evalutable argument is given, it is first evaluated and it's value is printed along
with the other arguments.

b)The tput Command
This command is used to control the movement of the cursor on the screen as well as to add
certain features like blinking, bold face and underlining to the displayed messages on the screen.

Example

1.

$tput clear

This command along with clear argument clears the screen and puts the cursor at the left-
top of the screen.

$tput cup 10 20

This command along with the cup argument and certain co-ordinate values is used to
position the cursor at any required position on the screen.Here, in this cursor will be
placed at the tenth row and twentieth column on the screen.

$tput lines
48
$

$tput cols
142

$

K Varada Rajkumar 11
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

The number of rows and columns on the current terminal is known by using the lines and
cols as arguments to the tput command. Here, from the above examples, there are 142
columns and 48 lines on the current terminal.

¢)The tty Command

In Unix, every terminal is associated with a special file, called the device file which is present in
/dev directory. A user can know the name of his device file on which he is working by using the
tty command.

Example

$tty

/dev/tty01

$

Here, tty01 is the device file name and will be available in the directory /dev.

Under Linux, the output of this command will be shown below.

$tty

/dev/pts/0

$

d)The who Command

The user can know login details of all current users by using the who command. Generally, this
command is used by the system administrator for monitoring terminals.

This provides a list of all the current users in the three-column format by default, as follows.
$who

root console Nov 19 09:35
mgv tty01 Nov 19 09:40
dvm tty02 Nov 19 09:41
$

The first column shows the name of the users,the second column shows the device names and the
third column shows the login time.

Some options like -H,-u and -T can be used with this command. The -H option provides headers
for the columns and the -u option provides more details like idle time, PID and comments as
shown in the example below.

$ who -Hu

NAME LINE TIME IDLE PID COMMENTS
root console Nov 19 09:35 . 32 mgv tty01
K Varada Rajkumar 12
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

Nov 19 09:40 0:20 33 dvm tty02 Nov 19 09:41
0:40 34%

If any terminal is idle (not active) for the last Iminute, will be indicated in IDLE column and this
information will be useful to the system administrator. The PID indicates the process
identification number.

The self-login details of a user can be obtained as a single line output using am and i arguments
along with the who command as follows.

$ who am I

mgv tty01 Nov 19 09:40

$

e¢)The uname Command
When this command is used, it gives the name of the UNIX system being used by the user.
Certain options like r,v,m and a can be used with this command.

Examples
1. $uname
Linux
$

2. S$uname -r
2.4.18 -3 #release details

3. $uname -m

1686 #machine details

$
f) The date command
The user can display the current date along with the time nearest to the second.
$ date
Sat Jan 10 11:58:00 IST 2004
It allows the use of format specifiers as arguments. Format specifiers are single characters using

which, one can print the date in a specific manner. Each format specifier is preceded by a +
symbol followed by the % operator.

K Varada Rajkumar 13
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

Example
1. Format specifier m display the month in numeric form.
$date+%m
09
$

The name of the month can be displayed using the h format specifier

$date+%h

Sep

$

More than one format specifier can be specified at a time. In such cases either double
quotes (" ") or single quotes (' ') are used.

$date+"%h %m"

Sep 09

$

D and d for the day of the month. (D gives the day in the format mm/dd/yy, where as d
gives the day in the format dd).

$date "Today's date is +%D"
Today's date is 03/16/04
$

.Y and y for the year(Y gives all the four digits of the year, whereas y gives only the last

two digits).

6. H,M and S stand for hour, minute and second respectively.

7. Many number of options like u,r,R,f can be used with this command. Example

u option displays the universal time (Greenwich Mean Time) where UTC is Coordinated
Universal Time.

$ date -u
Sat Sep 25 05:58:20 UTC 2004
$
The System Date
1. The date command is used by the system administrator to change or reset the system date.
2. To set the date numeric argument is given usually 8 characters long string of form
MMDDhhmm (month,day,hour in 24-hour format and minutes) followed by an optional
two-digit year.
K Varada Rajkumar 14
Assistant Professor
Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

19th day

11th day 9th day 16 minutes

the super user’'s prompt N
o b /
.""-\-\.\

date 11190915
Nov 19 09:15:00 IST 2004

Figure 4. Setting system date
g)The cal command

1. This command is used to print the calendar of a specific month or a specific year.When
used this command without any arguments,the calendar of the current month of the
current year will be printed.

$cal
..r $cal i \
. Dec2004
Su Mo i We: Sa
B 7 10
iz 14 17
190 a1 2
26 - 28 31 J

2. When two numeric arguments, are given the first argument will be considered as the
month and the second argument will be considered as the year.

$cal 09 1949

s
$cal 09 1949 N
September 1949
Su Mo Tu We Th Fr Sa
i s 3
4 = 6 & 8 2 10
11 1z 13 ; 14 15 16 17
18 19 20 21 22 23 24
k 25 26 27 28 29 sl ;
$: : J

3. When given with a single numeric argument, the complete calendar for the entire year
represented by the numeric argument will be printed as follows.

K Varada Rajkumar 15
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

T e Ty TP, .
= S R et R T

ﬂ

82
e
s

8¢
1z
1

eg

6¢
(44

£2
02
El

i

Le
0¢
€l

8¢
12
T

i

92
61
¢l

L

9¢
61
cl

L2
oe
€1

82
1e
vl

N

1€ 02
S2 we €2
St it 2
P OF 6
Tl £ 8
WM NL Ol
GE vE - E2
BE Z£ii9l
it O 6
7 S N
M hL oW
dag
92 &Z ¥c
61 81 (LI
v R AR
Si M
M nL oW
unr
i 92 G2
0z 61 8I
€1
m.
oM
depy

62
gz
ST
8
I
ng

h)The calendar Command

It is like an engagement dairy that contains text information and offers a remainder
service based on a file called the calendar.

1.

2. This file must be in the present working directory/home directory. This file is created and
managed by the user with the help of an editor on the screen.

No)
—
)
=)
=
(0]
(D]
[=}
o=
=)
[=}
8]
[
o
15
&
8 =@ =
2w o
.M%CC
G
=563
XE&ED
<)
SE X
S < o~
bV S et
a.mmC
V%e.u
M <A

UNIX PROGRAMMING UNIT -1

This file works on today and tomorrow dates concept.The present working day's date is

taken as today and the days upto and including the next working day are treated as
tomorrow.

Contents ' gep 28, 2002 freshers day.
of the file {0 30/09/02 m E
calendar First test begins from Oct 6, 2002
$date
Sat Sep 28 10:45:50 IST 2002
5
$calendar #here calendar is the command

Sep 28, 2002 freshers day
0On 30/09/02 mock G.R.E. test.
$

i)The passwd Command

1. Unix is a multi-user system due to which there is always a security threat. The simplest
and most widely used by all individual users is the use of passwords.

2. The system administrator permits or authorizes the new user by assigning a unique
password to him or her.

3. A user can change their password using the passwd command.
$passwd
Old Password: sk
New Password: #### sk
New Password: ####skk
$

j)The Lock Command

1. The lock Command is used for locking a session for any required amount of time.

2. By default, the user can lock it for 30 minutes. This locking period can be changed by
assigning a different value for the system variable DEFLOGOUT.

3. password: F*#*HEEE ro_enter password: **FF*¥F*#* terminal locked by mgv 0 min ago
When lock command is given, terminal asks for a password twiceand it need not be the
actual password that is used to log into the system.It could be a temporary password.

K Varada Rajkumar 17
Assistant Professor
Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

4. S$lock -45

#locks for 45 minutes

A numeric option may be used to lock a terminal for any period ranging between 1 and

60 minutes.

individual sessions simultaneously.

6.

k)The banner Command
1.
$banner Larry Wall

$banner Larry Wall

FHRIIS

o
#
u

o

#
#
HH HJH';‘

it #

#

M

Wit SRR

HHHE

.
#

i #
"

#
t#
#

()

Many Linux distributions include a locking command called vlock, used to lock all

Also a utility called lock screen is available, with many modern OS, using which a
session on a terminal can be locked.

This command is available on SCO Unix. It is used to display banners or posters. 2.

-

There are two arguments and each argument has been printed on a separate line.
Maximum of 10 characters are printed per line and if more the remaining will be

truncated.
3. S$banner "Larry Wall"

r‘?:;banner "Larry Wall"

R
#
#
HEEHE
#

H
H

#
#

st

#

#

s Bt 4 B

W A

W

LT

i

B d 3t
H

A series of arguments may be given as a single argument in the form of a string.

K Varada Rajkumar

Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

18

UNIX PROGRAMMING UNIT -1

)The cat Command

1.

The basic purpose of this command is to create small UNIX files.
Example
$cat>review
A> symbol following the command means that the output goes to the file name following
it.
<ctrl-d>
$
e In the above example, review is file name. After $cat>review command
execution, the user can type the input from the keyboard.

e The input operation is terminated by using <ctrl-d> on a new line.

2. The drawback of this method to create file is that it lacks editing capabilities. The cat
command is seldomly used to create files of considerable size for this editors like vi and
emacs are used.

m)The bc Command
1. The bc command is both a calculator and a small language for writing numerical

programs.Math functions are used by invoking bc with the option -1.

Function Acronym
Cosine c(n)
Sine s(n)

Tan t(n)
Arctan a(n)
natural log I(n)
exponential function e(n)
square root sqgrt(n)
exponent 4

2. The bc can be used by either entering expressions to be evaluated from the keyboard or

running programs stored in files.

3. The syntax used to write numeric programs and to define user-defined functions is
similar to C programming language.
1. $bc
sqrt 55
7 quit
$
K Varada Rajkumar 19
Assistant Professor
Department of CSE

Sir C R Reddy College Of Engineering

2. $bc

scale=4
sqrt 55

UNIX PROGRAMMING UNIT -1

7.4161 quit

$

3. $be

ibase=5

obase=16
2341 424
ibase=16
obase=5

424 2341

quit
$

From the above examples we can understand the following

1.
2.
3.

The default value of the function scale is 0 (Zero).
Precision is set to 4 or any required value using the scale function above.

The result is displayed immediately in the next line after the execution of every
line.

A session with bc is terminated by using the quit command.

. Base conversion is carried out using ibase and obase functions.

ibase stands for the input base and obase stands for the output base. Default
values for both ibase and obase is 10.

Example that uses the control construct is shown here.

$bc

for(i=1;i<=4;i=1+1)i"2

1
4
916
quit

K Varada Rajkumar 20
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

n)The spell and ispell Commands
The spell command is the first program that was developed to check for words that are wrongly
spelt in a document. This command displays a list of misspelled words in the document used as
arguments, as shown below.

$cat spell.ux

This is an exmple

I am testing the spel command.

Als I am testing the ispell comand.

$

$spell spell.ux
Als comand
exmple spel

$

The misspelled words are displayed in alphabetical order based on American usage. If we want
for British usage then -b option is included. Actually, spell check compares the words in the text
with the words on an in-built dictionary.

ispell command is an interactive spell-check program available in Linux. When used, this
command displays a screen full of information in the sections as shown below.

$ ispell spell.ux

This is an example

I am testing the spell command
Als I am testing the ispell comand.

1) mine 5)examples

2) example 6)expol

3) exempler 7T)ampule

4) exampled 8)example's

1) Ignore I)Ignore all

r) Replace R)Replace all

a) Add X) Exit
K Varada Rajkumar 21
Assistant Professor
Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -1

TYCOMMAND SUBSTITUTION

In Unix, it is possible to run a command within a command. For example, the date
command can be run within the echo command by writing a command line as follows.
Example

$echo Today the date is 'date’

Today the date is Fri Oct 3 16:25:00 IST 2002

$

In the above example, the command to be executed (that is, echo in this example) has to
be written within a pair of backquotes(").

The Shell while parsing the parameters list of the echo command treats the words that are
backquotes as a command, executes it and substitutes the result of this execution at the
corresponding position in the parameters list. This process is known as Command
Substitution.

In Korn Shell the command substitution is accomplished by using a $ sign followed by
The command within a pair of parenthesis as shown below.

$echo Today the date is $(date)
Today the date is Fri Oct 3 16:25:00 IST 2002
$

8)GIVING MULTIPLE COMMANDS

1.

Normally, a single command is given to the Shell at it's prompt. However, there are many
situations when more than one command is given in a single command line. One of the
ways of giving multiple commands is to use a semicolon (;) between successive
commands as shown below.

$echo "Giving multiple commands";date;who

2. Commands given in this way doesn't mutually interact with each other in any manner.
They are executed independently one after the other, from left to right as they appear in
the command line.

Advantage
e Giving multiple commands in a single command line has a definite advantage as
the entire command line could be executed as a background job and something
else could be done in the foreground.
e Of course,the Bourne shell (sh) doesn't permit processing of jobs in the
background where as the Korn shell (ksh) does.
K Varada Rajkumar 22
Assistant Professor
Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

The File system

1)The Basics of Files

A file is a sequence of bits, bytes or lines that is stored on a storage device like a disk. A Unix
file may contain a source program, an executable code, a set of instructions or programs for the
computer system or database. Thus, for Unix everything that is just a storehouse of information
is a file.

1)File Names:
A file name may be given using any of the ASCII characters except the NULL character and the
forward slash (/). Files are constructed and are used by names.
The length of a file in UNIX can be up to 256 characters. Most of the file systems consider only
the first 14 characters of a file name and other characters, if any, are neglected.
The file names in UNIX are case sensitive.
The recommended characters to construct a file name are.
e Alphanumeric characters (combination of letters and numeric digits).

e The period (.), the hyphen (-) and the underscore ().
The metacharacters are not recommended to use as file name.
A Unix file name may or may not have an extension. Only application software's impose this
restriction.Example, C compiler has .c extension, SQL scripts to have .SQL extension and so on.
A dot (.) character can be used to construct a file name. Any file name beginning with a dot
character is called hidden file or a dot file generally used to store specific information like
configuration or startup information.

2)Categories of Files:

Depending on the significance of the contents of the file and behavior of the permissions granted
to these files, UNIX files are classified into the following three categories.

(1) Regular Files

(i1) Directory Files

(ii1) Device Files or Special Files

(i) Regular Files

It is a randomly addressable sequence of bytes also called as ordinary files. Most of the files, like
data files, source program files, files containing unix commands or any text file are called regular
files. These files are created, changed or deleted by the user whenever he or she needs.

K Varada Rajkumar 1
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

ii) Directory Files
UNIX treats everything as a file, they need to be organized. Organizational details of files are
stored in files called directories or directory files (Directories are known as folders under the
windows environment). The directories point to some other directories called sub-directories.
The UNIX file system is organized as directories, where each directory can contain sub-
directories and/or files.
In general a directory file contains the following two information chunks.

1. The file name

2. It's Identification number (called the inside number).
These two information are stored in the form of a table. A user can create or remove directories.
It is the kernel that manages the directory files.
Directory Types
There are 4 types of directories available in UNIX.
a) Root Directory (/)
b) Home Directory
¢) Working Directory
d) Parent Directory

a) Root Directory (/)
The Root directory is the highest level in the hierarchy. It is the root of the whole file
structure. There is a reference point for all files, directories and sub-directories. This
reference point is known as root directory.
The root directory belongs to the system administrator and can be changed by only the
system administrator.

b) Home Directory
The directory into which a user enters automatically when she/he logs in is known as the
home directory or login directory. Every user has a home directory. It is created by the
system administrator whenever he opens an account for a user. Generally, home
directories are created under the /usr directory and will have login name as it's name.
Example
/usr/mgv is the home directory where mgyv is login name.

¢) Working Directory

The working or current directory is the one that we are in at any point in a session. When
we are not changing from our home directory, then our working directory is our home
directory. Our working directory changes automatically, when we change our directory.

K Varada Rajkumar 2
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

d) Parent Directory
It is immediately above the working directory or current directory. When we are in our
home directory, it's parent is one of the system directories. When we move from our
home directory to a subdirectory, our home directory becomes the parent directory.
(iii) Device Files
A device file is a point of interface to one of the computer's hardware devices. Thus, acts as a
communication channel between two or more co-operation programs.
Advantage
User can use a device without knowing the idiosyncrasies of the hardware.
Types of Device Files
There are 2 types of device files.
e Character Special Files

e Block Special Files

Character Special Files are related I/0O and used to model serial I/O devices like terminals,
printers and networks. These files process one character at a time. These files are also known as
raw device files.

Block special files are used to model devices like disk drives and magnetic tapes. These files
allow buffered blocks of data to be read from a device and sent to a device efficiently.

2) PATH NAMES

It specifies where a file is located in the hierarchically organized file system and is necessary to
know how to use pathnames to navigate the UNIX file systems. The route that is taken to reach a
file (of any type) in a file system is known as the path to that file. It is necessary to know how to
use path names to navigate the UNIX file system.

Two types of path names available in UNIX.
A) Absolute pathnames
B) Relative pathnames

A)Absolute Pathnames

Absolute Pathnames tells how to reach a file beginning from the root and always begins with a
slash(/) (from the root).

Example

/home/501/sample

K Varada Rajkumar 3
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

B)Relative Pathnames

Relative pathnames tells how to reach a file from the directory we are currently in. A directory or
a file under a present working directory can be accessed by providing this pathname. It never
begins with a slash(/).

Example

501/sample

3) OPERATIONS OR COMMANDS UNIQUE TO DIRECTORIES

A) List Directory (Is)

B) Make Directory (mkdir)
C) Change Directory (cd)

D) Remove Directory (rmdir)

E) Present Working Directory or Locate Directory (pwd)

A)List Directory (Is)
1.This command is used to list all the files in a current directory.

Syntax
$ls
Example
$ls
hspmu
rthyvn
n
$
group info
owner info file size e
creation/
SStehio ana link info modilication time
permission ‘ [file name
T | |
| |’|(HWJIW
K Varada Rajkumar 4
Assistant Professor
Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

Figure 5. File attributes

field1 field2 field3 field4
i r W - vt ta fras i She 3
= : (: A
file type group permissions
user permissions others permission

Figure 6. File type and permissions fields

2.The files can be listed row-wise by using the option -x.
Is -x

hspmurthy gun

$

3.All hidden files present in the present working directory can be listed using -a command.
Is -a

bbnhsp
murthyv
nn

$

4.The above listing can be obtained in the row format using the -x option along with the -a
option. Is -xa
. bbnhspmurthyvnn

5.The Is can be used to check if a file already exists or not by using the name of the file as an
argument. $ls my file myfile

$

K Varada Rajkumar 5
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

B)Make Directory (mkdir)

1.Themkdir command is used to make one or more new directories. Upon execution a new
directory called hmk is made under the present working directory.

Syntax

$mkdir directory-name

Example
$mkdirhmk

2.Assuming the present working directory is mane, first two sub-directories are created first
using the mkdir command as follows.
$mkdir bin house

$

room portico

Figure 7. A typical directory

3.Next, house is made as current directory using the cd command and then the sub-directories
room and portico are made using the mkdir command.

$cd house

$mkdir room portico

$

4.The entire directory is created in the single step $Smkdir

bin house house /room house/portico.

C)Change Directory (cd)

The cd command is used to change the current working directory. This command uses a
pathname as it's argument that could be either absolute or relative pathnames.

If the c¢d command is used without any argument it automatically puts the user into the home
directory.

K Varada Rajkumar 6
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

Syntax

$cd directory-name

Examplel

$cd userl

Example2

The present working directory is /usr/mgv, it could be changed to /usr/dvm by using the CD
command.

$cd /usr/dvm

$

D)Remove Directory (rmdir)

This command is used to remove one or more directories or sub-directories. Directories can be
removed using this command only when they are empty. However, if user wants to delete with
remove without caring they are empty or not , it could be done by using rm command with the -r
and -f options.

Syntax

$rmdir directory-name

Example
$rmdir userl

Assuming that the present working directory is /mane/house the following command line is used
to remove the directory portico:
$ rmdir portico #current directory must be house.

E)Present Working Directory or Locate Directory (pwd)

The directory in which a user works at any point of time is known as the current directory or
present working directory. A current directory may or may not be the user's home directory. This
command is used to find out the current or present working directory. The pwd command always
gives the absolute path name.

Syntax

$pwd

Example $pwd
/usr/mgv
$

It has no options and attributes.

K Varada Rajkumar 7
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

4OPERATIONS OR COMMANDS UNIQUE TO FILES

A) Create and edit file (vi)
B) Display file (more)
C) Print File (Ipr)

A)Create and edit file (vi)

The most common tool to create a file in UNIX system is text editor such as vi. Other utilities are
cat and ed. UNIX provides several utilities to edit text files.

The most common is a basic text editor such as vi.

A vi editor can be invoked in anyone of the following ways.
1.1t is invoked to create a new file by giving the vi command without any argument as follows.
$vi

A blank space with 1) the cursor on the left- top corner on the screen. 2) a message of the form
new in the last line and 3) tidle characters (~) in the beginning of all the other lines. The editor
will be in the command mode.

2.The second method is giving the vi command with the filename as it's argument as follows.
$vimaland

The behavior is exactly the similar to the first method except that the message on the last line
will be maland [New File |

3.An existing file, say test file, can be invoked with the filename as the argument of the vi
command

$vitestfile

Other basic text editor is sed.

All of the basic edit utilities can create a file,but only some can edit one.

B)Display file (more)

This command is used to view the contents of a file page by page.It can take one or more file
names as it's arguments. One screen full information is displayed at a time.After each screen full
of information is displayed, the more pauses with a message appearing at the bottom left corner
of the screen.

K Varada Rajkumar 8
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

Syntax
$more filename

Examplel

$more trial.txt

This is a pager program and is a contribution of the Berkeley school. This command is used to
view the contents of a

-- more(15%)-

All three files are displayed one after the other, page by page, starting from the first line.The
complete display of the first file the more command pauses and a message "--more--"(Next file:
sample)" appears.To continue user has to press space bar or give the f command.

Example2
$more samplel sample2 sample3

Display options for the more command

-c (clear) tells more to display each screen top to bottom rather than scrolling

-d User can go half page forward. One can go forward by just a line using the return key.
-f one can go forward by one page

-b one can go backward by one page

-s (squeeze) displays the output with single-line spacing without affecting the original file.
=(equal to) current line number can be displayed.

The previous command can be repeated using the . (dot) command.

C)Print File (Ipr) Ipr means line printer. This command is
used to print a file.

Syntax

$lpr filename

Example
$lpr story

K Varada Rajkumar 9
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

SYOPERATIONS OR COMMANDS COMMON TO BOTH FILES

ANDDIRECTORIES

A) Copy (cp)
B) Move (mv)
C) Rename (mv)
D) Link (In)

E) Remove(rm)
F) Find (find)

A) Copy (cp)

1.

This command is used to create a duplicate of a file, a set of files or a directory. The cp
command copies both text and binary files. This command can also be used to copy a file
or group of files. First argument is source filename and second is destination filename. If
the destination file exists already, it overwrites. If the destination file doesn't exist It is
created and the contents of source file is copied into it.

Syntax

$cp source-file/directory destination-file/directory

Examples

$cp filel file2

$cp section] preface
$cp dirl/filel dir2/file2
$cp dirl/filel dir2

$cp filel dir2/file2

2. Accidental overwriting can be avoided by interactive option (-i) $cp -i sectionl preface
cp: overwrite 'preface'?
3. A file can be copied into another directory where programs is a directory under the
current directory.
$cp sectionl programs/preface
$cp sectionl programs
$
Where section] and preface are file names, programs is directory name.
K Varada Rajkumar 10
Assistant Professor
Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

4. Copy three files into directory.

$cp sectionl section2 section3 chapter

5. Copy all files and sub-directories under a current directory into another directory can be

done by recursive option.
$cp -r sreddesd
$

B) Move (mv)

1.

2.

3.

The mv command is used to move either an individual file, a list of files or a directory.
This command takes a minimum of 2 arguments. The first argument is name of a file or a
directory to be moved and second argument is also a filename or directory name.

Syntax
$mv source-file/directory destination-file/directory

Example
$mv dirl/filel dir2
$

A file from the current directory can be moved to another directory.
$mv review/usr/mgv # moves the file from the current directory to the mgv directory.

A group of files can be moved into a directory.
$mv sectionl section2 section3 chapterl

$

C) Rename (mv)

1.

UNIX doesn't have a specific rename command. The mv command is used to rename a
file or directory.This command takes a minimum of 2 arguments. The first argument is
name of a file or a directory to be renamed and second argument is also a filename or
directory name.

Syntax
$mv old-file-name new-file-name

K Varada Rajkumar 11
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

Example
$mv sectionl section2
2. A directory can be renamed.
$mv mgvhdr #both mgv and her are directory names

C) Link (In)
A file has more than one name and one of the reasons to have multiple filenames is that
of security. The In command is a standard Unix command utility used to create a hard
links or a symbolic links(symlink) to an existing file.
e Hard Links
A new filename can be linked to an existing filename and inturn linked to its physical file
on the disk. If trial is an existing filename and test is another name for the same file, the
two are linked by the In command.
$In trial test
$
Advantages
e Changes or modifications made by one will be applicable to other user also.
Limitations
1. Directories cannot be linked.
2. Files across two different file systems cannot be linked.
e Symbolic Links
Symbolic links are files that hold the pathname of the original file. These are obtained by
using command In with option -s.
$1n -s trial inspect; $1s -li trial inspect
1372 -rw-r--r-- 1 mgvesd 568 Nov 11 13:10 trial
8975 lIrwxrwxrwx1 mgvesd 4 Nov 11 13:15 inspect->trial $
In the above, trial is filename and inspect is link name. Here, inode numbers are different,

the file type of link file is 1,size of link file is 4 bytes, which is sufficient to hold a path
name and the link value of either of the files is not altered.

E) Remove (rm)
1. The command rm is used to remove or delete files.This command can delete more than
one file with a single instruction.

Syntax
$rm filename

K Varada Rajkumar 12
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

Example
$rm sample example # removes two files

$

2. $rm programs/sample #sample file under programs directory is removed

3. Directories are usually removed using the command rmdir but, when the recursive option
-r is used all files and sub-directories under the current directory are remove.
$ rm -r*
$

4. To remove write protected files use -f option. To avoid accidental removal of files it is
advisable to remove files interactively.

F) Find (find)
In a large file environment, it is difficult to find a given file. It is like a file search option
in any OS environment.

Syntax
$find filename

Example
$find file23

Examples illustrating the behavior of the find command

1. Searches for the file bin on the basis of the name criterion in the entire file
structure.
#find /-namebin -print
/root/bin
/root/home/bin
/usr/li/me/bin
/usr/kerberos/bin
/bin
#
2. Searches for all the awk files on the basis of the -name option in the current
directory because of the dot (.) character in the path list.
#find .-name "*.awk" -print
./marks.awk

K Varada Rajkumar 13
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

Jquest.awk
Jpl.awk
i

3. Searches for all the files that have been modified or created within last 2 days
because of -mtime option and the -2 argument in the selection criterion.
#find -mtime -2 -print
/spel.chk
Jilesz
/salary.sh
i

4. Searches for the file sample in the current directory recursively and removes it
because of the -exec option and the rm command with it.
#find .-name sample -exec rm{}?\;

5. Searches for the shell script example.sh in the current directory and assigns
execute permissions to all categories of its users. #find .-name example.sh -
exec chmod x {}";"

6. Locates all the files in the current directory that have an extension .c in their
names and are larger than 40 blocks in their size and displays path of all the
selected files.

#find .-name "*.c" -size +40 -print

7. Searches all awk files in the current directory that have been modified within last
15 days.

#find .-name "*.awk" -mtime -15 -print

8. Locates all the regular files in the home directory and displays their path. # find
$HOME -type f -print

9. Searches the entire file system recursively for the files owned by either joshi or
paul.
#find / \ (-user joshi -o -user paul \) -print -exec rm {}\;

10. Selects all the files in the current directory that are not owned by the user jacob as
the selection criterion is made up of the negation (!) operator and the -user option.
#find . !-user jacob -print

K Varada Rajkumar 14
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

6)INODES

As soon as a file is created, the kernel allocates a unique inode number to that file. An inode
number is a positive integer number, the maximum value of which depends on the maximum
number of total inode numbers of the file system. The maximum value of the total inodes is
decided by the person who creates the file system.

It is through these inode values that physical files on a secondary storage area are accessed.
Actually inode stands for index node. These numbers are called index nodes as these numbers
are used as indexes to access any required inode structure.

File type 12}

Link information 12}

UID of the owner 12}

GID of the owner {2
B

Figure 8. An inode structure
The inode structures will be housed in a separate block called the inode block on the secondary
storage medium of 64 -byte long. As soon as an inode is allocated to a file, the corresponding
inode structure gets filled up with relevant information such as file type, it's link information,
size, times associated with it and so on of the file. Neither the file name nor it's inode number

would be present in inode structure.

If required, the inode value of a file can be known using the Is command with the option -i, as
shown in the example.

$ls -imyfile

1372 myfile

$

Usually inode number 1 will be reserved for bad blocks handling and inode number 2 will be
reserved for root directory.

K Varada Rajkumar 15
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

7)THE DIRECTORY HIERARCHY

In Unix all related files are grouped into a single group. For example, all binary files are grouped
together, all temporary files are grouped together and all device files are grouped together. Each
group constitutes a directory or a sub-directory and is referred by an appropriate name. All the
grouped files that is directories, sub-directories are arranged in the form of an inverted tree like
hierarchical structure as shown in figure. This inverted tree like organization is called the file

system.
/

|
‘ bin |‘ tmp H dev i_ etc sbin Al usr var
2.4
cat /date7/ who/ mgv lib bin

/ fdO // 1p0 / rdsk /sample//example/
—— represent directories E— represent files

Figure 9. A typical Unix file system
There is a reference point for all files, directories and sub-directories and is known as root
directory. The root directory is represented by forward slash (/).

The root will have many number of sub-directories and inturn they may have sub-directories or
files within them. Thus, bin, dev, etc and usr are the sub-directories to the root directory. cat, date
and who are Unix program files under the sub-directory bin and so on. Leaf nodes always
represent either a regular file or a special file, that is, a device file.

1.Parent -child Relationship

There is parent-child relationship between directories, sub-directories and files. For example, fd0O
is the child of the directory dev which itself is the child of the root directory. The root directory
will not have any parent.

K Varada Rajkumar 16
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

2.Directories and Files of Same Name

Directories/files of same names under different directories is valid. However, having same name
directories as well as files in the same path is forbidden.The bin directory is there in the root
directory as well as in sub-directory usr as they exist in different paths this is valid. The path of
first bin is /bin whereas the path of the second bin is /usr/bin.

3.Contents of Different Directories

1.

The bin directory holds all binary or executable programs of the system.These are Unix
command programs like who,cat,date and so on.

The usr is the directory which has all the user's home directories. This holds user-oriented
directories such as /usr/man, /usr/bin, /usr/sbin, /usr/games, /usr/docs and other
directories.

The etc directory holds all configuration files of the system. Sometimes it can also holds
some system administrative command files.

The sbin directory has system files that are usually run automatically by the Unix system.
The dev directory holds device files under it.These are special files that represent the
computer components such as keyboard,printer or disk. For example, the terminal on
which one works is one of the /dev/tty files.

The var directory holds information that varies frequently. For example, user mailboxes
that are found in the /var/mail directory.

The tmp directory contains the temporary files created either by the users or by the Unix.

Generally, these files are deleted when the system is shut down or restarted.

Thus, in every group a directory is made or created for a specific purpose and all interrelated files
are put within them.

Table 2.1: Interesting Directories (see also hiex(7))
F root of the file systcm
<bin essential programs in executable form (° blnnnc:{ "y
Sdew device files
~“atc system miscellany
Sfetcsmotd login message of the day
Sfetocspaasawd password file
ZL1Lib essential libraries, etc,
< mp temporary files: cleaned when system is restgrted.
Zumndisx executable form of the operating system | |
Suase user file system A 1
SumsrsSadm system administration: accounting info., etc.
susrsbin user binaries: exrofff, ctc.
SuscsSdict dictionary (woxrds) and support for spel1(1)
SuarSgames Elme programs
susr-sinclude header files for C programs, e.g. math.h
Fusrsincludes-sys system header files for © programs, e.g. inod
susr-slib libraries for C, FORTRAN, ctc.
SusrSman on=-line manual
susrSmansman manual pages for section 1 of manual
susrsmdec hardware diagnostics, bootstrap programs, etc
susr-news community service messages
susxr - pub public oddments: see ascii(7) and egnchas
sFusrsro source code for utilities and libraries
susrsasrcsomd source for commands in “bin and Juax-b
susrssraslib source code for subroutine ubr-rhﬁ .
Fusrsaspool working directories for ce
Fusrsspoolslpd line printer temporary dlrecw
susr -spool-s-mail mail in-boxes
| Fusrsspoclsuucp working directory
3 rs source forthc ‘operatis
i

Table 1 Interestlng Dlrectorles

K Varada Rajkumar 17
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

8)FILE ATTRIBUTES AND PERMISSIONS

i) Ownership of a file

The person who actually creates a file will be the owner of that file. The owner of the file is also
called the user. Among the three types of users i.e., owner, group and others in the domain of
Unix,the owner has special privilege- the ability to modify permissions of the file of their own or
group or others.The supervisor or system administrator also enjoys this power.

owner group alt others

Figure 10. Types of users
User(owner) names are available in a file called the /etc/passwd file and the group names are
available in /etc/group file.
UNIX actually keeps track of owners and group as numbers rather than as names.User

Identification numbers(UIDs) are mapped to user names in the /etc/passwd file and group
Identification numbers (GIDs) are mapped to group names in the /etc/group file.

ii) FILE ATTRIBUTES

Any type of file will have (1) a name (2) creation, modification and access times. (3) a size (4) an
owner (5) group to which the owner belongs to. (6) Link Information. (7) permissions (8) inode
number associated with it. All this information about a file are called it's attributes.

iii) File Permissions
Unless otherwise permitted, no one is allowed to access and use a file. A file may be accessed for
one or more of the following purposes

1. Reading

2. Writing

3. Executing

K Varada Rajkumar 18
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

These permissions may differ depending on the category of users.

User/Owner

Group

Others

By default, the owner will have only read and write permissions, and the group and others will
have only read permission.

In case of regular files, read, write and execute permissions allows the users to read, write and
execute the files respectively.

Example

-TW-T- - - -

The file and directory permissions are depicted as,

write permission

Sl l =~ permissions field of
] a category of user

read permission , execute permission

Figure 11. Permissions fields of a category of user

9FILE PERMISSION COMMANDS

a)The file COMMAND -KNOWING THE FILE TYPE

1. The file command is used to identify the type of the files on the basis of their contents.
When this command is used, it reads either the header or first few hundreds of bytes of
the file and an educated guess is made on the type of the file.

2. Certain category of files such as executables are recognized by the information stored on
their headers - the information stored in the first-byte. This first-byte information is
known as the magic number.

K Varada Rajkumar 19
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

3. The correlation between magic numbers and file types is contained in the file /etc/magic.
For example the octal 410 is the magic number of executable files. These magic numbers
can be verified by taking the octal dump of the relevant file.

4. For text files, the clues may not be available directly with the magic numbers. Rather,
such clues will be available deeper in the file. Example, the clue for identifying the text
files could be, the use of a new line character at the end of every line. The presence of
words such as #include indicate a C source file, lines beginning with a period may
indicate nroff or troff and so on.

Examples $file
mgvmgv:ASCI

I text

$file /bin

/bin: directory $file
mac.cmac.c: ASCII C
program text
$touch liju $file
lijuliju: empty $cd
/bin $file cshesh:
symbolic link tcsh
$

In all the examples shown above, filenames have been given in the form of relative
pathnames. Filenames can be given in the form of absolute pathnames also. Here, it may
be recalled that the listing command Is with the flag option F also gives an idea about the
file types but in a limited way.

b)THE chmod COMMAND- CHANGING FILE PERMISSIONS

The chmod command is used to change the permissions of a file after it's creation. Only the
owner or the super user can change file permissions.

Syntax

$ chmodassignment expression filename

The assignment expression holds the following information.
1. The information about the category of users { user -u, group -g, others -o, all -a}.
2. The information about granting or denial of the permission { the operators +, - and =}.

3. The information about the type of permission { read -r, write -w, execute -x}.

K Varada Rajkumar 20
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

Examplel

$chmodu+x sample

$1s -1 sample

-TWXT- -T-- 1 mgvesd 5180 Jan 07 12:06 sample
$

Here, sample is file name u+x is the argument expression where, u stands for user, x for
execution and + for granting.

$ chmodugo+x sample; Is -1 sample

-TWXT-XT-X I mgvesd 5180 Jan 07 12:06 sample

$

Example2

ugo (user,group and others) can also written as a (all).
So, ugo+x can also written as a+x.

$chmoda+x sample; Is -1 sample or

$chmod +x sample; Is -1 sample

Example3

The chmod command can work on more than one file at a time as shown in the following
example.

$chmodu+x samplel sample2 sample3

$ls -1 sample1 sample2 sample3

-rwxr--r-- 1 mgvesd 5180 Jan 07 12:06 samplel

-twxr--r-- 1 mgvesd 6191 Jan 07 01:16 sample2

-rwxr--r-- 1 mgvesd 7101 Jan 07 02:26 sample3

$

Example4

$chmodu-x,go+x sample

$ls -1 sample

-rw-r-xr-x 1 mgvesd 5180 Jan 12:06 sample
$

K Varada Rajkumar 21
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

a)Relative and Absolute Permissions Assignment

The changes made were relative to the present settings. In other words, an expression like u+x
sets the execute permissions to the user. It will not disturb other settings of either this or any
other category. This type of permission assignment is called relative permission assignment. The
use of the = operator in the chmod expression assigns or grants only specified permissions and
removes all other permissions. This type of granting permissions is called absolute permission
assignment.

Example

$chmod a=r sample; Is -1 sample

-1--r--1r-- 1 mgvesd 5180 Jan 07 12:06 sample
$

From the output of the above example, one may observe that all have been given read
permissions after removing the permissions associated with the file earlier.

b)Permissions with Octal Numbers
File permissions can also be assigned using octal numbers. In this representation

1. 44(100 2) assigns read permission, 25 (010,) assigns write permission and 15(001 2)
assigns the execute permission and so on.

2. Permission assignments made using octal numbers are always absolute assignments. In
other words, octal numbers cannot be used for relative permissions assignment.

For example, a 65 (110),assigns both read and write permissions and denies the execute
permission 5g (101), assigns read and execute permissions and denies write permission.
Because there are 3 categories of users, one has to use three octal digits in the expression
field, as shown in the following example.

Examplel

$chmod 644 sample; Is -1 sample

-rw-r--r-- 1 mgvesd 5180 Jan 07 12:06 sample
$

Example2
The $Schmod 761 sample is the octal notation equivalent of the following command.
$chmod u=rwx, g=rw, o=x sample

$

K Varada Rajkumar 22
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

3. Permissions can be granted to all the files and sub-directories in a directory by using the
recursive option (-R) with the chmod command. For this the argument must be the
directory name. For example, the execute permission to all category of users with respect
to all files and directories under the current directory can be granted using the command
given below.

Example3

$chmod -R a+x

$

C)THEchown COMMAND- CHANGING THE OWNER OF A FILE

Every file has a owner. When a file is created, the creator becomes the owner of the file. Only the owner
can change the major attributes of a file (ofcourse, the system administrator also can do it). Sometimes it
is necessary to change the ownership of a file.

1. There are two ways inwhich the ownership can be changed- by copying the file into the target

user's directory, and by using the chown command.

For example, the file sample from the directory of hmk is copied to the home directory of
someone else, say mgv. Then mgv becomes the new owner of the file sample. If, now, the oldfile
and newfile are listed using the Is -1 command, one sees that every detail will be same except the
owner.

2. The copying method of changing the ownership has the following disadvantages:
e It creates an additional file and thus uses extra space.

e the new owner should have the knowledge about the permissions of the file.

3. Changing the owner of a file using the chown command is more simpler and direct method of
changing the ownership. This command takes two arguments, login name of the new user and the
name of the file. An example is given below.

$1s -1 sample

-rwxr- - 1-x 1 rajesd425 May 10 20:30 sample

$chown Kumar sample; Is -1 sample

-I'WXT- - I-X 1 kumarcsd 425 May 10 20:30 sample $

K Varada Rajkumar 23
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -2

4. Ownership once surrendered cannot be reinstated. Also moving a file doesn't change the
ownership. Further this command can use the -R option-- the recursive option. When this optionis
used the ownership of all the files in the current directory are changed.

d) THE chgrp COMMAND - CHANGING THE group OF A FILE

In Unix, all files not only belong to an owner but also to a group.

2. One may need to change the group of a file and certain circumstances such as when new groups
are set up on a system or when files are copied to a new system. This is done by using the chgrp
command.

3. Only the owner of a file can change the group (ofcourse, the system administrator also can do the
same). Changing the group using the chgrp command is also straight forward and takes two
arguments; the name of the new group and the name of the file.

Example
$chgrp planning sample
$

As shown above, the name of the new group must appear as the first argument and the name of
the file has to appear as the second argument. The recursive option-R can also be used with this
command. When used with the -R option, the group of all the files under current directory is
changed.

K Varada Rajkumar 24
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

Using the Shell

A Shell provides you with an interface to the Unix system. It gathers input from you and
executes programs based on that input. When a program finishes executing, it displays that
program's output. Shell is an environment in which we can run our commands, programs, and
shell scripts.

COMMAND LINE STRUCTURE

Command is a program that tells the unix system to do something.
Syntax:
Command [options] [arguments]

Where an argument indicates on what the command isto perform its action, usually a file or a
series of a file
An option modifies the command, changing the way its performs.
Commands are case sensitive.
Ex:
Command or commands are not the same.
Options are generally preceded by hyphen (-)
For most commands, more than one operation can be strung together.

Syntax:

Command -[option1] -[option2] -[option3]
Ex:

$ls—a-1-R

Options and syntax for commands are listed in the main page for the command
META CHARACTERS

Unix Shell provides various meta characters which have special meaning while using them in
any Shell Script and causes termination of a word unless quoted.

The Asterisk as a Metacharacter (*)

The asterisk (*) is a universally known metacharacter. It means zero or more of any character
when searching for a pattern. For example:

Is *.c

K Varada Rajkumar 1
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

cselabz@cselab2-OptiPlex-7020: ~

selabz@cselabz- DpttPlex 7028:~5% 1s
.out ex |pleq desktop

selab2@cselab DptiPLex—?020:~$ Ls*_ ¢
s*.c: command not Tound
selab2@cselab2-0ptiPlex-7020:~5% 1s *.c
elects.c
cselab2@cselab2-0ptiPlex-7820:~5 vi madhavi
selab2@cselab2-0ptiPlex-7020:~5 sh madhavi
naga madhawvi latha kakarla
SPIBb2@CSPIab2 OptiPlex-78208:~-% 1=

examples.desktop ic

madhawi tus

ab“ Dpthle 7020:-% vi latha

selab2@cselab2-0OptiPlex-78208 vi lLatha.c
selabzZ@cselab2-0OptiPlex-7020 1s
.out examples.desktop latha.c =
3 latha madhavi Pict X= selects.c
se Hh?@rqplah? DpTIPlPX 7020:~% vi ronith
“selab2@cselabz-OptiPlex-7020:
atha.c selects.c
ccelab2@cselab2-0OptiPlex-76208:~5 ||

The Carat as a Metacharacter (*)
The carat (*) is used to denote the start of a line or a string. So how is it used?
The Is command lists the files in a folder, as follows:

Is —a

[f you want to list the files in a folder that begin with a certain string, for example, gnome, the
carat can be used to specify that string. For example:

Is —a | grep ".dash

This lists the files that start with .dash. If you want files that have .dash anywhere in the

filename, use the asterisk.

£ == cselab2@cselab2-0OptiPlex-7020: ~
selab2@cselab2-0ptiPlex-7020:-% sh madhavi
naga madhavi ldtha kakarla

1s -a

-l f S »S
- .ICEauthority -F . Xauthority
-.out D P latha .profile .Xxsession-errors
bash_history Public .Xxsession-errors.old
bash_logout : m o I ronith
bashre a madhawvi selects.c
1'.| T =

1piz

Selabzmcselabz Dpthlex TO20: ~

history

_logout

rc
selab2@cselabZ2-0ptiPlex-7020:~-5 1ls
adhawvil
selabZz@cselabz-optiPlex-7020:~5 |}

K Varada Rajkumar 2
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

The Full Stop as a Meta character (.)

The Full Stop (.) indicates the current position when running commands such as cd, find, or sh.
In applications such as awk, grep, and sed, it's a wildcard that denotes a specific number of any
character.

Now look at this command:

Is | grep r..ith

The pipe (|) metacharacter sends that list to the grep command, which searches for any line in
the list that contains r..ith, where the periods refers to two of any character.

The Dollar Symbol as a Metacharacter ($)

The dollar symbol ($) has multiple meanings as a metacharacter in Linux. When used to match
patterns, it means the opposite of carat and denotes any pattern that ends with a particular string.
For example:

Is | grep th$

This lists all files that end with th.
The dollar symbol is also used to access environment variables within the bash shell. For
example:

#! /bin/bash

export name=MADHAVI
echo $name

The line export creates an environment variable called name and sets its
value MADHAVI. To access the environment variable, use the $ symbol. With the $ symbol,
the echo $name statement displays MADHAVI. Without it, the echo name statement displays
the word name.

Escaping Metacharacters (\\)

Sometimes you don't want the metacharacter to have a special meaning. For example, if a file is
called 1.tha and another file is called latha.
Now look at the following command:

Is | grep l.tha

What do you think is returned? Both l.tha and latha are returned because both match the pattern.
To only return L.tha, escape the full stop to actually mean a full stop, as follows:

Is | grep I\\.tha

K Varada Rajkumar 3
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

cselabZdcselabZ-OptiPlex-TOo20: ~—
selabZ@cselabZ-OptiPlex-7828:~5% 1s |

H

h
cselabz@ocselLabzZ-OptiPLex -7
an
ith
ith
cselabZ@gcselabZ-OptiPlLex- 7020 : ~5

~OpEtiPLex - 70

s=elabZ-0OptiPlLex - 762
elab ptciPLex-7

Brackets as a Metacharacter ([])

We can use brackets (|]) when searching for patterns. Brackets specify specific letters to match
anywhere in the pattern. For example:

Is | grep [mrl]

This lists all files that contain the letters m, r, or 1.

cselab2pcselab2-0OptiPlex-7820:~-S 1s | grep [mrl]
Documents
Down Loads
exanples.desktop
atha
atha.c
-tha
adhawvi
Pictures
Pubiliic
ohan
ohith
onith
selects.c
STemplates
cselab2@cselab2-0OptiPlex-708280:-% 1= | grep [a-1]
-out
Desktop

rDocum=nts
=

= -

The Accent Grave Metacharacter (')
In the examples above, the pipe metacharacter sends the results of one command (like the Is

command) to another command (like the grep command).

K Varada Rajkumar 4
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

An alternative way to do this is to use the back quote, also known as the accent grave (°), to
insert the results of one command into another command. To do this, store the result of one
command in a variable. For example:

command="1s-lah’

command="1L=s -lah”
LTabz-optiPle 3 Scommand
total ®xr-» 19 3 b2 - E 4 .0K Jun : o Arwar -xr->
3 rooct <. Jun 206 < x 1 cselab2 3 12K Dec 9
2819 a Cs -4K Jun 13 -.bash_history
i — - - 5
elab2z2 3.0K
K Dec 30 = ~.cache > = 2 2 4 . DK Jun
pLz drwx- -—— = - 2 - 2K 2 o ~config
cselab2 = F - . 219 . T > > »x 3 cselabz2
K Jun 16 23 cto = cCse 2 elabz =25 Jun 26
4. 8K Jun 26 20129 Document
Down Loads -

«
4. 80K Jun 16
ICEauthor LTy
g = = 1 cselLab2
=18 499 - > = 2 _; 2 4 _ 8K Jun (=1
e el =] 2 = R | 2 ha -rw-rw-
2 36 Jun a awi cselabZ2 csela
-mozilla drwxr b 2 se cselabz 4. 8K Jun 26 26 Music drwar-»xr->
2 cselab?z — - - r 2819 PLctures
i 1 cselabz

fselab2 =t Tab2
¢ ©92:1@ reohith
=Labz
Aug oS
drwaxr
=eLabz c=s - 2
347 Jun o 48 (=] errors
K Jun 123 12:29 .> sion-errors.old
cselabZ@cselabZ-OptiPLex- 7020 : ~5

The Shell Metacharacters are listed here for reference.

Symbol | Meaning
> Output redirection, (see File Redirection)
>> Output redirection (append)
< Input redirection
R File substitution wildcard; zero or more characters
? File substitution wildcard; one character
[] File substitution wildcard; any character between brackets
‘emd’ Command Substitution
$(cmd) | Command Substitution
| The Pipe (])
; Command sequence, Sequences of Commands
| OR conditional execution
&& AND conditional execution
() Group commands, Sequences of Commands
& Run command in the background, Background Processes
Comment
K Varada Rajkumar 5
Assistant Professor
Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

Symbol

Meaning

Expand the value of a variable

Prevent or escape interpretation of the next character

<<

CREATING NEW

Input redirection (see Here Documents)

COMMANDS:

When set of commands are required to be repeated for specific no of times, then it would be
better to make them in to a new command.

» They can be assigned with user defined names.

» Users can use them
Example:1

$pwd

/home/cselab2

$echo ‘pwd’ > KNML
$cat KNML

pwd

$sh < KNML
/home/cselab2

Example:2

$pwd

/home/cselab2

$echo ‘pwd’ > KNML
$cat KNML

pwd

$mkdir bin

$echo SPATH
/home/cselab2/bin
$mv KNML bin

$cd bin

K Varada Rajkumar
Assistant Professor
Department of CSE

like regular commands.

Redirecting pwd command to file Called KNML

#Executing KNML file like pwd command using sh command

Redirecting pwd command to file Called KNML

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

-optiPLex- 7T —% echo " pwed = KMML
-—DptiPLex -7 ~-%5 Cat KMNMIL

b2 -OoptiPLex-7 2 = mlkkdir madhawil
create di madhawi” = File exists
ab2 -OoptiLP ~S pwd

optiFPle FEZO echo "pwd' = KMML
~—OptilPlLex-7O2 ~ cat KrMML

lTabz-optiPlLex-702 mkdir abc
LabZ-OptiPlLex- 702 echo SPATH
alsshbin: Jusr /fLoca £ sSr/Ss n:Jusr/bin: /sshin: Jbin: Jusr/games: Jusr /fLoc

mw KMML abc
cd abc
beSs chmod +x KHNML
bos sh KMML
S hoame /
oz ~soabes H

Example:3(As an Internal command)
Example:4(As an External command)

cselab2@cselab2-0OptiPlex-7020:~5
cselab2@cselab2-0ptiPlex-7020:~/kartheek$ sh praneeth
fhome fcselab2 fkartheek
cselab2@cselab2-0ptiPlex-7020:~/kartheekS cd
cselab2@cselab2-0OptiPlex-70268:~5 who | wc -1

2

cselab2@cselab2-0ptiPlex-7820:~5% echo 'who | wc -1' = sai
cselab2@cselab2-0ptiPlex-7020:~5 who

cselab2 :0 2020-06-16 08:48 (:0)

cselab2z pts/fe 2020-06-16 10:38 (:0)
cselab2@cselab2-0OptiPlex-7028:~5% cat sai

who | wc -1

cselab2@cselab2-0ptiPlex-7028:~5 sh < sai

2

cselab2@cselabz-0OptiPlex-7020:~5 mkdir msp
cselab2@cselab2-0OptiPlex-7020:~5 echo SPATH
fusrflocalfsbin: fusr/local/bin: fusr/sbin:fusr/bin:/sbin:/bin: fusr/games: fusrfloca
1/games

cselabZ@cselab2-0OptiPlex-7028:~5 mv sail msp
cselabZ2@cselab2-0ptiPlex-7020:~5 cd msp

cselab2@cselab2-0ptiPlex-7020:~/mspS chmod +x sail
cselab2@cselabZ-0ptiPlex-7020:~/mspS sh sal
2

COMMAND ARGUMENTS AND PARAMETERS

The shell programs will interpret the arguments such as filenames and options while running the
program.

Example:

$ cx sample

This command is shorthand for

$ chmod +x sample

The contents of cx are

chmod, +x and sample

K Varada Rajkumar 7
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

When shell executes file containing commands, every occurrence of $1 will be replaced by first
argument ans $2 will be replaced by second argument and so on.

Let cx contain

$chmod +x $1

If the below command is run

$cx sample

Here sub shell will replaced $1with first argument “sample”
Shell can handle even multiple arguments

$ chmod +x $1$2 $3 $4 $5

A shorthand notation for this would be

$ chmod +x $*

The argument $0 represents the command to be executed.

PROGRAM OUTPUT AS ARGUMENTS

The shell allows the standard output of one command to be used as an argument of another
command.

The shell executes the command enclosed within single quotes and replaces the command with
standard output. This is called command substitution.

Syntax:

‘command’

Ex:1 (command substitution)

cselab2@cselab2-0ptiPlex-7020:~5 echo current date is 'date'
current date is date

cselab2@cselab2-0ptiPlex-7020:~5 echo current date is "date’
current date is Tue Jun 16 11:35:05 IST 2620

Ex:2 (command substitution to generate useful messages)

cselab2@cselab2-0ptiPlex-7020:~5 who

cselabz :0 2020-06-16 08:48 (:0)

cselabz pts/o 2020-06-16 11:34 (:0)

cselab2@cselab2-0ptiPlex-7020:~S echo "current users working on the systems are
‘who | we -1°"

current users working on the systems are 2

Ex:3 (command substitution in shell scripts)

2dcselabZ-0OptiPlex-7020:~5 cat = sample.s
echo Number of users logged on to the system are "who | wc -1°
echo The present Working Directory is “pwd”
-cselabZ@cselab2-0ptiPlex-7020:~5 sh sample.sh

MNumber of users logged on to the system are 2
The present Working Directory is jfhome/cselabz
cselabZ@cselabZ-0OptiPlex-7020:~5

K Varada Rajkumar 8
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

b)

UNIX PROGRAMMING UNIT -3

SHELL VARIABLES:

» A Variable Is a data name used to store data value.
» Variables are defined and used with a shell.
» Shell Variables are three types
1. System Variables
1. Local Variables
iii. Read-only Variables

i SYSTEM Variables:
These variables arc also called as Environment Variables.
» These variables are set either during boot sequence or immediately after logging in.
» The working environment, under which a user works, depends entirely upon the values of these
variables. These are similar to global variables.
» Represented in Uppercase letters
» The different system variables are

a. PATH
b. HOME
c. IFS

d. MAIL
e. SHELL
f. TERM

The PATH variable:
The PATH environment variable has a special format. Let's see what it looks like:
$ echo SPATH
/ustr/local/bin:/bin:/usr/bin:/sbin:/usr/sbin:.
It's essentially a :-separated list of directories. When you execute a command, the
shell searches through each of these directories, one by one, until it finds a directory where
the executable exists.

The HOME variable:
It indicates the home directory of the current user: the default argument for the cd built-
in command.
Ex:
$ echo $home
/home/501

The IFS variable:

It indicates the Internal Field Separator that is used by the parser for word splitting after
expansion.

The default tokens arethe three white space tokens

» Space

» Tab

» New line

K Varada Rajkumar 9
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

Because all these are non-printable characters, they can be seen or verified using
the od command.
Example:
$echo “$IFS” Tad -be
0000000 040 011 012 012
\t \n \n
0000004
The option —b displays octal value of each character.
The option — displays the character itself.

d) The MAIL variable:
» This variable holds the absolute pathname of the file where user’s mail is kept
» Usually the name of this file is the user’s login name

Example:
$echo SMAIL

/var/spool/mail/5

e) The SHELL variable:
» This variable contains the name of the users shell program in the form of absolute pathname
» System administrator sets the default shell
» If required, user can change it
» Thevalueofthe variable SHELL may’ be known by echo command.
Example:
$echo SSHELL
/bin/bash

f) The TERM variable:
» This variable holds the information regardgin the type of the terminal being used.
» 1f TERM is not set properly, utilities like vi editor will not work.
Eample:
$echo $term
Xterm

$
OTHER SYSTEM VARIABLES:

(a) The LOGNAME variable:
The variable LOGNAME holds the user name.
$ echo SLOGNAME
501

(b) The TZ variable:
TZ refers to Time zone. It can take values like GMT, AST, etc.
$echo $TZ

K Varada Rajkumar 10
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

(¢) The PS1 variable:

It holds the primary prompt value($)
$echo $PS1

(d) The PS2 variable:

iii)

It holds the secondary prompt value(>, right chevron)
$echo $PS2

LOCAL variables:
These variables are also called as User-defined Variables.
These variables are defined and used by specific users.
These variables are local to the user’s shell environment.
Rules for constructing variable Names:
Shell variable names are constructed using only alphanumeric(alphabets and digits) characters
and the Underscore ()

» It starts with a letter.

» The variable names are case-sensitive.
Example:
SUM, sum, Sum, suM, sUm are different.
Spaces not allowed.

VVVVYVY

Defining a Shell V ariable:
Shell variables are evaluated by prefixing the variable name with a $
Syntax:
$variable=value
Example:
a) $x=20
b) $y=5.37
¢) $z=sachin
d) Sw =“india is my country”

READ-ONLY variables:
» These variables uses readonly() function.
» The values of variables which can only be read but not to be manipulated are called read-

only variables.

Example:

$cat example

echo Enter value for x

read x

echo value of x is $x

readonly x

x=‘expr $x+1’

echo the value of x now is $x

K Varada Rajkumar 11
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

Execution:)
$sh example

Enter value for x

Value of x is 4

example: line 5 : x : readonly variable

MORE ON I/0 REDIRECTION

It is possible to change the source from where the input is taken by a program as well as the
destination to where the output is sent by a program. This mechanism of changing the input
source and /or destination is called Redirection.

Symbol Name Redirection
< Less than Standard input redirection
> Greter than Standard output redirection
>> Double Greater than Standard output redirection
with appending
Output Redirection

The output from a command normally intended for standard output can be easily diverted to a
file instead. This capability is known as output redirection.

If the notation > file is appended to any command that normally writes its output to standard
output, the output of that command will be written to file instead of your terminal.

Check the following who command which redirects the complete output of the command in the
users file.

$ who > users

Notice that no output appears at the terminal. This is because the output has been redirected
from the default standard output device (the terminal) into the specified file. You can check the
users file for the complete content —

$ cat users

oko tty01 Sep 12 07:30

ai ttyl5 Sep 12 13:32

ruth tty21 Sep 12 10:10

pat tty24 Sep 12 13:07

steve tty25 Sep 12 13:03

$

If a command has its output redirected to a file and the file already contains some data, that data
will be lost. Consider the following example —

$ echo line 1 > users

$ cat users

line 1

$

You can use >> operator to append the output in an existing file as follows —

$ echo line 2 >> users

K Varada Rajkumar 12
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

$ cat users
line 1
line 2

$

Input Redirection

Just as the output of a command can be redirected to a file, so can the input of a command be
redirected from a file. As the greater-than character > is used for output redirection, the less-
than character < is used to redirect the input of a command.

The commands that normally take their input from the standard input can have their input
redirected from a file in this manner. For example, to count the number of lines in the
file users generated above, you can execute the command as follows —

$ we -1 users

2 users

$

Upon execution, you will receive the following output. You can count the number of lines in the
file by redirecting the standard input of the we command from the file users —

$ wc -1 <users

2

$

Note that there is a difference in the output produced by the two forms of the we command. In
the first case, the name of the file users is listed with the line count; in the second case, it is not.
In the first case, wc knows that it is reading its input from the file users. In the second case, it
only knows that it is reading its input from standard input so it does not display file name.

LOOPING INSHELL PROGRAMS

Looping Statements in Shell Scripting: There are total 3 looping statements which can be
used in bash programming.

1. while statement
2. for statement
3. until statement
To alter the flow of loop statements, two commands are used they are,
A. break
B. continue

Their descriptions and syntax are as follows:
while statement:

Here command is evaluated and based on the result loop will executed, if command raise to
false then loop will be terminated

Syntax

while command

K Varada Rajkumar 13
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

do
Statement to be executed
done

for statement:

The for loop operate on lists of items. It repeats a set of commands for every item in a list.
Here var is the name of a variable and word1 to wordN are sequences of characters separated by
spaces (words). Each time the for loop executes, the value of the variable var is set to the next
word in the list of words, word1 to wordN.

Syntax

for var in word1l word?2 ...wordn
do
Statement to be executed
done

until statement:

The until loop is executed as many as times the condition/command evaluates to false. The loop
terminates when the condition/command becomes true.

Syntax

until command
do
Statement to be executed until command is true
done
Example Programs

Example 1:
Implementing for loop with break statement
#Start of for loop
forain12345678910
do

if a is equal to 5 break the loop

if [Sa==15]

then

break

fi

Print the value

echo "Iteration no $a"
done

K Varada Rajkumar 14
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -3

Output

$bash -f main.sh
Iteration no 1
Iteration no 2
Iteration no 3
Iteration no 4

Example 2:
Implementing for loop with continue statement
forain12345678910
do
if a =5 then continue the loop and
don't move to line 8

if[fa==15]
then
continue
fi
echo "Iteration no $a"
done
Output

$bash -f main.sh
Iteration no 1
Iteration no 2
Iteration no 3
Iteration no 4
Iteration no 6
Iteration no 7
Iteration no 8
Iteration no 9
Iteration no 10

Example 3:
Implementing while loop
a=0

-lt is less than operator

#lterate the loop until a less than 10
while [$a -1t 10]
do

Print the values

echo $a

increment the value
a="expr $a + 1"
done

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

15

UNIX PROGRAMMING UNIT -3

Output:
$bash -f main.sh
0

O 00 1N DN B~ WK —

Example 4:

Implementing until loop
a=0

-gt is greater than operator

#lterate the loop until a is greater than 10
until [$a -gt 10]
do

Print the values

echo $a

increment the value
a="expr $a + 1"

done

Output:

$bash -f main.sh

0

— O 0 1N DN W~

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

16

UNIX PROGRAMMING UNIT -4

FILTERS

When a program takes its input from another program, it performs some operation on that input, and writes
the result to the standard output. It is referred to as a filter. Filters are the methods to find what we required
asoutput.

THE GREP FAMILY

The grep family consists of three commands

a) The grep command

b) The egrep command

¢) The fgrep command
These are called as Searching Filters Family.

The grep Command

The grep command searches a file or files for lines that have a certain pattern. The syntax is —

$grep pattern file(s)

The name "grep" comes from the ed (a Unix line editor) command g/re/p which means “globally search
for a regular expression and print all lines containing it”.

A regular expression is either some plain text (a word, for example) and/or special characters used for
pattern matching.

The simplest use of grep is to look for a pattern consisting of a single word. It can be used in a pipe so that
only those lines of the input files containing a given string are sent to the standard output. If you don't give
grep a filename to read, it reads its standard input; that's the way all filter programs work —

$ls -1 | grep "Aug"

-rw-rw-rw- | john doc 11008 Aug 6 14:10 ch02

-rw-tw-rw- | john doc 8515 Aug 6 15:30 ch07

-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro

-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

$

There are various options which you can use along with the grep command —

Sr.No. Option & Description

I -v (Prints all lines that do not match pattern.)

2 -n (Prints the matched line and its line number.)

3 -1 (Prints only the names of files with matching lines (letter "I"))

K Varada Rajkumar 1

Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

-¢ (Prints only the count of matching lines.)

-I (Matches either upper or lowercase.)

Egrep(Extended grep):

Extended grep (egrep) is the most powerful of the three grep utilities. While it doesn’t have the save
option, it does allow more complex patterns. Consider the case where we want to extract all lines that start
with a capital letter and end in an exclamation point (!). Our first attempt at this command is shown as
follows:
$ egrep —n ‘*[A-Z].*!$’ filename

The first expression starts at the beginning of the line () and looks at the first character only. It uses a set
that consists of only uppercase letters ([A-Z]). If the first character does not match the set, the line is
skipped and the next line is examined.

If the first character is a match, the second expression (.*) matches the rest of the line until the last
character, which must be an exclamation mark; the third expression examines the character at the end of
the line ($). It must be an explanation point (a bang). The complete expression therefore matches any line
starting with an uppercase letter, that is followed by zero or more characters, and that ends in a bang.

Finally note that we have coded the entire expression in a set of single quotes even though this expression
does not require it.
Fast grep:

If your search criteria require only sequence expressions, fast grep (fgrep) is the best utility. Because its
expressions consist of only sequence operators, it is also easiest to use if you are searching for text
characters that are the same as regular expression operators such as the escape, parentheses, or quotes. For
example, to extract all lines of the file that contain an apostrophe, we could use fgrep as

$ fgrep —n “ * ” file name

OTHER FILTERS

The different types of filters are

comm

diff

head

tail

nl

cut

paste

sort

K Varada Rajkumar 2
Assistant Professor

Department of CSE
Sir C R Reddy College Of Engineering

VVYVVYYYVY

UNIX PROGRAMMING UNIT -4

> tr

> tee
The comm Command:
The comm. command compare two sorted files line by line and write to standard output; the lines that are
common and the lines that is unique.
Suppose you have two lists of people and you are asked to find out the names available in one and not in
the other or even those common to both. comm is the command that will help you to achieve this. It

requires two sorted files which it compares line by line.
Before discussing anything further first let’s check out the syntax of comm command:
Syntax :

$comm [OPTION]... FILE1 FILE2

As using comm, we are trying to compare two files therefore the syntax of comm command needs two
filenames as arguments.

With no OPTION used, comm produces three-column output where first column contains lines unique to
FILE1 , second column contains lines unique to FILE2 and third and last column contains lines common to
both the files.

comm command only works right if you are comparing two files which are already sorted.

Example: Let us suppose there are two sorted files filel.txt and file2.txt and now we will use comm
command to compare these two.

// displaying contents of filel //
$cat filel.txt

Apaar

Ayush Rajput

Deepak

Hemant

// displaying contents of file2 //
$cat file2.txt

Apaar

Hemant

Lucky

Pranjal Thakral

Now, run comm command as:

// using comm command for
comparing two files //
$comm filel.txt file2.txt
Apaar

Ayush Rajput

Deepak

Hemant

Lucky

Pranjal Thakral

K Varada Rajkumar 3
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

The above output contains of three columns where first column is separated by zero tab and contains
names only present in filel.txt , second column contains names only present in file2.txt and separated by
one tab and the third column contains names common to both the files and is separated by two tabs from
the beginning of the line.
This is the default pattern of the output produced by comm command when no option is used .

The diff command:

The diff stands for difference. This command is used to display the differences in the files by comparing
the files line by line. Unlike its fellow members, cmp and comm, it tells us which lines in one file have is
to be changed to make the two files identical.

The important thing to remember is that diff uses certain special symbols and instructions that are
required to make two files identical. It tells you the instructions on how to change the first file to make it
match the second file.

Special symbols are:

a:add

¢ : change

d : delete

Syntax :

diff [options] Filel File2

Lets say we have two files with names a.txt and b.txt containing 5 Indian states.
$ls

a.txt b.txt

$ cat a.txt

Gujarat

Uttar Pradesh
Kolkata

Bihar

Jammu and Kashmir

$ cat b.txt
Tamil Nadu
Gujarat

Andhra Pradesh
Bihar

Uttar pradesh

Now, applying diff command without any option we get the following output:
$ diff a.txt b.txt

Oal

> Tamil Nadu

2,3¢3

K Varada Rajkumar 4
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

< Uttar Pradesh
Andhra Pradesh
5¢5

Uttar pradesh

Let’s take a look at what this output means. The first line of the diff output will contain:
Line numbers corresponding to the first file,
A special symbol and
Line numbers corresponding to the second file.
Like in our case, 0al which means after lines O(at the very beginning of file) you have to
add Tamil Nadu to match the second file line number 1. It then tells us what those lines are in each
file preceeded by the symbol:
Lines preceded by a < are lines from the first file.
Lines preceded by > are lines from the second file.
Next line contains 2,3¢3 which means from line 2 to line 3 in the first file needs to be changed to
match line number 3 in the second file. It then tells us those lines with the above symbols.

» The three dashes (“—*) merely separate the lines of file 1 and file 2.
As a summary to make both the files identical, first add 7amil Nadu in the first file at very beginning to
match line 1 of second file after that change line 2 and 3 of first file i.e. Uttar Pradesh and Kolkata with
line 3 of second file i.e. Andhra Pradesh. After that change line 5 of first file i.e. Jammu and Kashmir with
line 5 of second file i.e. Uttar pradesh.

VVYVYY

YV VYV

The head command:

The head command, as the name implies, print the top N number of data of the given input. By default, it
prints the first 10 lines of the specified files. If more than one file name is provided then data from each
file is preceded by its file name.

Syntax:

head [OPTION]... [FILE]...

Let us consider two files having name state.txt and capital.txt contains all the names of the Indian states
and capitals respectively.

$ cat state.txt

Andhra Pradesh

Arunachal Pradesh

Assam

Bihar

Chhattisgarh

Goa

Gujarat

Haryana

Himachal Pradesh

Jammu and Kashmir

Jharkhand

Karnataka

Kerala

Madhya Pradesh

K Varada Rajkumar 5
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

Maharashtra
Manipur
Meghalaya
Mizoram
Nagaland
Odisha
Punjab
Rajasthan
Sikkim
Tamil Nadu
Telangana
Tripura
Uttar Pradesh
Uttarakhand
West Bengal

Without
Example:
$ head state.txt
Andhra Pradesh
Arunachal Pradesh
Assam

Bihar

Chhattisgarh

Goa

Gujarat

Haryana

Himachal Pradesh
Jammu and Kashmir

any option, it

displays

UNIX PROGRAMMING UNIT -4

only the first 10 lines

of

Options
Short options Long options
-n -Line
-Cc -Bytes
-q -QUiet
-v -Verbose

The tail command:

the

file

specified.

It is the complementary of head command. The tail command, as the name implies, print the last N number
of data of the given input. By default it prints the last 10 lines of the specified files. If more than one file
name is provided then data from each file is precedes by its file name.

Syntax:
tail [OPTION]... [FILE]...

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

Let us consider two files having name state.txt and capital.txt contains all the names of the Indian states
and capitals respectively.
$ cat state.txt
Andhra Pradesh
Arunachal Pradesh
Assam

Bihar

Chhattisgarh

Goa

Gujarat

Haryana

Himachal Pradesh
Jammu and Kashmir
Jharkhand
Karnataka

Kerala

Madhya Pradesh
Maharashtra
Manipur

Meghalaya
Mizoram

Nagaland

Odisha

Punjab

Rajasthan

Sikkim

Tamil Nadu
Telangana

Tripura

Uttar Pradesh
Uttarakhand

West Bengal
Without any option it display only the last 10 lines of the file specified.
Example:

$ tail state.txt
Odisha
Punjab
Rajasthan
Sikkim
Tamil Nadu
Telangana
Tripura

Uttar Pradesh
Uttarakhand
West Bengal

K Varada Rajkumar 7
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

Options:
Short options Long options
-n -Line
-C -Bytes
-q -Quiet
-v -Verbose
£ -Follow

The nl command:

It is a Numbered Filter.

It is used to give number to the lines of files
Syntax:

nl [options] [lines]

Example:
$cat fruits

Apple
Banana
Orange
$
$nl fruits
1 Apple
2 Banana
3 Orange

The cut command:

> Using this command, required fields or columns can be extracted from a file
> It is a Split Filter.
Syntax:
cut[options] [files] Example:
$cat emp
EmptD EmpNani6’ Sal
111 aaa 10000
222 bbb 12340
333 cce 15400
$cut -f3 emp
Sal
10000
12340
15400

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

The paste command:
This command is used to merge lines of files. ItisaMerging filter. This command is used to create new tables
or files by using together fields or columns from two or more files.
Syntax:
paste [oplions] [files]
Example:
$cat filel
Hi Hello
$cat file2
Welcome
$paste filel file2
Hi Hello
Welcome

The sort command:

The sort command is used to sort lines of text files. This command is one of the powerful and a general
purpose tool that is used for sorting information stored in file. It is sorting filter. In addition in sorting, this
command can be used for merging sorted files.

Syntax:
sort [opt ions] [files] Example:

$cat Names
RONITH
PRANEETH
KARTHEEK
SAI

$

$sort Names
KARTHEEK
PRANEETH
RONITH
SAI

The tr command:
It is used to translate or delete characters. It is Translation filter. Translation includes both substitution as
well as deletion of characters or strings.
Syntax:
tr [options] [sets]
$ cat Namesl
aaab
bbba
$

K Varada Rajkumar 9
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

$tra’ ‘A’ <Namesl
AAAB

bbbA

$

The tee command:
It is a bidirectional filter. It is used to read from standard input and write to standard output and files.
Bidirectional means one copy is displayed on the output screen and other copy is on a separate file.
Syntax:
Tee [options] [files]
Example:
$ cat filel
aaa
bbb
cce
$
$cat filel |we-1 |file2
3
$
$cat file2
3
$

THE STREAM EDITOR SED

SED 1 astream editor for filtering and transforming text. Sed is one of the most powerful filters. It stands for
stream editor. Despite its name editing, it does not modify the original file. It reads the standard input (a
keyboard or a file), processes it using a separate called sed script and writes the result to the standard
output. A Sed script is a file containing alist of instructions to be applied to each line in the input file. Ifthe
scriptcontainsonlyonelineitcanbeprovided as in —line at the command line.

Options in sed command;
There are three useful options available with Sed utility.

OPTION |FUNCTION

-C It is a default option. It indicates that be script is on the command line

-f It indicates that the script is in a file which immediately follows this
option

-n It suppresses the automatic output. That is, it will not display the contents of
the pattern space

K Varada Rajkumar 10
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

Operation of sed:

Sed gives a line number to each line in the input file to address lines in the text. It does the following

operations for each input line. It copies an input line to a buffer called the pattern space. A pattern space can

hold one or more lines at the same time. To each line in the pattern space that matches the specified addresses in

the Sedinstruction; it applies all the instructions in the sed script one by one.

» If—n option is not specified on the command line, then it copies the pattern space to the standard output (a
monitor or a file).

» It repeats this process for each input line starting withstepl.

» The sed utility also uses a temporary buffer called hold space to hold one or more lines as directed by
the sed instructions.

Example:

$cat names2

1 PYTHON

2 JAVA

3C

4]S

5 DOTNET

$

$ sed 2q names2
1 PYTHON

2 JAVA

$

$ sed —n 4p name?2
4]S

$

THE AWK PATTERN SCANNING AND PROCESSING LANGUAGE

The awk utility which takes its name from the initial of its authors (Alfred V. Aho, Peter J. Weinberger and
Brian W. Kernighan), is a powerful programming language disguised as a utility. It behavior is to some
extent like sed. It reads the input file, line by line, and performs an action on a part of or on the entire line.
Unlike sed, however, it does not print the line unless specifically told to print it.

Features of awk:

Field oriented file processing
Regular Expressions
Predefined Variables
Numeric Operations
Comparison Operators
Arrays

Control Statements

Report Generation

VVVVVVYY

K Varada Rajkumar 11
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

Syntax of an awk program statement:

$awk [options] ‘program’ filelist
Where the Use of options is optional
filelist will have zero or more inputfilenames
Program will have one or more statements having the following syntax

Syntax:

pattern {action}
The pattern component of a program statement indicates the basis for a line or record selection and

manipulation.
Fields and Records in awk:

A file is viewed as a collection of Fields and records by the awk utility.
A field is a data unit that gives some data.

Each line in a file is a record.

That is a record is a collection of several fields.

However, the record contains related data.

A file that is organized into records is called a data file.

Example:

Consider the output of 1s -I (long list) command in Unix.

It lists the information about all files in a directory.

$ls-1

VVVYYYVY

-rw-r--r-- ownl filel
-rw-r--r-- ownl File2
-rw-r--r-- ownl File3

Here, it contains three fields and threerecords
The fields are file permissions, owner and filenames
The records give information about filel, file2, file3

OUTPUT STATEMENTS:

In awk, the output can be displayed using three statements,
print statement:
$awk {print}, info.dat

printf statement:
$awk {printf(“%S%4d%5.2f\n”, $1,$2,$3)}, info.dat

sprint statement:
value=sprint(“%S%4d%5.2f\n”, $1,$2,$3)

K Varada Rajkumar 12
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

Different patterns available in awk:

The pattern identifies on which records in a file, the action is to be taken.
If the pattern matches the record, its associated action is taken.

If the pattern does not match the record, its associated action is skipped.
If an action is specified without a pattern then it is alwaystaken.

The awk supports different types of patterns

PATTERNS
NOTHING BEGIN END EXPRESSIONS RANGE
REGULAR ARITHEMETIC RELATIONAL LOGICAL
VARIABLES IN AWK:
Like all programming languages, awk also permits the use of variables.
In awk, two types of variables are available
» User definied variables
» Built-in variables

The Built-in variables of awk are,

VARIABLE MEANING

FILENAME Name of the current input file

IS Input field Separator(default : blank and tab)

NF Number of fields in input record

NC Number of current record

OFS Output field Sepaerator

ORS Output record separator

RS Input record separator

ARGC Number of command line arguments

ARGV Command line arguments array
K Varada Rajkumar 13

Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

OPERATORS IN AWK:
TYPE OF THE OPERATOR SYMBOLS
ARITHMETIC + - /%
RELATIONAL < <= > >= == |=
LOGICAL && || !
ASSIGNMENT = 4= = *= [= 0=
INCREMENT ++
DECREMENT -
CONDITIONAL 2:
MATCH ~ I~

Expressions in awk;

» Arithmetic Expressions
» Relational Expressions
» Logical Expressions
» Regular Expressions

Awk decision making control structures:

> if-else structure
> nested if structure
> case structure

Awk loop statements:

» while loop
» do while loop
» for loop

Awk unconditional control statements:

> break
> continue

Associative arrays in Awk:

AWK has associative arrays and one of the best thing about it is — the indexes need not to be continuous
set of number; you can use either string or number as an array index. Also, there is no need to declare the
size of an array in advance — arrays can expand/shrink at runtime.

Its syntax is as follows —

Syntax

array name[index] = value

K Varada Rajkumar 14
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

VVVVYVYY

UNIX PROGRAMMING UNIT -4

Where array_name is the name of array, index is the array index, and value is any value assigning to the
element of the array.

Example:

Employee[$2]

Initialization of array is given as
Employee[$2]=$4

Delete an array element is given as
delete Employee[$2]

SRING FUNCTION IN AWK:
The string functions in awk are

length()
index()
substr()
sub()

split()

length():
The length function counts the number of characters in a string and returns the count value.
Syntax:
length(str)
index():
The index function determines the first position of a sub string with in a string. If the string not

found it returns 0.

Syntax:

index(str, substr)

substr():
The substr() returns the substring from a given string.
Syntax:
substr(str, starting_ index)

sub():

The sub function substitutes one string for another string that matches a regular expression. It returns
I(true) if the string was substituted. It returns O(false) if the matching string was not found and the
substitution failed.

Syntax:

Sub(regular expr, withstring, inputstring)
K Varada Rajkumar 15
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

Split():
The split function divides a string in to two substrings using a field separator.

syntax:
split(str, array)

AWK SCRIPT:
An awk script is divided into three parts. They are,

» Initialization

» Body

» End of job
BEGIN {ACTIONS}
PATTRN 1 {ACTION1}
PATTRN 2 {ACTION2}
PATTRN n {ACTION n}
END {ACTIONS}

Initialization:

The initialization part defines the instructions for initializing variables, creating report headings, set system
variables etc. This is identified with the token BEGIN and all instructions are enclosed with curly braces.
This part is processed only once before awk reads the first line from the input line.

K Varada Rajkumar 16
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -4

Body:

The body consists of one or more instructions for processing the data in a file. Each instruction consists of
a pattern and an action that will be taken when the pattern is matched. The awk applies each instruction in
the body of each record in the file one after another.

End of a job:

The end part is also executed only once after the last line from the input file has been read. It includes the
instructions to analyze, print of perform other activities at the end of data processing.

GOOD FILES AND GOOD FILTERS

» The awk programs of one or two lines length can perform filtering contributing into n larger
pipeline. This is one of the applications of awk.

A single filter can solve certain problems sometimes, but the filters which are joined together
as pipeline can solve the problem divided into sub-problems.

Such usage of tool is assumed as heart of UNIX programming.

The files that are filterable contain decorative headers, trailers or blank lines. Every line is an
object ofInterest such as filename, word, running process description.

Therefore the wc and grep programs can search the items by name and count them.

Even though the file contains more data about the objects, it will be in the line by line and
column format. Such files can be easily processed end rearranged by awk.

\ % Y

Y VYV

K Varada Rajkumar 17
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Shell Programming

A Shell provides you with an interface to the Unix system. It gathers input from you and
executes programs based on that input. When a program finishes executing, it displays that
program's output. Shell is an environment in which we can run our commands, programs,
and shell scripts.

Shell Variables:

A shell variable is simply set by equating it to a value. A variable is nothing more than a
pointer to the actual data. The shell enables you to create, assign, and delete variables.

Variable Names:

The name of a variable can contain only letters (a to z or A to Z), numbers (0 to 9) or the
underscore character ().

Defining Variables: Variables are defined as follows

Syntax:
variable name=variable value

Example:
NAME="CRR CSE"

Accessing Values: To access the value stored in a variable, prefix its name with the dollar
sign ($) — For example, the following script will access the value of defined variable NAME
and print it on STDOUT.

Example:

echo $NAME
CRR CSE

Read-only Variables:

Shell provides a way to mark variables as read-only by using the read-only command. After a
variable is marked read-only, its value cannot be changed. For example, the following script
generates an error while trying to change the value of NAME.

Example:

NAME="CRR CSE"
readonly NAME
NAME="CRR IT"

The above script will generate the following result —

/bin/sh: NAME: This variable is read only.

K Varada Rajkumar 1
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Unsetting Variables:

Unsetting or deleting a variable directs the shell to remove the variable from the list of
variables that it tracks. Once you unset a variable, you cannot access the stored value in the
variable. Following is the syntax to unset a defined variable using the unset command.

Syntax:
unset variable name

The above command unsets the value of a defined variable. Here is a simple example that
demonstrates how the command works.

Example:

NAME="CRR CSE"

unset NAME

echo SNAME

The above example does not print anything.

Variable Types:

When a shell is running, three main types of variables are present.

Local Variables — A local variable is a variable that is present within the current instance of

the shell. It is not available to programs that are started by the shell. They are set at the
command prompt.

Environment Variables — An environment variable is available to any child process of the
shell. Some programs need environment variables in order to function correctly. Usually, a
shell script defines only those environment variables that are needed by the programs that it
runs.

Shell Variables — A shell variable is a special variable that is set by the shell and is required
by the shell in order to function correctly. Some of these variables are environment variables
whereas others are local variables.

The Export Command:

The export command is fairly simple to use as it has straightforward syntax with only three
available command options. In general, the export command marks an environment variable
to be exported with any newly forked child processes and thus it allows a child process to
inherit all marked variables.

Options:
Tag Description

-p | List of all names that are exported in the current shell

-n | Remove names from export list

-f | Names are exported as functions
K Varada Rajkumar 2
Assistant Professor
Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Example-1:

To view all the exported variables.

$ export

Example-2:

user can also use -p option to view all exported variables on current shell.

$ export -p

The Profile File a Script Run During Starting:

The file /ete/profile is maintained by the system administrator of your Unix machine and
contains shell initialization information required by all users on a system. The file .profile is
under your control. You can add as much shell customization information as you want to
this file. The minimum set of information that you need to configure includes -

e The type of terminal you are using.
e A list of directories in which to locate the commands.
o A list of variables affecting the look and feel of your terminal.

You can check your .profile available in your home directory. Open it using the vi editor and
check all the variables set for your environment.

Example:
$ cat .profile

The First Shell Script:

A Shell script or shell program is a set of commands that are executed together as a single
unit. A shell script also includes commands for selective execution, commands for I/O
operations, commands for repeated execution and shell variables.

Steps to write and execute a script
o Open the terminal. Go to the directory where you want to create your script.
o Create a file with .sh extension.
o Write the script in the file using an editor.
o Make the script executable with command chmod +x <fileName>.

o Run the script using ./<fileName>.
First Script:
Here we'll write a simple program for Hello World.

First of all, create a simple script in any editor

K Varada Rajkumar 3
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Example:

M & © guest-EwJMaM@cselab2-OptiPlex-7020: ~
guest-EwIMaM@cselab2-0ptiPlex-7020:~5 vi first..ﬁhl

guest-EwJMaM@cselab2-OptiPlex-7020: ~

"hello world"
"sircrr cse"

"first.sh" 2 lines, 42 characters

M ® & guest-EwJMaM@cselab2-0ptiPlex-7020: ~

guest-EwIMaM@cselab2-0OptiPlex-76828:~% sh first.sh
hello world
sir c r rcse

The read Command:

The read command is used to give input to a shell program, this command reads just one line
and assigns this line to one or more shell variables.

Syntax:
read variablel name variable2 name........ variablen name

K Varada Rajkumar 4
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Example:

@S @ guest-EwJMaM@cselab2-OptiPlex-7020: ~
guest-EwIMaM@cselab2-0OptiPlex-7020:~$ vi inputi.sh]]

guest-EwJMaM@cselab2-OptiPlex-7020: ~

"Enter a number"
num

"number is Snum”
"Enter a name"
name

"name is Sname”

"inputi.sh” 6 lines, 104 characters

25 & guest-EwIMaM@cselab2-OptiPlex-7020: ~

guest-EwIMaM@cselab2-OptiPlex-7820:~5 . /inputl.sh
Enter a number

1234

number is 1234

Enter a name

SIR C R REDDY COLLEGE OF ENGINEERING

name is SIR C R REDDY COLLEGE OF ENGINEERING

Multiple Parameters:
The read command can take multiple arguments.

Example:

@ = & guest-EwJMaM@cselab2-0ptiPlex-7020: ~

guest-EwIMaM@cselab2-0ptiPlex-7828:~5 vi i_nputE.ShI

K Varada Rajkumar 5
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

™ & & guest-EwIMaM@cselab2-0OptiPlex-7020; ~

Eprogram to find sum of 2 numbers
echo "Enter any two numbers”

read nl n2

s="expr 5nl1 + Sn2’

echo "Sum=5s"

"input2.sh” 5 lines, 187 characters

M= @ guest-EwJMaM@cselab2-0ptiPlex-7020: ~

guest-EwIMaM@gcselab2-0OptiPlex-7020:~% vi input2.sh
guest-EwIMaM@cselab2-0ptiPlex-7020:~% ./input2.sh
Enter any two numbers

16 20

Sum=30

Positional Parameters:

Positional parameters in a shell script are nothing but the command line arguments passed to
a shell script. The following are some of the positional parameters used:

$# - Total number of arguments
$0 — command or the script name
$1,$2,$3 — First, second and third arguments respectively.

Example 1:
$ cat filel file2 file3
$#H=3

K Varada Rajkumar 6
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

$0 = cat

$1 =filel
$2 = file2
$3 = file3
Example 2:

M &S & guest-EwJMaM@cselab2-OptiPlex-7020: ~
guest-EwIMaM@cselab2-OptiPlex-7820:~5 vi p:)StinnaLShI

& guest-EwJMaM@cselab2-OptiPlex-7020: ~

"Program Mame: S$8"
"Mumber of Arguments: S#"
"The Arguments are: S*"
"First Argument: S$1"

postional.sh” 4 lines, 110 characters

= guest-EwJMaM@cselab2-OptiPlex-7020: ~

guest-EwIMaM@cselab2-0OptiPlex-7026:~5 vi postional.sh
guest-EwIMaM@cselab2-0OptiPlex-7028:~5 sh postional.sh al a2 a3 a4
Program Name: postional.sh

NMumber of Arguments: 4

The Arguments are: al a2 a3 a4

First Argument: al

K Varada Rajkumar 7
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

The set command (Assigning values to positional parameters):
Positional parameters assigned using the set command

Example:

® guest-EwJMaM@cselab2-OptiPlex-7020: ~

guest-EwIMaM@cselab?-0ptiPlex-7020:~5 set SIR CR REDDY COLLEGE OF ENGINEERING
guest-EwIMaM@cselab2-0ptiPlex-7020:~5 echo "5$0"

echo "§1"
echo "52"
echo "$3"
echo "54"
echo "§5"
echo "S6"

guest-EwIMaM@cselab2-0ptiPlex-7020:~5 echo "S#"

The shift command(Handling Excess Command Line Arguments):

The shift command in UNIX is used to move the command line arguments to one position
left. The first argument is lost when you use the shift command. Shifting command line
arguments is useful when you perform a similar action to all arguments one-by-one, without
changing the variable name. The shift command throws away the left-most variable
(argument number 1) and reassigns values to the remaining variables. This command is used
ot shift the position of the positional parameters.

Example:

@ = @ guest-EwJMaM@cselab2-OptiPlex-7020: ~
guest-EwIMaM@cselab2-0OptiPlex-7820:~5 set SIR CR REDDY COLLEGE OF ENGINEERING

guest-EwIMaM@cselab2-0OptiPlex-7020:~5 shift 3
guest-EwJMaM@cselab2-0ptiPlex-7020:~5 echo 51 $2 53

The $? Variable knowing the exit Status:

When ever a command is successfully executed the program returned zero(0), otherwise it
returns a non zero value.

K Varada Rajkumar 8
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Example:

' guest-EwJMaM@cselab2-OptiPlex-7020: ~

guest EwIMaM@cselab2-OptiPlex-7020:~5 1s
examples.desktop <input2.sh positional.sh
first.sh Music postional.sh
inputi.sh Ires Public
guest EwJMaM@cselab2-0OptiPlex-78260:~5 cat inputil.sh
"Enter a number"”

num
"number is Snum"

"Enter a name"

name

"name is Sname"
guest-EwIMaM@cselab2-0ptiPlex-7028:~5% echo 57
6]
guest-EwIMaM@cselabz-0OptiPlex-7026:~% cat input
cat: input: No such file or directory
guest-EwIMaM@cselab2-0OptiPlex-7028:~5 echo 5?2
1

In the above program the inputl.sh file exists so the program returns 0, in next example the
input file is not existed so it returns 1.

More about the Set Command:

The set command without arguments:

When this command used without arguments display the contents, the system variables that
are either local or exported.

Example:

$ set
CDPATH=:/users/gan:/usr/spool
EDITOR=/bin/vi

HOME=/user/gan

The set command with options:

Many options such as —x, -v, -- and others are allowed to be used with this command. The
options —x and —v are used to debug shell scripts.

K Varada Rajkumar 9
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

The set command and the — (double hyphen) option:

Under certain circumstances arguments to the set command are passed on through command
substitution. Sometimes this method is error=prone. Such a situation is handled by using the
special option —(double hyphen)

The Exit Command:

exit command in linux is used to exit the shell where it is currently running. It takes one more
parameter as /NJ and exits the shell with a return of status N. If n is not provided, then it
simply returns the status of last command that is executed.

Syntax:
exit [n]
Options for exit command —

exit: Exit Without Parameter

File: Edit View Search Terminal Help
naman@root:~$ Exi_tD

After pressing enter, the terminal will simply close.
exit [n] : Exit With Parameter

File Edit View Search Terminal Help
naman@root:~S exit 11(-].

After pressing enter, the terminal window will close and return a status of 110. Return status
is important because sometimes they can be mapped to tell error, warnings and notifications.
For example generally, return status —

“0” means the program has executed successfully.

“1” means the program has minor errors.

K Varada Rajkumar 10
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Operators in Unix:

There are various operators supported by each shell. We will discuss in detail about Bourne
shell (default shell) in this chapter.

We will now discuss the following operators —

e Arithmetic Operators
o Relational Operators
e Boolean Operators

e String Operators

e File Test Operators

Arithmetic Operators : These operators are used to perform normal arithmetic or
mathematical operations. There are 7 arithmetic operators:

Addition (+): Binary operation used to add two operands.

Subtraction (-): Binary operation used to subtract two operands.

Multiplication (*) :Binary operation used to multiply two operands.

Division (/) :Binary operation used to divide two operands.

Modulus (%) :Binary operation used to find remainder of two operands.

Increment Operator (++) : Uniary operator used to increase the value of operand by
one.

Decrement Operator (-) : Uniary operator used to decrease the value of a operand by
one.

Example:

cselab2@cselab2-OptiPlex-7020: ~

"Enter first number:"”
a
"Enter second number:”
b
add=5((a+b))
echo "Addition= Sadd"”
sub=5((a-b))
"sSubtraction= Ssub”
mul=5{{a*b))
echo "Multiplication= Smul"”™
div=5$((a/b))
echo "Division= S$diwv"
mod=5((a%b))
echo "Reminder= Smod"”

"arithmetic.sh"” 14 lines, 253 characters

K Varada Rajkumar 11
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

cselab2@cselab2-OptiPlex-7020: ~

cselab2@cselab2-0ptiPlex-7020:~% sh arithmetic.sh
Enter first number:

20
Enter second number:

10

Addition= 30
Subtraction= 18
Multiplication= 200

Relational Operators : Relational operators are those operators which defines the relation
between two operands. They give either true or false depending upon the relation. They are of
6 types.

‘-eq’ Operator : Double equal to operator compares the two operands. Its returns true
is they are equal otherwise returns false.

‘nq’ Operator : Not Equal to operator return true if the two operands are not equal
otherwise it returns false.

‘-It' Operator : Less than operator returns true if first operand is lees than second
operand otherwse returns false.

‘-le' Operator : Less than or equal to operator returns true if first operand is less than or
equal to second operand otherwise returns false

‘-gt’ Operator : Greater than operator return true if the first operand is greater than the
second operand otherwise return false.

‘-ge’ Operator : Greater than or equal to operator returns true if first operand is greater
than or equal to second operand otherwise returns false

Logical Operators : They are also known as boolean operators. These are used to perform
logical operations. They are of 3 types:

Logical AND (&&) : This is a binary operator, which returns true if both the operands
are true otherwise returns false.

Logical OR (||) : This is a binary operator, which returns true is either of the operand is
true or both the operands are true and returns false if none of then is false.

Not Equal to (!) : This is a uninary operator which returns true if the operand is false
and returns false if the operand is true.

Bitwise Operators : A bitwise operator is an operator used to perform bitwise operations on
bit patterns. They are of 6 types:
Bitwise And (&) : Bitwise & operator performs binary AND operation bit by bit on the
operands.
Bitwise OR (]) : Bitwise | operator performs binary OR operation bit by bit on the
operands.

K Varada Rajkumar 12
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Bitwise XOR (*) : Bitwise " operator performs binary XOR operation bit by bit on the
operands.

Bitwise compliment (~) : Bitwise ~ operator performs binary NOT operation bit by bit
on the operand.

Left Shift (<<) : This operator shifts the bits of the left operand to left by number of
times specified by right operand.

Right Shift (>>) : This operator shifts the bits of the left operand to right by number of
times specified by right operand.

File Test Operator : These operators are used to test a particular property of a file.
-b operator : This operator check weather a file is a block special file or not. It returns
true, if the file is a block special file otherwise false.
-c operator : This operator checks weather a file is a character special file or not. It
returns true if it is a character special file otherwise false.
-d operator : This operator checks if the given directory exists or not. If it exits then
operators returns true otherwise false.
-e operator : This operator checks weather the given file exits or not. If it exits this
operator returns true otherwise false.
-r operator : This operator checks weather the given file has read access or not. If it has
read access then it returns true otherwise false.
-w operator : This operator check weather the given file has write access or not. If it
has write then it returns true otherwise false.
-x operator : This operator check weather the given file has execute access or not. If it
has execute access then it returns true otherwise false.
-s operator : This operator checks the size of the given file. If the size of given file is
greater than 0 then it returns true otherwise it false.

Branching Control Structures :

While writing a shell script, there may be a situation when you need to adopt one path out of
the given two paths. So you need to make use of conditional statements that allow your
program to make correct decisions and perform the right actions.

Unix Shell supports conditional statements which are used to perform different actions
based on different conditions. We will now understand two decision-making statements here

e The if...else statement
o The case...esac statement

If statement:
This block will process if specified condition is true.
Syntax:

if [expression |
then

Statement
fi

K Varada Rajkumar 13
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Example:

S & cselab2@cselab2-0OptiPlex-7020: ~
:ﬂpragram for if statement
echo "Enter any 2 numbers:"
read a b
if [Sa -eq Sb]
then
echo "a and b are equal”

"if.sh" 7 lines, 114 characters

@S & cselab2@cselab2-OptiPlex-7020: ~

cselab2@cselab2-0ptiPlex-7620:~5 sh if.sh
Enter any 2 numbers:

10 1@

a and b are equal
cselab2@cselab2-0OptiPlex-7020:~5% I

if-else statement

If specified condition is not true in if part then else part will be execute.

Syntax

if [expression]
then

Statement1
else

Statemet2
fi

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

14

UNIX PROGRAMMING UNIT -5

Example:

M E & cselab2@cselab2-0OptiPlex-7020: ~
B=10

b=28

if [$a -eq Sb]

then

'echo "a and b are eqgual”

else

echo "a and b are not equal”

fi

"i:_fglse._Et_}" 9 1_1'_n_E~5? 95 charact:e__rE

O S cselab2@cselab2-OptiPlex-7020: ~

cselabZ@cselab2-0ptiPlex-7020:~5 sh ifelse.sh
a and b are not equal
cselabZ@cselab2-0ptiPlex-7020:~5% I

if..elif..else..fi statement (Else If ladder):

To use multiple conditions in one if-else block, then elif keyword is used in shell. If
expression] is true then it executes statement 1 and 2, and this process continues. If none of
the condition is true then it processes else part.

Syntax:

if [expression1]
then

Statement1
elif [expression2]
then

Statement2
else

Statemet3
fi

K Varada Rajkumar 15
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Example:

cselab2z@cselabz-0OptiPlex-7020: ~

$a -eq 5b]

"a and b are equal”

[$a -gt Sb]
"a is greater than b"

"a is less than b"

"ifelse2.sh"” 12 lines, 142 characters

& 2 5 cselab2@cselab2-OptiPlex-7020: ~

cselab2@cselab2-0ptiPlex-7020:~5 sh ifelse2.sh
a is less than b
cselabZ@cselab2-0ptiPlex-7020:~5% I

Switch statement

Case statement works as a switch statement if specified value match with the pattern then it
will execute a block of that particular pattern When a match is found all of the associated
statements until the double semicolon (;;) is executed. A case will be terminated when the last
command is executed. If there is no match, the exit status of the case is zero.

Syntax:

casein
Pattern 1) statement 1;;
Pattern 2) statement 2;;
Pattern 3) statement 3;;

Pattern N) statement n;;
Esac

K Varada Rajkumar 16
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Example:

cselab2@cselabz-OptiPlex-7020: ~

dEVER
ase "Sday" 1in

1) echo "sunday";;

2) echo "Monday";;

3) echo "Tuesday";;

4) echo "Wednesday";:;

5) echo "Thurday";:

6) echo "Friday";;

7) echo "Saturday”;:

*} echo "Invalid day number”;;

"case.sh" 12 1lines, 2086 characters

M S & cselab2@cselab2-OptiPlex-7020: ~

cselab2@cselab2-0ptiPlex-7020:~5% sh case.sh
Thurday
cselab2@cselab2-0OptiPlex-7020:~5% I

Loop Control Structures:

Looping Statements in Shell Scripting: There are total 3 looping statements which can be
used in bash programming

1. while statement

2. for statement

3. until statement

while statement

Here command is evaluated and based on the result loop will executed, if command raise to
false then loop will be terminated

Syntax:

while command
do

statement to be executed
done

K Varada Rajkumar 17
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Example:

0

= M oL oW W B

o om

for statement

The for loop operate on lists of items. It repeats a set of commands for every item in a list.
Here var is the name of a variable and word1 to wordN are sequences of characters separated
by spaces (words). Each time the for loop executes, the value of the variable var is set to the
next word in the list of words, wordl to wordN.

Syntax:
for var in wordl word2 Wordn
do

Statement to be executed

"a value is %$a"

K Varada Rajkumar 18
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

1
2
3
4
5
6

D D =]

until statement

The until loop is executed as many as times the condition/command evaluates to false. The
loop terminates when the condition/command becomes true.

Syntax
until command
do

Statement to be executed until command is true
Done

Example:

o=

1
4
3
a
7

= o m

K Varada Rajkumar 19
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

The Continue and Break Statement

Continue Statement:
continue is a command which is used to skip the current iteration in for, while and until loop.
It takes one more parameter [N/, if N is mentioned then it continues from the nth enclosing

loop.

Syntax:
continue

Example:

B

R

]

[
DD MmN

[
W W Ww W wwwwWw

[

Break Statement:

break command is used to terminate the execution of for loop, while loop and until loop. It
can also take one parameter i.e./NJ. Here n is the number of nested loops to break. The
default number is 1.

Syntax:
break
Example:

value is $a"

K Varada Rajkumar 20
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

The Expr Command:
The expr command in Unix evaluates a given expression and displays its corresponding
output. It is used for:
o Basic operations like addition, subtraction, multiplication, division, and modulus on
integers.
o Evaluating regular expressions, string operations like substring, length of strings etc.

Syntax:
$ expr expression
Example:

"Enter two numbers™
numl
num2

s= expr $numl $num2
"Sum = $s"

Enter two numbers
10

20

Sum = 30

Performing Integer Arithmetic-Real Arithmetic in Shell Programs.
Performing Integer Arithmetic:

The both operands in arithmetic operation are integers then that operation is called integer
arithmetic.

Example:

"Enter two numbers™
numl
num2

s= expr $numl + $num2
"Sum = $s"

Enter two numbers
10
20

Sum =

K Varada Rajkumar 21
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Performing Real Arithmetic:

The both operands in arithmetic operation are real then that operation is called real
arithmetic, the expr command works only on integers. Real arithmetic can be managed bc
(basic calculator) command along with the scale function and the echo command. The output
of the arithmetic expression is piped to the bc command.

Example:

Echu "Enter radius of circle"

read r

area="echo "scale =3; 3.14*Sr*Sr" | bc’
echo "Area of circle=Sarea"”

-~

Enter radius of circle
2.35
Area of circle=17.348

The here Document(<<):

In unix it is possible to include the document on which the system has to operate along with
the command itself. A here document is a way of getting text input into a script without
having to feed it in from a separate file, this type of redirection tells the shell to read input
form the current source (HERE) untl a line containing only word (HERE) is seen.

Syntax:

Command << HERE
Text
Text

Example 1:

$ cat <<stop

» sir ¢ r reddy college of engineering
» stop
sir ¢ r reddy college of engineering

Example 2:

$ W -w << end

» sir ¢ r reddy college of engineering
» end
7

K Varada Rajkumar 22
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

The Sleep Command:

Using this command the user can make the system to sleep, that is, pause for some fixed
period of time. The sleep command suspends the calling process for at lest the specified
number f seconds(by default),minutes, hours or days.

Syntax:
$sleep number
Example :

Echu "Welcome"
sleep 10
echo "Welcome"
sleep 10s
echo "Welcome"
sleep 1m
echo "Welcome"

@ = F guest-x1iIN9Y@cselab2-OptiPlex-7020: ~

guest-x1iN9Y@cselab2-0ptiPlex-78268:~% sh time.sh
Welcome
Welcome
Welcome
Welcome

Debugging Scripts:

When a script does not work properly, we need to determine the location of the problem. The
UNIX shells provide a debugging mode. Run the entire script in debug mode or just a portion
of the script. Debug statements options are,

Option Meaning
set -x Prints the statements after interpreting meta characters and variables
set +x Stops the printing of statements
set -v Prints the statements before interpreting meta characters and variables
set -f Disables file name generation(using meta characters)

K Varada Rajkumar 23
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Example:

Echo "Enter a Number:"
read n

echo Si

= guest-x1iN9Y@cselab2-OptiPlex-7020: ~

guest-x1iN9Y@cselab2-0ptiPlex-7020:~5 sh debugi.sh
Enter a Number:
8

& & guest-x1iNSY@cselab2-OptiPlex-7020: ~
guest-x1iN9¥@cselab2-0ptiPlex-7020:~$ sh -xv debugl.sh

echo "Enter a Number:"
+ echo Enter a Number:
Enter a Number:

read n

+ read n

‘seq 1 5n°

echo 51

+ U+ b+ W+ P+

G+ =~ 4+ O

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

guest-x1iN9Y@cselab2-OptiPlex-7020: ~

- XV
echo "Enter a Number:”
read n

for 1 in "seq 1 Sn’

; guest-x1iN9¥@cselab2-OptiPlex-7020: ~
guest-x1iN9¥@cselab2-0ptiPlex-7820:~% sh debugil.sh
echo "Enter a Number:"

+ echo Enter a Number:
Enter a Number:
read n
+ read n
‘seq 1 %n°’
echo Si

segq 1 8
echo

echo
echo
echo
echo
echo
echo

echo

B4 ~N+ O+ U+ b+ W+ N+t +

The Script Command:

script command in Linux is used to make typescript or record all the terminal activities. After
executing the script command it starts recording everything printed on the screen including
the inputs and outputs until exit.

Syntax:

script [options] [file]

K Varada Rajkumar 25
Assistant Professor

Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Example:

guest-x1iNgY@cselab2-OptiPlex-7020: ~

guest-x1iN9Y@cselab2-0ptiPlex-7020:~% script crrcse.txt
script started, file is crrcse.txt
guest-x1iN9Y@cselab2-0ptiPlex-70208:~% echo "SIRCRRCOE"
SIRCRRCOE

guest-x1iN9Y@cselab2-0ptiPlex-70208:~-5% date

Wed Jun 17 11:29:15 IST 2620
guest-x1iN9Y@cselab2-0ptiPlex-7020:~-5 time

real Omd .600s

user Omd.000s

sys Omo .000s

guest-x1iN9¥@cselab2-0OptiPlex-7020:~5 cal
June 20820

Su Mo Tu We Th Fr Sa
1 2 3 4 5 &

7 8 9 18 11 12 13

14 15 16 pig 18 19 20

21 22 23 24 25 26 27

28 29 30

guest-x11N9Y@cselab2-0ptiPlex-7028:~-5 exit
exit
Script done, file is crrecse.txt

' guestx1iNSY®@cselab2-OptiPlex-7020; -
arted on Wednesday 17 June 2828 11:28:
selab2-OptiPlex-7020: echo "SIRCRRCOE"

elab?-0OptiPlex-7028: ~ (guest-x1iN9¥@cselab2-OptiPlex-7620:-5 DATE [K
2020
elabz-optiPlex-7020: - Cguest-x1iNOY@cselab2-OptiPlex-7@20:-5 time

@cselab?-OptiPlex-76828: - -x11iN9¥@cselab2-OptiPlex-7620: -5 ca

2 3 4 5 6
8 918 11 12 13
16 ~[[Tmi7"[[27m 1B 13 20

23 24 25 20 27

2st-x1iNgv¥@cselabz-OptiPlex-7028: ~ -x1lN9¥@cselab2-OptiPlex-Tez20:-

Script done on Wednesday 17 June 2820 11:29: IST

The Eval Command:

eval is a built-in Linux command which is used to execute arguments as a shell command. It
combines arguments into a single string and uses it as an input to the shell and execute the
commands.

Syntax:

Eval [arg ...]

K Varada Rajkumar 26
Assistant Professor

Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

Example:

£ 5 @ guest-x1iN9Y@cselab2-OptiPlex-7020: ~

guest-x1iN9Y@cselab2-0ptiPlex-7020:~5 d="date"
guest-x1iN9¥@cselab2-0OptiPlex-7020:~5 c="cal"
guest-x1iN9Y@cselab2-0ptiPlex-7020:~5 eval 5d
Wed Jun 17 11:36:53 IST 2820

guest-x1iN9¥@cselab2-OptiPlex-7020:~5% eval 5c

June 2020
SU Mo Tu We Th Fr sa
1 2 3 4 5 6
7 8 918 11 12 13
14 15 16 piy 18 19 206
21 22 23 24 25 26 27
28 29 30

The Exec Command:

exec command in Linux is used to execute a command from the bash itself. This command
does not create a new process it just replaces the bash with the command to be executed. If
the exec command is successful, it does not return to the calling process.

Syntax:

exec [-cl] [-a name] [command [arguments]] [redirection ...]

Example:

BEE guest-x1iN9Y@cselab2-OptiPlex-7020: ~

guest-x1iN9Y¥@cselab2-0ptiPlex-7020:~5 bash
guest-x1iN9Y¥@cselab2-OptiPlex-7620:~5 exec ls

bcl.sh Desktop examples.desktop Music sircrr.txt tmp
crrese.txt Documents in.txt Pictures Templates typescript
debugl.sh Downloads Lloopl.sh Public time.sh Videos
guest-x1iN9Y¥@cselab2-OptiPlex-7620:~5 l

B8 quest-xfiNoY@cselab2-OptiPlex-7020; ~

quest-x1iN9YGcselab2-OptiPlex-7020:~5 bash

quest-x1iN9YGcselab2-OptiPlex-7626:~5 echo 'Sir C R Reddy College of Engineering' » in.txt
quest-x11N9Y@cselab2-OptiPlex-7620:~$ exec we -w < in.txt

;

K Varada Rajkumar 27
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -5

guest-x1iNSY@cselab2-0OptiPlex-7020: ~

guest-x1iN9Y@cselab2-0OptiPlex-7020:~5 bash
guest-x1iN9Y@cselab2-0ptiPlex-7020:~5 echo 'Sir C R Reddy College of Engineering' > in.txt
guest-x1iN9¥@cselab2-0ptiPlex-7020:~5 exec wc -w < in.txt
7

guest-x1iN9Y¥@cselab2-0OptiPlex-7020:~S clear
guest-x1iN9¥@cselab2-0ptiPlex-7020:~5 bash
guest-x1iN9Y@cselab2-0ptiPlex-7020:~5 exec > tmp
guest-x1iN9¥@cselab2-0ptiPlex-7020:~5 1s
guest-x1iN9¥@cselab2-0ptiPlex-7020:~5 echo 'Sir C R Reddy College of Engineering'
guest-x1iN9Y¥@cselab2-0OptiPlex-7020:~5 exit

exit

guest-x1iN9Y@cselab2-OptiPlex-7020:~S cat tmp
bci.sh

crrcse. txt

debugi.sh

Desktop

Documents

Downloads

examples.desktop

in.txt

loopl.sh

Music

Pictures

Public

sircrr.txt

Templates

time.sh

tmp

typescript

Videos

Sir C R Reddy College of Engineering

K Varada Rajkumar 28
Assistant Professor

Department of CSE

Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -6

The Process

The Meaning of a Process:

A process is a program in execution in memory or in other words, an instance of a program
in memory. Any program executed creates a process. A program can be a command, a shell
script, or any binary executable or any application. However, not all commands end up in
creating process, there are some exceptions. Similar to how a file created has properties
associated with it, a process also has lots of properties associated to it.

Process attributes:

A process has some properties associated to it:

PID : Process-Id. Every process created in Unix/Lin identification number
associated to it which is called the process-id. This ss i e kernel to identify
the process similar to how the inode number is ufﬁle ide on. The PID is unique

for a process at any given point of time. However ets recycled.

a

PPID : Parent Process Id: Every process has to be created by some other process. The
process which creates a process is the parent process, and the process being created is the
child process. The PID of the parent process is called the parent process id(PPID).

TTY: Terminal to which the process is associated to. Every command is run from a terminal
which is associated to the process. However, not all processes are associated to a terminal.
There are some processes which do not belong to any terminal. These are called daemons.

UID: User Id- The user to whom the process belongs to. And the user who is the owner of the
process can only kill the process(Of course, root user can kill any process). When a process
tries to access files, the accessibility depends on the permissions the process owner has on
those files.

List the processes: hd
| |

$ ps
PID TTY TIME CMD
441 pts/@ B2:88:82 bash
519 pts/@ ge:ee:8e ps

s 1

ps is the Unix / Linux command which lists the active processes and its status. By default, it
lists the processes belonging to the current user being run from the current terminal.

The ps command output shows 4 things:

PID : The unique id of the process

TTY: The terminal from which the process or command is executed.
TIME: The amount of CPU time the process has taken

CMD: The command which is executed.

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -6

Parent and Child Processes:

Every process in Unix has to be created by some other process. Hence, the ps command is
also created by some other process. The 'ps' command is being run from the login shell, bash.
The bash shell is a process running in the memory right from the moment the user logged in.
So, for all the commands triggered from the login shell, the login shell will be the parent
process and the process created for the command executed will be the child process. In the
same lines, the 'bash' is the parent process for the child process 'ps'.

Parent
Process

Parent
Process
Continues

Child
Process

The below command shows the process list along with the PPID’
AN

% ps -o pid,ppid,args
PID PPID COMMAND

441 8 /bin/bash
574 441 ps -o pid,ppid,args \
s

- - N AN

The PID of the bash is same as the PPID of the ps command which means the bash process is
the parent of the ps command. The -0’ option of the ps command allows the user to specify
only the fields which he needs to display. S

Processes in Unit into 3 types

1. Interactive Process
2. Non — interactive Process
3. Daemon Process

Interactive Process:

These are also called as background processes. Certain processes can be made to run
independent of terminals. Such processes that run without any attachment to a terminal are
called non-interactive processes.

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -6

Non — interactive Process:

These are also called as background processes. Certain processes can be made to run
independent of terminals; such processes that run without any attachment to a terminal are
called non-interactive processes.

Daemon Process :
They are system-related background processes that often run with the permissions of root and
services requests from other processes, they most of the time run in the background and wait

for processes it can work along with for ex print daemon. When ps —ef is executed, the
process with ? in the tty field are daemon processes.

i 0 MDD CSTIETTY THE O

sogr ! 00:08:0 /cocale/bin/tind sh $COCALC PRODECT 10 SKUCALC TAGE NAME $COCALC EXTRA EAN

lser § 40:00.00 sh -C en (SCOCALC PROTECT T0 SKUCALC TMAGE NAME SCOCALC EXTRA BV

il 00:08:88 mode /cocalc/sre/snc-project/Tocal hub.js --Lcp port 6806 --rai Azt

i 90:08:0 /usr/sbin/sshd -0 -p 2002 -h [tmg/ cocale/seh e=/tnp/ .cocale/sshd.pid - Jcocalc/Init/sshd config
L il 90:00:9 [bin/best

g)i 0000 s -of

il

the terminal and ; put on to another file are called background processes. Typical
jobs that could be run ground are sorting a large database file or locating a file in a big
file system by using the find command ad so on. A command is made to run in the
background by terminating the command line with an ampersand (&) character

Example:

$ sort -o student.lst student.Ist &
567
$

The shell immediately returns the PID as well as the shell prompt $. Here 567 is the PID of
the just submitted background job.

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -6

Problems using background processes:

The success or failure of the background processes is not reported. The user has to find it out
using PID. The output has to be redirected to a file as otherwise the display on the monitor
gets mixed up. Too many pro cesses running in the background degrades the overall
efficiency of the system. There is a danger of the user logging out when some processes are
still running in the background.

Internal and External Commands:

The classification of commands depending on whether they generate separate processes or
not upon their running. Most of the commands such as cat, nd others generate separate
processes as soon as they are used. Commands that gen eparate processes upon their
running are called external commands. Some commands as mkdr, rm, cd ad other do not
generate new processes when they are used. Such comgmand ernal commands.

Process Creation:
There are three distinct phases in the creatin

e Forking
e Opverlaying and Execution
e Waiting

Mechanism of process creation is depicte

Forking is the first phase i ss. The calling process makes

a call to the system routine opy of itself. After the fork()
there will be two proge . - turns the PID f the new process,
that is the child p Re child returns a 0(zero). Immediately after
forking, the pa @ptc wait() functions. The parent keeps
waiting for the c it task. The second phase, the exec() function
overwrit ocess. The exit() function terminates the child

process . ceives a complete signal from the child, after
which i

parent

dats of the child Proceas h[\r‘
the text and data of the
new program

. o iy |
| pif ad . wait () il ‘q‘jl'l.'fk,[:'*' :
R 2l waiting for the child to i 25
— } / i terminate or die 1
frunming shetl}; forkQ) / ; | !
|_ P s4 1 makean) ¢] sigmal
== " lexact copy | ! I
c P - / %
awer () [running]):'11;'.1'u|n.\'!I exit 0 | child process
1 —at child procoss, = ~= terpinated.
m e L ¥ ovieriay i & ! I ™ &
£ Pib 45 4 b FiE:d5 } \ P 45
SRR e N : = Gl e
EReCule
: - exection
i overwrites the text and
i
i
V
]

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -6

The ps command (knowing process attributes):

The ps command is used to displays the attributes of processes that are running currently.
When used with no options, the ps command lists out certain attributes associated with the
terminal.

Example:

5 ps
PID TTY TIME CMD
369 pts/@ 8g:88:88 bash
_411 pts/e eg:ee:8e ps

The options used in ps command are

Option

Terminal
Every

Example:

‘% ps -3
PID TTY TIME CMD
484 pts/@ 28:08:88 ps
§ ps -T
UID FID PPID C STIME TTY TIME CMD
user 369 9 9 12:59 pts/e @8:86:08 /bin/bash
user 485 360 8 13:83 pts/@ ga:ee:e8 ps -t
$ ps -u
USER PID 3CPU XMEM VsZ R5S TTY STAT START TIME COMMAND
user g2 8.8 8.8 22264 606G pts/o 5s 12:59 @:88 /bin/bash
user 495 8.8 8.8 36152 3276 pts/e R+ 13:84 8:88 ps -u
$ ps -t
PID TTY STAT TIME COMMAND
369 pts/@ S5 g:8a /bin/bash
495 pts/@ R+ g:88 ps -t
$ ps -e
PID TTY TIME CMD
12 ge:88:28 tini
3z 2g:22:88 sh
g 2 88:08:24 node
21 2 eg:08:88 sshd
234 ? 80:09:98 node
369 pts/@ Bg:8@:88 bash
497 pts/o gg:88:88 ps

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -6

Signals:

A signal is a message sent to a program under execution, that is a process. It occurs in 2
occasions, under some error conditions or the user interruption, the kernel generates signals,
during inter-process communication between two or more processes. The participating
process generated these signals, for example, a child process sends a signal to its parent
process upon its termination. In Unix, signals are identified by integer. They have names
these names are in uppercase and starts with SIG.

Example Signals:

Signal Number Name Function
1 SIGHUP | Hangup: close process comm
2 SIGINT | Interrupt: tells process to ¢

3 SIGQUIT | Quit: forces the process

9 SIGKILL | Sure kill: can not be trap
15 SIGTERM | Software terminajg the kill command

24 SIGSTOP | Stop

The trap command:

ither intentionally or
nd then decide about
al or signals are just
Mt from where it had been left

Normally signals are used to terminat
unintentionally. The trap command is us
the further course of action. :

trapped and the execution qf

e execution of a proce
trap one or more sign
entioned, then
from the

The co i . P used must be enclosed using either single or
double i . i gnds in the commands part are separated by the

$trap i ' , exit” 15

When a process receives a kill command, causing signal 15, it gives the message killed by
signal 15 and then terminates the current process because of the execution of the exit
command.

Example:
$trap “Is 17123

When a process generates any one of the signals 1,2 or 3, a long list of the current working
directory is generated and then execution of the process resumes form the point where it had
been left off.

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -6

Example:
$trap“” 12315

This command just traps the signal numbers 1,2,3 and 15. Certain signals like signal number
9 (the surekill) can not be trapped.

Resetting Traps:

Normally a trap command changes the default actions of the signals. There are some
situations like one might need to trap a certain signal in one part of a script and need the same
signals not be trapped in some other part. The command to trap the signal is given as,

Example:
$trap “exit” 2 3 15
— (y

The effect of the signals 2,3 and 15 are restored by using the trap command without the
command part in it.

Example:

$trap 2 3 15

The stty command:

One of the most widely used methods to communicate with a system is to use terminals, that

is via keyboards. There are certain combinationsof keys, on these terminals, which control the
behavior of any program in execution. \

Keys Function

<ctrl-m> (“m) | It is the <RETURN> key to end a command line and execute the command

<ctrl-c> (*c), | To interrupt a current process ad to come back to the shell

<ctrl-d> (*d) T o indicate end of file and so on

<ctrl-s> (@\To pause display on the monitor

The stty command is used to see r verify the settings of different keys on the keyboard. The
user can have a short listing of the setting by using this command without any arguments. In
order to see all the settings it has to be used with the —a (all) option.

Example:

Pstty -a

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -6

tch = (ndef; start = 0 stop = *5; sisp = *T; npent = % werase = My Lrat =, dscard = 0, min= 1) tie =

choctl echoke -Flusno -extproc

From the output one can see that the terminal speed is 38400 bauds, “U is used for killing a
line, 7D is used to indicate end of file.

The kill command:
N

There are certain situations when one likes to terminates a process prematurely. Some of
these situations are

e When the machine has hung. ’
e When a running program has gone into an endless loop.

e When a program is doing unintended things.‘ ‘

e When the system performance goes below acceptable levels because of too many
- A 4

background processes.
Terminating a process prematurely is called killing. Killing foreground process is straight
forward. This is done by using the DEL key or the BREAK key. To kill a background process
a kill command is used. This command is given w1th the PID of the process to be killed as its
argument. If the PID is not known the ps s command is used to know the same.
Example:

$kill 555
- :

Here, 555 is the PID of the process

More than one process can be termmated using a single kill command

Example: \ ‘

$kill 330 333 375 #here 330, 333, 375 are PID’s
A kill command when invoked, sends a termination signal ot the process being killed

When used without any option, it sends 15 as its default signal number. The signal number 15
is known as the software termination signal and is ignored by many processes. For example,
the shell process sh, ignores signal 15. Use signal 9, the sure kill signal, to terminate a
process forcibly.

Example:

$kill -9 666 # 666 is PID

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -6

Al the processes of a user (except his/her login shell) can be terminated by using a 0 as the
argument of the kill command.

Example:

$kill 0 #kills all the processes except the login shell

Using 9 as option and 0 as argument, all processes including the shell can be killed.
Example:

$kill -9 0 #kills all the processes including the login shell

$! And $$ system variables:

The special system variable $1 holds the PID value of the last background job. The last

background job can be killed by using the comman
$kill $! I

The special system variable $$ holds the PID Value of the current shell. The current shell ca
be killed using the sure kill command.

$kill -9 $$

The wait command:

Sometimes it is necessary to wait for either all the background jobs or a specific job to be
executed completely before any further action is initiated. These situations are handled by the
wait command.

Example:r

$wait #waits till all the background processes are completely executed.

$wait 227 #waits till the PID 227 process to be completely executed.

Job Control:

A command or command line with a number f commands put together or a script is referred
as a job. In UNIX, as one can run commands in the background, there could be a number of
commands that is processes running in the background. Also there could be command -a
process — running in the foreground.

The jobs command:
A list of all the current jobs is obtained using the jobs command.
Example:

[ksh] jobs #the {ksh} prompt has been used intentionally

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

UNIX PROGRAMMING UNIT -6

[1] + Running vi sample.sh &
[2] — Running sleep 30 &
[ksh]

-Here, a + (plus) and a - (minus) that appear after the job number mark the current and
previous jobs respectively. The word running indicated that the job is currently being
executed.

The fg command:

This command is used to bring a job that is being executed in the background currently to the
foreground. This command can be either used without any argument or with a job number as
its argument.

Example 1: '

[ksh] fg #Brings the most recent background process to the foreground.

\ 4

Example 2:

[ksh] fg %2 #Brings job number 2 to the foreground.

Example 3: A\ .

[ksh] fg %sort #Brings the job the name of which begins with sort to the foreground.

_— A e W

Whenever a job number is used as_an argument with a job-control command, it must be
preceded by a percent sign (%) The current job may be referred by using %1 (or) %+ (or)

%%. ’

The b%command:

A new job can be made to run in the background by using the & (ampersand) at the end of a
command line. The currently running foreground process is first suspended by using the
<ctrl-z> keys, and then making it run in the background by using the bg command.

Example:

[ksh] bg %1 #resumes job number 1 in the background.

K Varada Rajkumar
Assistant Professor
Department of CSE
Sir C R Reddy College Of Engineering

