

 SIRCRRCOE 1 MP & MC LAB Dept of ECE

MICRO PROCESSSOR AND MICRO CONTROLLER

LABORATORY MANUAL

R 16

III/ IV B.E (ECE) II–Semester

DEPT. OF ELECTRONICS AND COMMUNICATION
ENGINEERING

SIR C.R.REDDY COLLEGE OF ENGINEERING
ELURU-534007

 SIRCRRCOE 2 MP & MC LAB Dept of ECE

MICRO PROCESSOR AND MICRO CONTROLLER LAB

LABORATORY MANUAL

LIST OF EXPERMENTS

S. No Name Of The Experiment Pg. No

Part - A: 8086 PROGRAMS

1 A. Multibyte addition

 B. Multibyte subtraction

2 A. Multiplication of 16-bit

 B. Division of 16-bit

3 A. Sorting in Ascending order

 B. Sorting in descending order

4 Array of BCD addition

 5 Factorial of numbers

 PART –B : 8086 INTERFACE

 1 Sawtooth wave

 2 Square wave

3 Triangular wave generation

4 Seven segment display

5 Stepper motor

 Part - C: 8051 PROGRAMS

1 Even sum in array of data

2 Counting no of 1’s and 0’s

3 Sorting in 8051

4 Average of array numbers

 Part - D: 8051 INTERFACE

1 Sawtooth wave

2 Square wave

3 Seven segment display

4 Stepper motor

Add On Experiments

1

2

3

 SIRCRRCOE 3 MP & MC LAB Dept of ECE

 SIRCRRCOE 4 MP & MC LAB Dept of ECE

8086 PROGRAMS

 SIRCRRCOE 5 MP & MC LAB Dept of ECE

1(a).MULTIBYTE ADDITION

FLOWCHART:

 ≠0

 yes

 no

START

Initialize carry register,carry and
data register.

= 0

count

Initialize addend,augend and
sum carry pointer.

Access the count from specified
pointer.

Decrement the count

Increment addend pointer,
augend pointer and sum pointer.

Store in sum array pointer.

Add with carry the augend and
addend bytes from next pointer.

count

Store the carry

stop

Increment carry
register

 SIRCRRCOE 6 MP & MC LAB Dept of ECE

1(a).MULTIBYTE ADDITION

DATE:

EXP NO:

AIM:

Write An Assembly Language Programme For Perform The Multibyte Number Addition.

APPARATUS:

MASM 32 Assembler, ESA-86/88 Kit.

ALGORITHM:

Step1: Set SI Register As Pointer For Data.

Step2: Clear The Carry Register (Cl)

Step3: Initialize The Augend And Sum Array Pointer.

Step4: Access The Count Value From The Pointer.

Step5: Access The Augend And Addend Data From Next Pointer.

Step6: Perform The Byte Addition And Store In Sum Pointer.

Step7: Increment The Augend Pointer, Adder Pointer And Sum Pointer.

Step8: Decrement The Count Value.

Step9: Check The Count If It Zero Go To Next Step If Not Go To Step5.

Step10: Check The Carry If No Go To Step12 Else Go To Next Step.

Step11: Increment Carry Register Values.

Step12: Store The Carry.

 SIRCRRCOE 7 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

Address

in hexa

Opcode

in hexa

mnemonic operand comments

1000 B86A07 MOV AX,076A Initialization

1003 8ED8 MOV DS,AX Data Segment

1005 F8 CLC Clear The Carry Flag

1006 BE0020 MOV SI, 2000 Initialize Augend Carry Pointer

1009 BB0021 MOV BX,2100 Initialize Addend Array

Pointer

100C BF0022 MOV DI, 2200 Initialize Sum Array Pointer

100F B100 MOV CL,100 Clear The Carry Register

1011 8A2C MOV CH,[SI] Load The Count

1013 46 INC SI Increment Augend Pointer

1014 8A04 MOV AL,[SI] Load The Augend Byte From

Pointer

1016 1207 ADC AL,[BX] Add The Addend Byte From

Pointer With Carry

1018 8805 MOV [SI],AL Store The Sum Byte Into

Pointer

101A 47 INC DI Increment For Next Sum

Pointer

101B 43 INC BX Increment For Next Addressed

Pointer

101C FECD DEC CH Decrement Count

101E 75F3 JNZ 1013 If It Not Zero Repeat The

Addition If Zero Check For

Carry

1020 7302 INC 1024 Check For Carry If No Store

The Carry.

1022 FEC1 INC CL Increment The Carry Register.

1024 880D MOV [DI],CL Store The Multibyte Sum

1026 CC INT 03 Stop The Programme

 SIRCRRCOE 8 MP & MC LAB Dept of ECE

OUTPUT:

For N= 4

2000 2001H

2100

2200

2002H

2101

2201

2003H

2102

2202

2004H

2103

2203

augend

addend

2204
sum/carry

For N=

6

2000 2001

2100

2200

2002

2101

2201

2003

2102

2202

2004

2103

2203

2005

2104

2204

2006

2105

2205

2206

RESULT:

 SIRCRRCOE 9 MP & MC LAB Dept of ECE

1(b).MULTIBYTE SUBTRACTION

FLOWCHART:

 ≠0

=0

 yes

 no

Initialize carry register, carry and
data pointer.

= 0

count

Initialize minend, subtrahend
and difference array pointer.

Access the count from specified
pointer.

Decrement the count

Increment minend pointer, subtrahend
pointer and difference pointer.

Store in differnce array pointer.

subtract with carry the augend and
addend bytes from next pointer.

count

Store the barrow

stop

Increment barrow
register

START

 SIRCRRCOE 10 MP & MC LAB Dept of ECE

1(b).MULTIBYTE SUBTRACTION

DATE:

EXP.NO:

AIM:

Write An Assembly Language To Perform To An Multibyte Numbers Subtraction.

APPARATUS:

MASM 32 Assembler, ESA-86/88 Kit.

ALGORITHM:

Step1: Set SI Register As Pointer For Data.

Step2: Clear The Barrow Register(Cl).

Step3: Initialize The ,Minerend, Subtrahend And Difference Array Pointer.

Step4: Access The Count Value From The Pointer.

Step5: Access The Minerend And Subtrahend Data From Next Pointer.

Step6: Perform The Byte Subtraction And Store The Difference Pointer.

Step7: Increment The Subtrahend Pointer, Minend Pointer Nd Difference Pointer.

Step8: Decrement The Count Value.

Step9: Check The Count If It Zero Go To Next Step, If Not Go To Step5.

Step10: Check The Carry If No Go To Step12 Else To Next Step.

Step11: Increment Barrow Register Values.

Step12: Store The Barrow.

Step13: Stop The Programme.

 SIRCRRCOE 11 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

OFFSET CODE: 076AH

address

in hexa

Opcode in

hexa

mnemonic operand

comments

1000 B86A07 MOV AX,076A Initialization Of Data Segment

1003 8ED8 MOV DS,AX

1005 E8 CLC Clear Carry Flag

1006 BE0020 MOV SI,2000 Initialize Subtrahend Array

Pointer

100C BF0022 MOV DI,2200 Initialize Difference Array

Pointer

100F B100 MOV CL 100 Clear The Carry Register

1011 8A2C MOV CH,[SI] Load The Count

1013 46 INC SI Increment For Minuend

Pointer

1014 8A04 MOV AL,[SI] Load The Minuend Byte From

Pointer

1016 1A07 SBB AL,[BX] Subtract Subtrahend From

1018 8805 MOV SI,[AL] Store Difference In Pointer

101A 47 INC DI Increment Difference Pointer

101B 43 INC BX Increment Subtrahend Array

Pointer

101C FECD DEC CH Decrement Cunt

101E 75F3 JNZ 1013 If It Not Zero Repeat The

Subtractionif Zero Check

Barrow

1020 7302 INC 1024 Check For Barrow If No Store

The Barrow

1022 FECI INC CL Increment The Carry Register.

1024 880D MOV [DI],CL Store Multibyte Difference

1026 CC INT 03 Stop The Programme

 SIRCRRCOE 12 MP & MC LAB Dept of ECE

OUTPUT:

For N= 4

2000 2001

2100

2200

2002

2101

2201

2003

2102

2202

2004

2103

2203

2204
sum/carry

For N=

6

2000 2001

2100

2200

2002

2101

2201

2003

2102

2202

2004

2103

2203

2005

2104

2204

2006

2105

2205

2206

RESULT:

 SIRCRRCOE 13 MP & MC LAB Dept of ECE

2(a).16 BIT MULTIPLICATION

FLOWCHART:

START

Initialize data pointer

Access the multiplicand from
specified pointer

Access the multiplier from
specified pointer

Perform multiplication operation

Store the product into specified
location given by pointer.

STOP

 SIRCRRCOE 14 MP & MC LAB Dept of ECE

2(a).16-BIT MULTIPLICATION

Date:

Exp No:

Aim:

Write an assembly language programme to multiply the two 8-Bit Numbers stored

in 2000H & 2002H memory locations and store the result in 2004H and 2006H

memory locations

Apparatus:

MASM 32 Assembler, ESA-86/88 Kit

Algorithm:

STEP1: Set SI register as pointer for data

STEP2: Get multiplier 16-Bit data into AX-Register.

STEP3: Get the multiplicand 16-Bit data and into BX register.

STEP4: Perform the 16- Bit multiplication operation.

STEP5: Store the product in memory.

STEP6: Stop.

 SIRCRRCOE 15 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

DATA SEGMENT OFFSET : 076AH

Address Machine

code

Mnemonic Operand Comments

1000 B86A07 MOV AX,076A

Initialization of data segment 1003 8ED8 MOV DS,AX

1005 BE0020 MOV SI,2000H Set SI as a pointer for Data

1008 8BC4 MOV AX,[SI] Get the multiplicand 16 bit data

into AX

100A 8B5002 MOV BX,[SI+4] Load the multiplicate 16 bit

data into BX

100D F7E3 MUL BX Perform 16 bit multipliction

100F 894404 MOV [SI+6],AX Store the product lower wordin

memory by specified pointer

1012 MOV [SI+08],DX Store the product higher word

in memory by specified pointer

1015 INT 03 Break the programme

OUTPUT:

DATA Multiplicand

16bit data

2003H 2002H

Multiplier 16

bit data

2001H 2000H

Higher 16bit

2007H

2006H

Lower 16-bit

2005H

2004H

Data1

Data2

Data3

Data4

Data5

RESULT:

 SIRCRRCOE 16 MP & MC LAB Dept of ECE

2(b).DIVISION OF 16-BIT NUMBERS

FLOWCHART:

START

Access the Initialize data pointer

Access the dividend from
specified pointer

Access the divisor from
specified pointer

Perform division operation

Store the quotient and remainder
into specified location by
pointer.

STOP

 SIRCRRCOE 17 MP & MC LAB Dept of ECE

2(b).DIVISION OF 16-BIT NUMBERS

DATE:
EXP.NO:

AIM:
 Write An Assembly Language Programme To Divide The Two 16-Bit Numbers

Stored In 2000h And 2002h Memory Locatins And Store The Result In 2004h And
2006h Memory Loctions.

APPARATUS:

MASM 32 Assembler, ESA-86/88 Kit

ALGORITHM:

Step1: Set The SI Register As Pointer For Data.

Step2: Get Dividend Lower 16-Bit Data Into AX Register.

Step3: Get The Dividend Hogher 16-Bit Data Into DX Register.

Step4: Get The Divisor 16-Bit Data Into BX Register.

Step5: Perform The 16-Bit Division Operation.

Step6: Store The Quotient In Memory.

Step7: Store The Remainder In Memory.

Step8: Stop.

 SIRCRRCOE 18 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

DATA SEGMENT OFFSET: 076AH

Address

 in hexa

Opcode

in hexa

mnemonic o operand comments

1000 B86A07 MOV AX,076A Initialization Of Data
Segment 1003 8ED8 MOV DS,AX

1005 BE0020 MOV SI,2000H Set Si As Pointer For Data
1008 8B04 MOV AX,[SI] Get The Dividend Lower

16 Bit Data Into Ax.
100A 8B5402 MOV DX,[SI+2] Load The Dividend Higher

16-Bit Data Into Dx
100D 8B5C04 MOV BX,[SI+4] Load The Divisor 16-Bit

Data Into Bx.
1010 F7F3 DIV BX Perform 16-Bit Division
1012 894406 MOV [SI+6],AX Store The Quotient In

Memory By Specified
Pointer.

1015 895408 MOV [SI+8],DX Store The Remainder In
Memory By Specified
Pointer.

1018 CC INT 03 Break The Programme

OUTPUT:

DATA Multiplicand

16bit data

2003H 2002H

Multiplier 16

bit data

2001H 2000H

Higher 16bit

2007H

2006H

Lower 16-bit

2005H

2004H

Data1

Data2

Data3

Data4

Data5

RESULT:

 SIRCRRCOE 19 MP & MC LAB Dept of ECE

3(a).SORTING THE DATA

FLOWCHART:

 =0 =1

 ≠0 =0

 ≠0

 =0

START

Initialize data pointer

Load the count value

Decrement count and load into iteration
register and then into comparison register.

Access the data from the starting at
array into accumulator

Compare with next data of array

= 0

carry

Swap the memory
data

Load the highest value
into accumulator

Compare with next data of array

count Decrement
iteration count

count

stop

 SIRCRRCOE 20 MP & MC LAB Dept of ECE

3(a).SORTING THE DATA

DATE:

EXP.NO:

Aim:

Write an assembly language progmme to perform the sorting of an array.

Apparatus:

MASM 32 assembler

ESA -82/86 kit

Algorithm:

Step 1: Set SI register as pointer for data.

Step 2: Load the count value

Step 3: Decrement the count value

Step 4: Load it into iteration register then into comparison register

Step 5: Access the data from the storing of arrays into accumulator.

Step 6: Compare with next data of the array pointer.

Step 7: Check array if array exist store highest value into accumulator then go to

step 9, if carry doesn’t exist go to next step.

Step 8: Swap the memory contents.

Step 9: Decrement the comparison count if it zero go to next step. If it does not

zero

 go to step6.

Step 10: Decrement the iteration count.

Step 11:If it non zero go to step 4. If it zero go to next step.

Step 12:Stop the program.

 SIRCRRCOE 21 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

ascending order

DATASEGMENT OFFSET : 076AH

Address

in hexa

Opcode
in hexa

label

mnemonic

operand

comments

1000 B86A07 MOV AX,076A Initialization of data

Segment 1003 8E02 MOV DS,AX

1005 BE0020 MOV SI,2000H Set SI as pointer for

data

1008 8A3C MOV BH,[SI] Load the count

100A FECF DEC BH Decrement for

iterations and

comparison

100C 8ADF LOOP3 MOV BL,BH Load the iteration no. to

comparisons register

100E BE0120 MOV SI,2001H Initialize data pointer

for sorting

1011 8A04 LOOP2 MOV AL,[SI] Load the data into acc

1013 46 INC SI Increment pointer for

next data

1014 3A04 CMP AL,[SI] Compare acc and

memory data

1016 7205 INC 1010H If acc is less go for

decrement then

compare value, if else

go for swap

1018 8604 XCHG AL,[SI] Swapping

 101A 8644FE XCHG AL,[SI-1]

101D FECB LOOP1 DEC BL Decrement comparison

number

101F 7SF0 JNZ 1011,H If it non zero load

theproceed for next

comparison

 SIRCRRCOE 22 MP & MC LAB Dept of ECE

1021 FECF DEC BH Decrement the count

number

1023 75E7 JNZ 100C H It is non-zero go for

next iterations

1025 CC INT 3 Stop the program

OUTPUT:

Data

no.

Count

2000

2001 2002 2003 2004 2005 2006

Result:

 SIRCRRCOE 23 MP & MC LAB Dept of ECE

3(b).SORTING DATA IN DESCENDING ORDER

FLOWCHART:

 =0 =1

 ≠0 =0

 ≠0

 =0

Initialize data pointer

Load the count value

Decrement count and load into iteration
register and then into comparison register.

Access the data from the starting at
array into accumulator

Compare with next data of array

= 0

carry

Swap the memory
data

Load the highest value
into accumulator

Decrement comparison count

count Decrement
iteration count

count

stop

START

 SIRCRRCOE 24 MP & MC LAB Dept of ECE

3(b).SORTING DATA IN DESCENDING ORDER

DATE:

EXP.NO:

AIM:

Write an assembly language programme to perform the sorting of array in

descending order.

APPARATUS:

MASM 32 Assembler, ESA-86/88 Kit

ALGORITHM:

Step1: set SI register as pointer for data

Step2: load the count value.

Step3: decrement the count value.

Step4: load it into iteration register then into comparison register.

Step5: access the data from the starting of array into accumulator.

Step6: compare with the next data of the array pointer

Step7: check the carry if carry exists store highest value into accumulator then go

to step9,if carry doesn’t exists next step.

Step8: swap the memory contents

Step 9:Decrement the comparison count if it zero go to next step. If it not zero go to

step6.

Step 10: Decrement the iteration count.

Step 11: If it non zero go to step 4. If it zero go to next step.

Step 12: Stop the program.

 SIRCRRCOE 25 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

DATA SEGMENT OFFSET : 076AH

A address

in hexa

Opcode

 in hexa

label

mnemonic

operand

comments

1000 B86A07 MOV AX,076A Initialization of data

Segment 1003 8E08 MOV DS,AX

1005 BE0020 MOV SI,2000H Set SI as pointer for data

1008 8A3C MOV BH,[SI] Load the count

100A FECF DEC BH Decrement for iterations and

comparison

100C 8ADF LOOP3 MOV BL,BH Load the iteration no. to

comparisons register

100E BE0120 MOV SI,2001H Initialize data pointer for

sorting

1011 8A04 LOOP2 MOV AL,[SI] Load the data into acc

1013 46 INC SI Increment pointer for next

data

1014 3A04 CMP AL,[SI] Compare acc and memory

data

1016 7205 JC 1010H If acc is less go for

decrement then compare

value, if else go for swap

1018 8604 XCHG AL,[SI] Swapping

101A 8644FE XCHG AL,[SI-

1]

101D FECB LOOP1 DEC BL Decrement comparison

number

101F 7SF0 JNZ 1011,H If it non zero load thehighest

no. into acc. And proceed

for next comparison

1021 FECF DEC BH Decrement the count

number

 SIRCRRCOE 26 MP & MC LAB Dept of ECE

1023 75E7 JNZ 100C H It is non-zero go for next

iterations

1025 CC INT 3 Stop the program

OUTPUT:

Data

no.

Count

2000

2001

2002

2003

2004

2005

2006

RESULT:

 SIRCRRCOE 27 MP & MC LAB Dept of ECE

4.ARRAY OF BCD ADDITION

FLOWCHART:

no

 yes

 no

 yes

START

Initialize count reg, acc,
carryreg, data pointer.

Perform BCD addition from next
memory location.

cy

Decrement count

Increment and convert into
BCD form

Count=
0

Store BCD sum and carry into
memory.

STOP

 SIRCRRCOE 28 MP & MC LAB Dept of ECE

4.ARRAY OF BCD ADDITION

DATE:

EXP.NO:

AIM:

Write An Assembly Language Programme For an array of BCD addition and the result

will be stored in some memory locations

APPARATUS:

MASM 32 Assembler, ESA-86/88 Kit.

ALGORITHM:

Step1: SI with 2000H

Step2: initialize Acc. With 00.

Step3: Initialize carry register with 00.

Step4: move Count Value From data Pointer into count registers.

Step5: increment SI value.

Step6: add memory content with accumulator.

Step7: convert sum value from hexa decimal to decimal.

Step8:check the carry. If not go to step13, if yes go to next step.

Step9:exchange carry into acc.

Step10:increment accumulator.

Step11:count acc.from hexadecimal to decimal.

Step12: exchange carry register and acc.

Step13: decrement count register

Step14: check count register if zero go to step15 if it not zero go to step5.

Step15: store the BCD into memory.

Step16: store the carry into carry.

Step17: stop the program.

 SIRCRRCOE 29 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

DATA SEGMENT OFFSET : 076AH

 Address

 in hexa

Opcode
in hexa

mnemonic

operand

comments

1000 B86A07 MOV AX,076A Initialization of data

1003 8ED8 MOV DS,AX Segment

1005 B000 MOV AL,00 Clear the acc. Register

1007 B100 MOV CL,00 Clear the carry register

1009 BE0020 MOV SI,2000 Initialize the acc. Register

100C 8E2C MOV CH,[SI] Load the count

100E 46 INC SI Increment the data pointer

100F 0204 ADD AL,[SI] Add the byte from data

pointer

1011 27 DAA Apply the decimal adjust

after addition

1012 7307 JNC 101B Check for carry if no store

the carry

1014 86C1 XCHG AL,CL Exchange acc. And carry

1016 0401 ADD AL,01 Add the 01 from pointer

1018 27 DAA Apply the decimal adjust

after addition

1019 86C1 XCHG AL,CL Exchange the carry and acc.

101B FECD DEC CH Decrement count

101D 75EF JNZ 100E If it not zero repeat addition

if zero check for carry

101F 884401 MOV [SI+01],AL Store the sum in memory by

specified pointer

1025 CC INT O3 Stop programme.

 SIRCRRCOE 30 MP & MC LAB Dept of ECE

OUTPUT:

S.NO 1 2 3 4 5

RESULT:

 SIRCRRCOE 31 MP & MC LAB Dept of ECE

5. FACTORIAL OF NUMBER

FLOWCHART:

 No

Yes

START

READ N

M=1, F=1

F= F *M

PRINT F

IS
M=N ?

STOP

M= M+1

 SIRCRRCOE 32 MP & MC LAB Dept of ECE

5.FACTORIAL OF NUMBER

DATE:

EXP.NO:

AIM:

Write An Assembly Language Programmeto find the factorial of a given number

stored in 2000H memory location and store the resulting in memory location.

APPARATUS:

MASM 32 Assembler, ESA-86/88 Kit.

ALGORITHM:

Step1: set SI register as pointer for data

Step2: get given data(N)

Step3: Initialize the multiplicand with 1

Step4: Initialize the multiplier with 1.

Step5: perform the multiplication.

Step6: compare with multiplier with given number, if true go to step 9, if not go to

STEP7

Step7: increment multiplier valve with 1

Step8: go to step 5.

Step9:store the factorial in memory.

Step10:stop

 SIRCRRCOE 33 MP & MC LAB Dept of ECE

ASSEMBLY LAGUAGE PROGRAM:

DATA SEGMENT OFFSET: 076AH

Address

in hexa

Opcode in

hexa

mnemonic operand comments

1000 B86A07 MOV AX,076A Initialization of data

1003 8ED8 MOV DS,AX Segment

1005 BE0020 MOV SI,2000H Set SI as pointer for data

1008 8B1C MOV BX,[SI] Access the number from

memory which factorial to be

find

100A 83FB00 CMP BX,+00 Compare with given no.

100D 740A JZ 101D If it is equal store the result

100F B80100 MOV AX,0001 Initialize multiplicand with 1

1012 8BC8 MOV CX,AX Initialize multiplier with 1

1014 F7E1 MUL CX Perform 8 bit multiplication

1016 3BCB CMP CX,BX Compare with multiplier at a

given number

1018 7406 JZ 1020 If it equal store result in

memory

101A 41 INC CX If not equal increment

multiplier

101B EBF7 JMP 1014 Go to perform next

multiplication

101D B80100 MOV AX,0001 Store the result

101E CC INT 03 Stop the programme

 SIRCRRCOE 34 MP & MC LAB Dept of ECE

OUTPUT:

Data no. Number Factorial

Address

2000H

Higher word Lower word

Higher byte

address

2004H

lower byte

address

2003H

Higher byte

address 2002H

lower byte

address

2001H

RESULT:

 SIRCRRCOE 35 MP & MC LAB Dept of ECE

8086 INTERFACING

 SIRCRRCOE 36 MP & MC LAB Dept of ECE

1.SAWTOOTH WAVE
FLOW CHART :

 SIRCRRCOE 37 MP & MC LAB Dept of ECE

1.SAWTOOTH WAVE
DATE:-
EXP.NO:-

AIM:- Write an Assembly Language Program to generate sawtooth wave using DAC

through 8255 PPI

APPARATUS :-

MASM 32 ASSEMBLER , ESA-86/88 KIT, DAC card and CRO

THEORY:-

In this circuit the 8086 processor is interfaced with 8255 in mode-0 and set all the

ports are set to output. The output of port-A is connected to DAC which converts the

digital input to corresponding analog output. The is send to CRO to display. Initially

the port-A is loaded with 00 and the corresponding analog output is send to CRO.

And increment port-A value continuously until the maximum value. If the maximum

value is 0FF no need to compare. Once it is reached to maximum value then it will

reached to initial value. And repeated the same. If the maximum is not FF then for

each and every increment we should compare with maximum value if is equal or less

than we should send to port-A to display. After that again start from 00 and repeat.

The wave amplitude and frequency are depends on maximum count value to send to

Port-A.

ALGORITHM :-

step1: Set all ports as output of 8255 in mode-0

Step2: Load control word into controlword register.

Step3: Initialize port-a with 00 and output to port-a

Step4: send to display through DAC

Step5: Increment the port-a value and go to step 4

ASSEMBLY LANGUAGE PROGRAM

 MOV DX,0FFE6H
 MOV AL,80H
 OUT DX,AL
 MOV DX,0FFE0H
 MOV AL,00H
 LOOP1: OUT DX,AL
 INC A
 JMP LOOP1

 SIRCRRCOE 38 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM FOR SAWTOOH WAVE

 DATA SEGMENT OFFSET : 076AH

ADDRESS
IN HEXA

OP CODE
IN HEXA MNEMONICS OPERAND COMMENT

2000 BA,E6,FF MOV DX,0FFE6 Set all ports of 8255 as output
In mode -0 2003

B0,80 MOV AL,80H

2005 EE OUT DX,AL Load control word in to control
Word register

2006 BA,E0,FF MOV DX,0FFE0 Out the initial word into
port-A 2009 B0,00 MOV AL,00

200B EE OUT DX,AL Send to display through DAC
200C FE,C0 INC AL Increment continuously
200E EB,FB JMP 200B Display continuously

RESULT:-

Result:- Generating the sawtooth wave with different amplitudes and frequencies.

 SIRCRRCOE 39 MP & MC LAB Dept of ECE

2.SQUARE WAVE GENERATION

FLOW CHART:

 SIRCRRCOE 40 MP & MC LAB Dept of ECE

2.SQUAREWAVE
DATE:-
EXP.NO:-

AIM:-

Write an Assembly Language Program to generate the square wave using

 8255 ppi in mode-0

APPARATUS :-

ESA-86/88 KIT, CRO, DAC

THEORY:-

In this circuit the 8086 processor is interfaced with 8255 in mode-0 and set all the

ports are set to output. The output of port-A is connected to DAC which converts the

digital input to corresponding analog output. The is send to CRO to display. Initially

the port-A is loaded with FF and the corresponding analog output is send to CRO.

And call the delay as per frequency requirement for on time. For off time

complement the count and then send to display. Repeat the above continuously. The

square wave having duty cycle 50%. So ontime and off time are equal , for this we

are calling same delay routine.

ALGORITHM :-

step1: Set all ports as output of 8255 in mode-0

Step2: Load control word into control word register.

Step3: Initialize port-a with count and output to port-A.

Step4: Call Delay.

Step5: Complement the count and output to port-A

Step6: Goto step 4

ASSEMBLY LANGUAGE PROGRAM:

 MOV DX,0FFE6H
 MOV AL,80H
 OUT DX,AL
 MOV DX,0FFE0H
 MOV AL,FFH
 LOOP1: OUT DX,AL
 CALL 2050H(DELAY)
 NOT AL
 JMP LOOP1

 SIRCRRCOE 41 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM FOR SQUARE WAVE

 DATA SEGMENT OFFSET : 076AH

ADDRESS
IN HEXA

OP CODE
IN HEXA MNEMONICS OPERAND COMMENT

2000 BA,E6,FF MOV DX,0FFE6 Set all ports of 8255 as output
In mode -0 2003

B0,80 MOV AL,80H

2005 EE OUT DX,AL Load control word in to control
Word register

2006 BA,E0,FF MOV DX,0FFE0 Out the initial word into
port-A 2009 B0,FF MOV AL,0FF

200B EE OUT DX,AL Send to display through DAC
200C E8,06,00 CALL 2041

(DELAY)
Call delay program for on/off
time

200F F6,D0 NOT AL Complement for off time
2011 EB,FB JMP 200B Send to display for off time

DELAY PROGRAM

RESULT :-
Generating the different square wave with different frequencies.

2041 B9,0F,00 MOV CX,00FF
2044 BA,FF,FF LOOP2 MOV DX,0FFFF
2047 4A LOOP1 DEC DX
2048 75,FD JNZ LOOP1

(2047)

204A 49 DEC CX

204B 75,F7 JNZ LOOP2
(2044)

204D C3 RET

 SIRCRRCOE 42 MP & MC LAB Dept of ECE

3.TRIANGULAR WAVE GENERATION

FLOWCHART

 SIRCRRCOE 43 MP & MC LAB Dept of ECE

5.TRIANGULAR WAVE GENERATION

DATE:-
EXPNO:-

AIM:-
write an assembly language program to generate triangular wave using DAC
through 8255 PPI

APPARATUS:-

ESA -86 training kit, DAC card and CRO

THEORY:-

In this circuit the 8086 processor is interfaced with 8255 in mode-0 and set all the

ports are set to output. The output of port-a is connected to DAC which converts the

digital input to corresponding analog output. This send to CRO to display. Initially

the port-A is loaded with 00 and the corresponding analog output is send to CRO.

And increment count and then compare to maximum value. If it is less than the

maximum count then send to display. After that the count value is decremented, after

decrement compare with minimum value. If it is greater than minimum value then

send to display. Once it is reached to minimum then again start increment the count .

this process is repeat .

ALGORITHM:-
Step1: set all ports as output of 8255 in mode-0

 Step2: Load control word into control word register.

Step3: initialize port-A with 00 and output to port-A

Step4: send to display through DAC

Step5: Increment the port-A value and compare with maximum count

Step6: If it is less than the maximum count go to step4 if no goto next step

Step7: send to display count through DAC

 Step8: Decrement count and compare to minimum count

Step9: If it is greater than the minimum count goto step 7, if no goto step 3

 SIRCRRCOE 44 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM FOR TRIANGULAR WAVE

ADDRESS OP CODE MNEMONIC OPERAND COMMENT

2000 BA, E6, FF MOV DX,0FFE6

Set all the ports
As output in
mode-0

2003 B0,80 MOV AL,80 Send control
Word to control
Word register. 2005 EE OUT DX,AL

2006 BA,E0,FF MOV DX,0FFE0 Send initial count
to port-A
To display

2009 B0,00 MOV AL,00
200B EE OUT DX,AL

200C FE,C0 INC AL
Is reach to
maximum

200E 3C,FF CMP AL,0FF
If no out display

2010 75,F9 JNZ 200B
2012 EE OUT DX,AL Decrement count

is count reaches
to minimum if no
out to display

2013 FE,C8 DEC AL
2015 3C,00 CMP AL,00
2017 75,F9 JNZ 2012

2019 EB,EE JMP 2009
Go to initial
count

RESULT :-Triangular wave is generated with different frequencies with different
amplitudes

Note:- The amplitude and frequency depends upon maximum and minimum count
to be loaded into port-A

 SIRCRRCOE 45 MP & MC LAB Dept of ECE

4.SEVEN SEGMENT DISPLAY

FLOW CHART

 SIRCRRCOE 46 MP & MC LAB Dept of ECE

4.SEVEN SEGMENT DISPLAY
DATE:-
EXP.NO:-

AIM:-

Write an Assembly Language Program to interface the sevensegment display and

print the required characters using 8086 through 8255

APPARATUS :-

MASM 32 ASSEMBLER , ESA-86/88 KIT

ALGORITHM :-

step1:Set SI register as pointer for data.

Step2:Initialize the group counter register.

Step3: Initialize the character count register .

Step4: Initialize the bit count register

Step5:Load the character from the memory specified by pointer.

Step6: Increment the memory pointer for next character.

Step7:Find the next bit of character.

Step8:Shift that bit to specific port(PB).

Step9:set clock and send to specific port(PC).

Step10:reset the clock and send to specific port(PC).

Step11:Decrement bit count register, check, if it zero goto next step, if not goto step7.

Step 12:Decrement character count register, check, if it zero go to next count, if not goto

Step4.

Step 13:Call delay program between each group

Step14:Decrement group counter , check, if it zero goto next step , if not gotogoto step 3

Step 15:go to step 1.

THEORY:

There are four digit 7 segment display driven by the outputs of four cascaded serial-

in-parallel-out shift registers. Data to be displayer is transmitted serially, bit by bit, to

the interface over the port line PB0. Each bit is clocked into the shift registers by

providing a common clock through the port line PC0. Thus , information for all the

four digits is provided by 32 bits clocked into the shift registers serially.

 SIRCRRCOE 47 MP & MC LAB Dept of ECE

Display Codes: since the outputs of shift registers are connected to the cathode

sides of LED segments, low input must be given to the segments for making them

glow and high inputs for making them blank. Each display has 7 bar segments and a

dot as in shown in figure below. For displaying any character its corresponding

segments must be given blow inputs.

H

ASSEMBLY LANGUAGE PROGRAM:-

 MOV DX,0FFE6H
 MOV AL,80H
 OUT DX,AL
LOOP4: MOV SI,2050H
 MOV CL,05
LOOP3: MOV CH,04
LOOP2: MOV BL,08
: MOV AL,[SI]
 INC SI
LOOP1: ROL AL,1

 SIRCRRCOE 48 MP & MC LAB Dept of ECE

 MOV DX,0FFE2H
 OUT DX,AL
 MOV AH,AL
 MOV AL,1
 MOV DX,0FFE4H
 OUT DX,AL
 DEC AL
 OUT DX,AL
 MOV AL,AH
 DEC BL
 JNZ LOOP1
 DEC CH
 JNZ LOOP2

 CALL DELAY
 DEC CL
 JNZ LOOP3
 JMP LOOP4

ADDRESS OPCODE LABEL MNEMONIC OPERANDS COMMENTS

2000 BA,E7,FF MOV DX, 0FFE6
Configure 8255
All ports output

2003 B0,80 MOV AL,80H
Control word to set all ports
output

2005 EE OUT DX,AL
Load the control word in
To control word register

2006 BE,20,50 LOOP 4 MOV SI,2050H Start of display code
2009 B1,05 MOV CL,5 5 groups to display
200B B5,04 LOOP3 MOV CH,4 4 Characters per group
200D B3,08 LOOP2 MOV BL,8 8 Bits per character
200F 8A,04 MOV AL,[SI] Character get the display

Code
2011 46 INC SI Increment pointer for next

Character.
2012 DO,CO LOOP1 ROL AL,1 Get one data bit
2014 BA,E3,FF MOV DX,0FFE2 Port B initialization
2017 EE OUT DX,AL Data bit output to port B
2018 88, C4 MOV AH,AL Store temporarily the acc.

In to AH
201A B0,1 MOV AL,1 Output the clock
201C BA,E5,FF MOV DX,0FFE4 Instillation the port c
201F EE OUT DX,AL Output the clock through

Port c
2020 FE,C8 DEC AL To shift register
2022 EE OUT DX,AL Output the clock
2023 88,E0 MOV AL,AH Load temporary stored data

Into AL
2025 FE,CB DEC BL All bits are over?
2027 75,E9 JNZ LOOP1

(2012)
No continue

2029 FE,CD DEC CH All characters over?
202B 75,E0 JNZ LOOP2 No continue

 SIRCRRCOE 49 MP & MC LAB Dept of ECE

DELAY PROGRAM

STRING

2050 0BF 0CC 0CC 0C6
2054 0BF 86 0C0 0C6
2058 0C6 86 92 88
205C 0BF 0CC 0C7 86
2060 0F8 0C0 0C0 0C0

RESULT:- The output is displayed as follows according to above code

C r r --

 C O E --

 A S E C

 E L r --

 O O O 7

(200D)
202D E8,06,00 CALL DELAY

(2040)
Introduce delay

2030 FE,C9 DEC CL All groups are over.
2032 75,D7 JNZ LOOP3

(200B)
No to continue

2034 EB,D0 JMP LOOP4
(2006)

Yes start from beginning

2040 51 DELAY PUSH CX Delay subroutine
 PUSH DX
2041 B9,FF,00 MOV CX,00FF
2044 BA,FF,FF LOOP2 MOV DX,0FFFF
2047 4A LOOP1 DEC DX
2048 75,FD JNZ LOOP1

(2047)

204A 49 DEC CX

204B 75,F7 JNZ LOOP2
(2044)

204D 5A POP DX
204E 59 POP CX
204F C3 RET

 SIRCRRCOE 50 MP & MC LAB Dept of ECE

5.STEPPER MOTOR

FLOW CHART

 SIRCRRCOE 51 MP & MC LAB Dept of ECE

5.STEPPER MOTOR
DATE:-
EXP.NO:-

AIM:-
Write an Assembly Language Program to rotate the stepper motor using 8255 ppi in

mode-0

APPARATUS :-

 ESA-86/88 KIT, CRO, DAC

THEORY:-

In this circuit the 8086 processor is interfaced with 8255 in mode-0 and set all the

ports are set to output. The output of port-A is connected to stepper motor And call

the delay as per speed requirement. As per direction rotate stepper and shift the pole

action with speed requirement. And repeat the same for continuously rotating the

motor.

ALGORITHM :-

step1: Set all ports as output of 8255 in mode-0

Step2: Load control word into control word register.

Step3: Initialize port-a with pole activation count and output to port-A.

Step4: Call Delay according to speed.

Step5: rotate as per direction shift the poleaction count and output to port-A

Step6: Goto step 4

 SIRCRRCOE 52 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

 MOV DX,0FFE6H
 MOV AL,80H
 OUT DX,AL
 MOV DX,0FFE0H
 MOV AL,88H
 LOOP1: OUT DX,AL
 CALL 2050H(DELAY)
 ROR AL,1
 JMP LOOP1

ASSEMBLY LANGUAGE PROGRAM FOR SQUARE WAVE

 DATA SEGMENT OFFSET : 076AH

ADDRESS
IN HEXA

OP CODE
IN HEXA

MNEMONICS OPERAND COMMENT

2000 BA,E6,FF MOV DX,0FFE6 Set all ports of 8255 as output
In mode -0 2003

B0,80 MOV AL,80H

2005 EE OUT DX,AL Load control word in to control
Word register

2006 BA,E0,FF MOV DX,0FFE0 Out the initial word into
port-A 2009 B0,88 MOV AL,88

200B EE OUT DX,AL Send to display through DAC
200C E8,06,00 CALL 2041

(DELAY)
Call delay program for on/off
time

200F D0,C8 ROR AL,1 Complement for off time
2011 EB,FB JMP 200B Send to display for off time

DELAY PROGRAM

RESULT :-

Rotating the stepper motor with different directions and with different speeds.

2041 B9,0F,00 MOV CX,00FF
2044 BA,FF,FF LOOP2 MOV DX,0FFFF
2047 4A LOOP1 DEC DX
2048 75,FD JNZ LOOP1

(2047)

204A 49 DEC CX

204B 75,F7 JNZ LOOP2
(2044)

204D C3 RET

 SIRCRRCOE 53 MP & MC LAB Dept of ECE

8051 PROGRAMS

 SIRCRRCOE 54 MP & MC LAB Dept of ECE

1.EVEN SUM IN ARRAY OF DATA

 odd even

 ≠0

=0

start

Initialize data pointer, count register , temporary
register

Load accumulator with data specified by data
pointer and transfer to count register.

Increment to next memory location , load the
data into accumulator.

Increment to next memory location , load the
data into accumulator.

Check the number is even or odd

number
Add the number to
the accumulator
and check carry

Decrement count

count

Store even number
sum with carry

stop

 SIRCRRCOE 55 MP & MC LAB Dept of ECE

1. EVEN SUM IN ARRAY OF DATA

EXP NO:
DATE:

AIM:To find the sum of even numbers in the given array of data.

APPARATUS:

KEIL µVISION

ALGORITHM:

Step1:Initialize the count register(r1).

Step2:Initialize the data pointer (40h).

Step3:Initialize the temporary registers(r2).

Step4:Load the accumulator with data address specified by data pointer and transfer

to count register.

Step5:Load the next data from memory into accumulator.

Step6:Rotate right through carry, the accumulator to check even or odd.,

Step7:Rotate left the accumulator for the given data.

Step8:Add accumulator with temporary register.

Step9:Store sum into temporary register.

Step10:Increment count.

Step11:If count =0, Go to next step.

If count ≠0, Go to step5.

Step12:Store the sum of even numbers into memory.

Step13: Store carry of even numbers into memory.

Step14:End the programme.

 SIRCRRCOE 56 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM

DATA SEGMENT OFFSET : 076AH

ADDRESS
IN HEXA

OP CODE
IN

HEXA

MNEMONICS &
OPERAND

COMMENTS

0000 C3 CLR C Clear Carry

0001 7B00 MOV R3, #00H Initialize Register

0003 7840 MOV R0,#40H Initialize The Data Pointer

0005 E6 MOV A,@R0 Load The Data Into Accumulator

0006 F9 MOV R1,A Load Data Into Count Reg.

0007 7A00 MOV R2,#00 Initialize Temprory Register

0009 08 LOOP2 INC R0 Increment Next Memory Location

000A E6 MOV A,@R0 Load The Data Into Acc.

 0 000B B RRC A Rotate Acc. Right Through Carry.

 000C 4006 JC LOOP1 If Carry Go To Loop

 000E 33 RLC A If There Is No Carry Rotate Left

 000F 2A ADD A,R2 Add Acc Data & Temp Register

0010 FA MOV R2,A Store Added Data In R2 Register

0011 5001 JNC LOOP1 Jump If Not Zero Loop1

0013 0B INC R3 Increment Or Store Data R3 Register

0014

D9F3

LOOP1 DJNZ

R1,

LOOP2

Decrement Count And Repeat The

0016 08 INC R0 Increment Data Pointer

0017 EA MOV A,R2 Load Temporary Register Data

0018

F6

MOV @R0,A

Move Accumulator Data Into Data

Pointer.

0019 08 INC R0 Increment

001A

E8

MOV A,R3

Load Sum Of Even Numbers Into

Accumulator

001B F6 MOV @R0, A Store The Sum Of Even Numbers

END

End Of The Program

 SIRCRRCOE 57 MP & MC LAB Dept of ECE

OUTPUT:

RESULT:

S.NO COUNT(40H) 41H 42H 43H 44H 45H 46H 47H 48H

 SIRCRRCOE 58 MP & MC LAB Dept of ECE

2.COUNTING NO.OF ZEROS & ONES

FLOWCHART:

 CY=0 CY=1

 ≠ 0

START

Initializing data pointer,count
reg,1’s reg and 0’s register.

Load data into acc. From memory
address specified by data pointer

Rotate right through carry and
check carry whether 0 or 1

= 0

CY Increment zero’s

register

Increment one’s

register

Increment zero’s

register

Store no of zero’s and

one’s in memory register.

stop

count

 SIRCRRCOE 59 MP & MC LAB Dept of ECE

2.COUNTING NO.OF ZEROS & ONES

EXP NO:
DATE:

AIM:
To Find The Number Of Zero’s And Number Of One’s In The Given Data

APPARATUS:

 KEIL µVISION

ALGORITHM:

STEP1:Initialize The Data Pointer (R0).

STEP2:Initialize The Count Register (R1).

STEP3: Initialize The One’s Register (R2).

STEP4:Initialize The Zero’s Register (R3).

STEP5:Load Data Into Accumulator From Data Pointer (40h).

STEP6:Rotate Accumulator Right Through Carry.

STEP7:Check The Carry Flag

 If Cy=1 Then Go To Step10

 If Cy=0 Go To Next Step.

STEP8:Increment Zero’s Register R3 By ‘1’ .

STEP9:S Jump To Step11.

STEP10:Increment The One’s Register(R2).

STEP11:Decrement The Count Register(R1).

STEP12: Check The Count

 If Count = 0 Go To Next Step

If Count≠ 0 Go To Step6.

STEP13:Store One’s Register Into Memory Specified By Data

Pointer.

STEP14: Store Zero’s Register Into Memory Specified By Data

Pointer.

STEP15: End The Program.

 SIRCRRCOE 60 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

DATA SEGMENT OFFSET : 076AH

ADDRESS
IN HEXA

OP CODE
IN

HEXA

MNEMONICS &
OPERAND COMMENTS

0000 7840
MOV R0, #40H Initialization Of Data Pointer.

0002 E6 MOV A,@R0 Load The Data Into Accumulator.

0003 7900
MOVR1,#00 Initialization Of One’s Count Register.

0005 7A00
MOV R2,#00 Initialization Of Zero’s Count

0007 7B08 MOV R3, #08 Initializing Count Register.

0009 B
LOOP3 RRC A Locate The Acc Right Through carry

000A .

4003

LOOP1 JC

If Carry Exists Go To Loop1
To Inc Check 0 Or 1.

000C 0A INC R2 Increment One’s Register.

000D 001
loop2

SJMP LOOP2

After Checking Condition Go To

.000F O9
LOOP1 INC R1 Increment One’s Register

0010 DBF3 LOOP2 R3,
LOOP3

If Count To Repeat Loop3.

0012 8A41
MOV 41H, R1 Put No Of One’s In R1 Of 42h memory

0014 8A42
MOV 42H, R2 Put No Of Zero’s In R2 Of 42h memory

END

End Of The Program

 SIRCRRCOE 61 MP & MC LAB Dept of ECE

OUTPUT:

S.NO INPUT(8BIT

DATA)

(40H)

NO.OF 0’S IN 0’S

REGISTER(41H)

NO.OF ONE’S IN 1’S

REGISTER (42H)

RESULT:

 SIRCRRCOE 62 MP & MC LAB Dept of ECE

3.SORTING IN 8051

FLOWCHART:

 =0 =1

≠0 =0

 ≠0

START

Initialize the data pointer

Load the count value

Decrement count and load into
iteration reg into comparison reg.

Access the data from the sorting
of array into accumulator

Compare with next data of array

carr
y Swap the

memory

Load the higher value
into accumulator

Decrement
comparison count

count Decrement iteration
count

count

stop

 SIRCRRCOE 63 MP & MC LAB Dept of ECE

3.SORTING IN 8051
EXP NO:
DATE:

AIM:

Write an assembly language program for 8051 to perform sorting of the array.

APPARATUS:

1. KEIL µVISION

ALGORITHM:

STEP1: SET SI register as pointer for data.

STEP2: load the count value.

STEP3: Decrement The Count Value.

STEP4: Load If Into Iteration Register Then Into Comparison Register.

STEP5: Access The Data From The Sorting Of The Array Into Accumulator.

STEP6: Compare With The Next Data Of The Array Pointer.

STEP7: Check The Carry If Carry Exists Stores Highest Value Into The

Accumulator Then Go To Next Step9. If Carry Does Not Exists Go To Next

Step.

STEP8:Swap The Memory Contents.

STEP9: Decrement The Comparison Count

 If It Is Zero Go To Next Step

 If It Not Zero Go To Step 6

STEP10: decrement the iteration count

STEP11: If It Non-Zero Go To Step4, If It Is Zero Go To Next Step.

STEP12: Stop The Program.

 SIRCRRCOE 64 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

ASCENDING ORDER

DATA SEGMENT OFFSET : 076AH

Address

in hexa

Opcode

in hexa

Mnemonic and

operand

comments

0000 7940 MOV R1, #40H Initialize The Data Count

0002 E540 MOV A, 40H Load The Data In Accumulator.

0004 14 DEC A Decrement Accumulator.

0005 FA MOV R2, A Load The Iteration Onto Register

From

0006 EA LOOP4 MOV A, R2 Load The Value Of R2in Accumulator.

0007 FB MOV R3, A Load The Accumulator Value

0008 7941 MOV R1, #41H Initialize Data Pointer.

000A E7 loop3MOV A, @R1 Load Data Into Accumulator

000B 09 INC R1 Increment R1 Register.

000C 87F0 MOVA,@R1 Load The Increment Data Into B

Location

000E

B5F0000

CJNC

a,b,loop1

Compare A And B If Not Equal

Decrement Data Pointer.

0011

4005

LOOP1 JC LOOP2

Carry Exist Go To Swap If Not Go To

Next Step.

0013

F7

MOV @R1, A

Load The Data Into R1register From

Accumulator.

0014 19 DEC R1 Decrement count value

0015 A7F0 MOV @R1,B Move or load the data in R1 register

from b

0017 09 INC R1 Increment count value

0018 DBF0 LOOP2 DJNZ R3 Decrement the count if not Zero

001A

DAEA

DJNZ R2

If non zero, the value decrement else

Go to next iteration

End

Stop execution

 SIRCRRCOE 65 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:DESCENDING ORDER

DATA SEGMENT OFFSET : 076AH

Address

in hexa

Opcode

in hexa

Mnemonic

and operand

comments

0000 7940 MOV R1, #40H Initialize The Data Count

0002 E540 MOV A, 40H Load The Data In Accumulator.

0004 14 DEC A Decrement Accumulator.

0005 FA MOV R2, A LoadThe Iteration Onto Register From Acc.

0006 EA LOOP4 MOV A,

R2

Load The Value Of R2in Accumulator.

0007 FB MOV R3, A Load The Accumulator Value Into reg.R3

0008 7941 MOV R1, #41H Initialize Data Pointer.

000A E7 LOOP3 MOV A,

@R1

Load Data Into Accumulator

000B 09 INC R1 increment R1 Register.

000C 87F0 MOVA,@R1 Load The Increment Data Into B Location

000E

B5F000

0

CJNC

A,B,LOOP1

Compare A And B If Not Equal

Decrement Data Pointer.

0011 4005 LOOP1 JNC Carry Exist Go To next iteration if not swap

0013 F7 MOV @R1, A Load The Data Into R1register From Acc.

0014 19 DEC R1 Decrement count value

0015 A7F0 MOV @R1,B Move or load the data in R1 register from b

0017 09 INC R1 Increment count value

0018 DBF0 LOOP2DJNZ R3 Decrement the count if not Zero

001A

DAEA

DJNZ R2

If non zero, the value decrement else

Go to next iteration

End Stop execution

 SIRCRRCOE 66 MP & MC LAB Dept of ECE

OBSERVATIONS:ASCENDING

S.NO COUNT(40H) 41H 42H 43H 44H 45H 46H 47H 48H

DESCENDING

S.NO COUNT(40H) 41H 42H 43H 44H 45H 46H 47H 48H

RESULT:

 SIRCRRCOE 67 MP & MC LAB Dept of ECE

4.AVERAGE OF ARRAY OF NUMBERS

FLOWCHART:

 ≠0

 =0

START

Initialize the data segment
register, count reg, carry reg.

Increment the data pointer

Move next data into accumulator

Perform the addition operation

Decrement the count value

Perform the division
operation

Store the average value into the
accumulator (memory location)

Stop the execution

Load the data into accumulator
from data pointer.

count

 SIRCRRCOE 68 MP & MC LAB Dept of ECE

4.AVERAGE OF ARRAY OF NUMBERS

DATE:

EXP.NO:

AIM:
To write the assembly language program to find the average of given numbers.

APPARATUS:

KEIL µVISION
PROCEDURE:

STEP1: Initialize the data pointer, count register and carry register.

STEP2: Load the data from the memory location into accumulator.

STEP3: Move the data into register B.

STEP4: Increment the value in the accumulator by one and move it onto the

register.

STEP5: Initialize the register R2 with ‘0’.

STEP6: Increment data pointer and load the data into accumulator.

STEP7: Add the register to data and accumulator next data.

STEP8:Check the count register, If 0 go to next step else go to step 6 .

STEP9: Divide the accumulator with count register.

STEP10: Store the sum and carry in the memory location.

STEP11: End program.

 SIRCRRCOE 69 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

DATA SEGMENT offset : 076AH

Address

in hexa

Opcode

in hexa

Mnemonic and

operand

comments

0000 7840 MOV R0,#40H Initialize data pointer

0002 E6 MOV A,@R0 load the data from data pointer to Acc.

0003 F9 MOV R1,A Load the data into count register

0004 F5F0 MOV B,A Load the accumulator data into B register

0006 7A00 MOV R2,#00 Initialize carry register

0008 E8 LOOP1 INC R0 Increment data pointer

0009 E6 MOV A,@R0 Load the data into accumulator

000A 2A APP A,R2 Load the carry register data into accumulator

000B FA MOV R2,A Store sum into R2

000C

D9FA

DJNZ R1,LOOP1

Check the count register if it is non zero go to

Loop1

000E EA MOVA,R2 Load data into accumulator

000F 84 DIV A,B Divide the ccumulator data with count data

0010 08 INC R0 Increment data pointer

0011

F6

MOV @R0,A

Store the sum in the register from the

Accumulator

0012 08 INC R0 Increment the data pointer register R0

0013 A6F0 MOV @R0,B Store the carry in the register from B register

End Stop program

 SIRCRRCOE 70 MP & MC LAB Dept of ECE

OUTPUT:

S.NO DATA COUNT(40H) 41H 42H 43H 44H 45H 46H
sum

47H
carry

RESULT:

 SIRCRRCOE 71 MP & MC LAB Dept of ECE

8051 INTERFACING

 SIRCRRCOE 72 MP & MC LAB Dept of ECE

1.SAWTOOTH WAVE

FLOW CHART

 SIRCRRCOE 73 MP & MC LAB Dept of ECE

1.SAWTOOTH WAVE

AIM:-

Write an Assembly Language Program to generate sawtooth wave using DAC

through 8255 PPI

APPARATUS :-

ESA-8051 KIT, DAC card and CRO

THEORY:-

In this circuit the 8051 controller is interfaced with 8255 in mode-0 and set all the

ports are set to output.The output of port-A is connected to DAC which converts the

digital input to corresponding analog output. The is send to CRO to display. Initially

the port-A is loaded with 00 and the corresponding analog output is send to CRO.

And increment port-A value continuously until the maximum value. If the maximum

value is 0FF no need to compare. Once it is reached to maximum value then it will

reached to initial value. And repeated the same. If the maximum is not FF then for

each and every increment we should compare with maximum value if is equal or less

than we should send to port-A to display. After that again start from 00 and repeat.

The wave amplitude and frequency are depends on maximum count value to send to

Port-A.

ALGORITHM :-

Step1: Set all ports as output of 8255 in mode-0

Step2: Load control word into controlword register.

Step3: Initialize port-a with 00 and output to port-a

Step4: Send To Display Through DAC

Step5: Increment the port-a value and go to step 4

ASSEMBLY LANGUAGE PROGRAM

MOV 0A0,#0E8
MOV R0,#03
MOV A,#80
MOVX @R0,A
MOV A,#00H
MOV R0,#00
LOOP1: MOVX @R0,A
INC A
SJMP LOOP1

 SIRCRRCOE 74 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM FOR SAWTOOH WAVE

 DATA SEGMENT OFFSET : 076AH

ADDRESS
IN HEXA

OP CODE
IN HEXA

MNEMONICS OPERAND COMMENT

8000 75,A0,E8 MOV 0A0,#0E8 Set all ports of 8255 as output
In mode -0 8003 78,03 MOV R0,#03

8005 74,80 MOV A,#80 Load control word in to control
Word register

8007 F2 MOVX @R0,A Out the initial word into
port-A 8008 74,00 MOV A,#00

800A 78,00 MOV R0,#00
Send to display through DAC

800C F2 MOVX @R0,A
800D 04 INC A Increment continuously
800E 80,FC SJMP 800C Continue to display

RESULT:-

Result:- Generating the sawtooth wave with different amplitudes and frequencies.

 SIRCRRCOE 75 MP & MC LAB Dept of ECE

2.SQUARE WAVE GENERATION

FLOW CHART

 SIRCRRCOE 76 MP & MC LAB Dept of ECE

2.SQUAREWAVE

DATE:-
EXP.NO:-

AIM:-
Write an Assembly Language Program to generate the square wave using 8255 ppi

in
mode-0

APPARATUS :-

ESA-86/88 KIT, CRO, DAC

THEORY:-

In this circuit the 8051 controller is interfaced with 8255 in mode-0 and set all the

ports are set to output. The output of port-A is connected to DAC which converts the

digital input to corresponding analog output. The is send to CRO to display. Initially

the port-A is loaded with FF and the corresponding analog output is send to CRO.

And call the delay as per frequency requirement for on time. For off time

complement the count and then send to display. Repeat the above continuously. The

square wave having duty cycle 50%. So ontime and off time are equal , for this we

are calling same delay routine.

ALGORITHM :-

Step1: Set all ports as output of 8255 in mode-0

Step2: Load control word into control word register.

Step3: Initialize port-a with count and output to port-A.

Step4: Call Delay.

Step5: Complement the count and output to port-A

Step6:Goto step 4

ASSEMBLY LANGUAGE PROGRAM:

MOV 0A0,#0E8 DELAY: MOV R1,#0FF
MOV R0,#03 LOOP2: MOV R2,#0FF
MOV A,#80 HERE: DJNZ R2,HERE
MOVX @R0,A DJNZ R1,LOOP2
MOV R0,#00 RET
MOV A,#0FF
LOOP1: MOVX @R0,A
LCALL 8014H(DELAY)
CPL A
LJMP LOOP1

 SIRCRRCOE 77 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM FOR SQUARE WAVE

 DATA SEGMENT OFFSET : 076AH

ADDRESS
IN HEXA

OP CODE
IN HEXA MNEMONICS OPERAND COMMENT

8000 75,A0,E8 MOV 0A0,#0E8
Set all ports of 8255 as output
In mode -0

8003 78,03 MOV R0,#03
8005 74,80 MOV A,#80

8007 F2 MOVX @R0,A
8008 78,00 MOV R0,#0 Out the initial word into

port-A 800A 74,FF MOV A,#0FF
800C F2 MOVX @R0,A

800D 12,80,14 LCALL 8014
Call delay program for on/off
Time

8010 F4 CPL A Complement for off /on time

8011 02,80,0C LJMP 8014
Call delay program for on/off
Time

8014 79,0F MOV R1,#0F

Delay program
8016 7A,0FF MOV R2,#0FF
8018 DA,FE DJNZ R2,8018
801A D9,FA DJNZ R1,8016
801C 22 RET

RESULT :-

Generating the different square wave with different frequencies.

 SIRCRRCOE 78 MP & MC LAB Dept of ECE

3.SEVEN SEGMENT DISPLAY

FLOW CHART

 SIRCRRCOE 79 MP & MC LAB Dept of ECE

3.SEVEN SEGMENT DISPLAY
DATE:-
EXP.NO:-

AIM:-
Write an Assembly Language Program to interface the seven segment display and print

the required characters using 8086 through 8255

APPARATUS :-

ESA-51 KIT,7-segment card

ALGORITHM :-

step1: Set SI register as pointer for data.

Step2: Initialize the group counter register.

Step3: Initialize the character count register .

Step4: Initialize the bit count register

Step5: Load the character from the memory specified by pointer.

Step6: Increment the memory pointer for next character.

Step7: Find the next bit of character.

Step8: Shift that bit to specific port(PB).

Step9: set clock and send to specific port(PC).

Step10: reset the clock and send to specific port(PC).

Step11: Decrement bit count register, check, if it zero goto next step, if not goto step7.

Step 12: Decrement character count register, check, if it zero go to next count, if not goto

 Step4.

Step 13: Call delay program between each group

Step14: Decrement group counter , check, if it zero goto next step , if not gotogoto step

3

Step 15: go to step 1.

THEORY:

 There are four digit 7 segment display driven by the outputs of four

cascaded serial-in-parallel-out shift registers. Data to be displayer is transmitted

serially, bit by bit, to the interface over the port line PB0. Each bit is clocked into the

shift registers by providing a common clock through the port line PC0. Thus ,

information for all the four digits is provided by 32 bits clocked into the shift

registers serially.

 SIRCRRCOE 80 MP & MC LAB Dept of ECE

Display Codes: since the outputs of shift registers are connected to the cathode

sides of LED segments, low input must be given to the segments for making them

glow and high inputs for making them blank. Each display has 7 bar segments and a

dot as in shown in figure below. For displaying any character its corresponding

segments must be given blow inputs.

H

ASSEMBLY LANGUAGE PROGRAM:-

 MOV 0A0,#0E8
 MOV R0,#3

 SIRCRRCOE 81 MP & MC LAB Dept of ECE

 MOV A,#80
 MOVX @R0,A
 LOOP4: MOV DPTR,#8050
 MOV R3,#05
 LOOP3: MOV R1,#04
 LOOP2: MOV R2,#08
 MOVX A,@DPTR
 INC DPTR
 LOOP1: RL A
 MOV R4,A
 MOV R0,#1
 MOVX @R0,A
 MOV A,#01
 MOV R0,#2
 MOVX @R0,A
 DEC A
 MOVX @R0,A
 MOV A,R4
 DEC R2
 CJNE R2,#0,LOOP1(8013)
 DEC R1
 CJNE R1,#0, LOOP2(800F)
 LCALL 8040(DELAY)
 DEC R3
 CJNE R3,#0,LOOP3(800D)
 SJMP LOOP4(8008)

ADDRESS OPCODE MNEMONIC OPERANDS COMMENTS

8000 75,A0,E8 MOV 0A0,#0E8
Configure 8255
All ports output

8003 78,03 MOV R0,#03
Control word to set all ports
output

8005 74,80 MOV A,#80 Load the control word in
To control word register 8007 F2 MOVX @RO,A

8008 90,80,50 MOV DPTR,#8050 Start of display code
800B 7B,05 MOV R3,#5 5 groups to display
800D 79,04 MOV R1,#4 4 Characters per group
800F 7A,08 MOV R2,#8 8 Bits per character
8011 E0 ,MOVX A,@DPTR Character get the display

Code
8012 A3 INC DPTR Increment pointer for next

Character.
8013 23 RL A Get one data bit
8014 FC MOV R4,A Port B initialization
8015 78,01 MOV R0,#1 Data bit output to port B
8017 F2 MOVX @R0,A Store temporarily the acc.

In to AH
8018 74,01 MOV A,#1 Output the clock
801A 78,02 MOV R0,#2 Instillation the port c
801C F2 MOVX @R0,A Output the clock through

 SIRCRRCOE 82 MP & MC LAB Dept of ECE

Port c
801D 14 DEC A To shift register
801E F2 MOVX @R0,A Output the clock
801F EC MOV A,R4 Load temporary stored data

Into AL
8020 1A DEC R2 All bits are over?
8021 BA,00,EF CJNE R2,#0,8013 No continue
8024 19 DEC R1 All characters over?
8025 B9,00,E7 CJNE R1,#0,800F No continue
8028 12,80,35 LCALL 8040 Introduce delay
802B 1B DEC R3 All groups are over.
802C BB,00,DE CJNE R3,#0,800D No to continue
802F 80,D7 SJMP 8008 Yes start from beginning
8040 7D,10 MOV R5,#10

DELAY PROGRAM

8042 7F,0FF MOV R6,#0FF
8044 7F,0FF MOV R7,#0FF
8046 DF,FE DJNZ R7,8046
8048 DE,FA DJNZ R6,8044
804A DD,F6 DJNZ R5,8042
804C 22 RET

STRING

8050 0BF 0CC 0CC 0C6
8054 0BF 86 0C0 0C6
8058 0C6 86 92 88
805C 0BF 0CC 0C7 86
8060 0F8 0C0 0C0 0C0

RESULT:- The output is displayed as follows according to above code

 SIRCRRCOE 83 MP & MC LAB Dept of ECE

4.STEPPER MOTOR

FLOW CHART

 SIRCRRCOE 84 MP & MC LAB Dept of ECE

4.STEPPER MOTOR

DATE:-
EXP.NO:-

AIM:-

Write an Assembly Language Program to rotate the stepper motor using 8255 ppi in mode-0

APPARATUS :-

 8051 KIT, Stepper Motor

THEORY:-
In this circuit the 8051controller is interfaced with 8255 in mode-0 and set all the

ports are set to output. The output of port-A is connected to stepper motor And call

the delay as per speed requirement. As per direction rotate stepper and shift the pole

action with speed requirement. And repeat the same for continuously rotating the

motor.

ALGORITHM :-

Step1: Set all ports as output of 8255 in mode-0

Step2: Load control word into control word register.

Step3: Initialize port-a with pole activation count and output to port-A.

Step4: Call Delay according to speed.

Step5: rotate as per direction shift the poleaction count and output to port-A

Step6: Goto step 4

 SIRCRRCOE 85 MP & MC LAB Dept of ECE

ASSEMBLY LANGUAGE PROGRAM:

 MOV 0A0,#0E8
 MOV R0,#03
 MOV A,#80H
 MOVX @R0,A
 MOV A,#88
 LOOP1: MOV R0,#00
 : MOVX @R0,A
 LCALL 8013H(DELAY)
 R R A,1
 SJMP LOOP1

ASSEMBLY LANGUAGE PROGRAM FOR SQUARE WAVE

 DATA SEGMENT OFFSET : 076AH

ADDRESS
IN HEXA

OP CODE
IN HEXA

MNEMONICS OPERAND COMMENT

8000 85,E8,A0 MOV 0A0,#0E8 Set all ports of 8255 as output
In mode -0 8003 78,03 MOV R0,#03

8005 74,80 MOV A,#80 Load control word in to control
Word register

8007 F2 MOVX @R0,A
8008 74,88 MOV A,#88 Out the initial word into

port-A 800A 78,00 MOV R0,#00
800C F2 MOVX @R0,A Send to display through DAC
800D

12,80,13 LCALL 8013
Call delay program for on/off
Time

8010 03 RR A Complement for off time
8011 80,F9 SJMP 800A Send to display for off time
8013 7B,0FF MOV R3,#0FF

DELAY PROGRAM
8015 7C,FF MOV R4,#0FF
8017 DC,FE DJNZ R4,8017
8019 DB,FA DJNZ R3,8015
801B 22 RET

RESULT :-
Rotating the stepper motor with different directions and with different speeds.

