VLSI LABORATORY RECORD

R16

III / IV B.TECH (ECE) (R1632047)

II – SEMESTER

DEPT. OF ELECTRONICS AND COMMUNICATION ENGINEERING

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU – 534 007

SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU. DEPARTMENT OF ELECTRONICS & COMMUNICATIONENGINEERING.

Certificate

This is to certify that this is the	BONAFIED RECORD of the work done in							
Laboratory by Mr. / Ms								
bearing Regd.No	of							
B.Tech Course during 20 - 20 .								
Total no.of Experiments Held:	Total no.of Experiments done:							
Lab In-charge	Head of the Department							
External Examiner								

VLSI LABORATORY

Note: The students are required to design the schematic diagrams using CMOS logic and to draw the layout diagrams to perform the following experiments using 130nm technology with the Industry standard EDA Tools.

List of Experiments:

- 1. Design and Implementation of an Universal Gates
- 2. Design and Implementation of an Inverter
- 3. Design and Implementation of Full Adder
- 4. Design and Implementation of Full Subtractor
- 5. Design and Implementation of Decoder
- 6. Design and Implementation of RS-Latch
- 7. Design and Implementation of D-Latch
- 8. Design and Implementation asynchronous counter
- 9. Design and Implementation of static RAM cell
- 10. Design and Implementation of 8 bit DAC using R-2R latter network

Software Required:

1. Mentor Graphics Software / Equivalent Industry Standard Software.

2. Personal computer system with necessary software to run the programs and to implement.

SIR C.R.REDDY COLLEGE OF ENGINEERING, ELURU. DEPARTMENT OF ELECTRONICS & COMMUNICATIONENGINEERING.

Name:

Reg.No:

Name of the Laboratory:

Code:

S Mo	Name of the Experiment	Conducted	Lab	Submitted	Record	Total
5.INO.	Name of the Experiment	on	Performance	on	(5)	(15)
			(10)			
			(-*)			

INDEX

C Ma	None of the Europin out	Conducted	Lab	Submitted	Record	Total
5.INO.	Name of the Experiment	on	Performance	on	(5)	(15)
			(10)			
			(10)			

Signature of the	1.	Average marks (15):
Lab in Charges	2.	

1. INVERTER

Date:

Aim: To generate schematic and layout for an inverter using DSCH & MICRO WIND Tool.

Tools Required:

- 1. Operating System: Windows XP
- 2. Software: DSCH & MICRO WIND Tool
- **Theory:** Its name itself indicating that in performs inversion operation. It generates logic'1' as output for its logic'0' input and vise versa. Symbol of inverter is just as a buffer with a bubble mounted on its sharp end. It is used to perform logical operations.

Truth table:

Input A	Output
0	1
1	0

Schematic Diagram for Inverter:

Symbol for Inverter:

Waveforms for Inverter:

Layout for inverter:

Result: Hence simulated and verified the schematic and layout of inverter using DSCH & MICRO WIND tool.

2.1 NAND 2-INPUT GATE

Date:

Aim: To generate schematic and layout for an NAND Gate using DSCH & MICRO WIND tool.

Tools Required:

- 1. Operating System: Windows XP
- 2. Software: DSCH & MICRO WIND tool.
- **Theory:** Nand gate is the logic component in this if any one of the input is '0' or low the output is high '1' otherwise if two inputs are equal to one then out put is low '0'. It is used to perform logical operations

Truth table:

Input A	Input B	Output
0	0	1
0	1	1
1	0	1
1	1	0

Schematic Diagram for NAND Gate:

Symbol for NAND Gate:

Waveforms for NAND Gate:

Layout for NAND Gate:

Result: Hence simulated and verified the schematic and layout of NAND Gate using DSCH & MICRO WIND tool.

2.2 NOR 2-INPUT GATE

Date:

Aim: To generate schematic and layout for NOR Gate using DSCH & MICRO WIND tool.

Tools Required:

- 1. Operating System: Windows XP
- 2. Software: DSCH & MICRO WIND tool.
- **Theory:** NOR gate is the logic component in this if any one of the input is one the output is low '0' otherwise if two input are equal to '0' then the output is high '1'. It is used to perform logical operations

Truth Table:

Input A	Input B	Output
0	0	1
0	1	0
1	0	0
1	1	0

Schematic Diagram for NOR Gate:

Symbol for NOR Gate:

Waveforms for NOR Gate:

	100		and the second second		15.00		S				a Vania	2.13	and a	Display
						R FI								P Delay
			11/1											between
				1111										4
									111					and.
		111												IOR I
	111	131	1111			1111	1101						144	Evaluate
	00	141			3111	111	1111	111	111	11.1	11		-0.02	🗆 WinWa
	1.00	111			\$11	1111	1111	11.81	THE			1111	1	Freque
		11				111							0.98	NOR1
			11			111								मि 🔟
									111					Time Scal
		131							111					Sins 2
														Step (ps)
		111					11811							0.100
÷	00	14		i titi		14	i titi i	44	4		- ti-i-i-i	- 14 -4-	14	Hors
	100	111						411					-	E and
														Herer a
														Pir Pir
								1111						X Clos
R1	4ps	745	71.40S	70.43	s 7ps	785	75-405	1785	70-405	70405	705	7p.4ps	JE	P=1.107µ1
	0.0	TH				111	11011		n. Juin				0.00	
	in the		13113	is is is i	11.1	1.1		10	1.1.1		10	10.7	in the last	

Layout for NOR

Result: Hence simulated and verified the schematic and layout of NOR Gate using DSCH & MICRO WIND Tool

3. FULL ADDER

Date:

Aim: To generate schematic for FULL ADDER using DSCH & MICRO WIND Tool.

Tools Required:

1. Operating System: Windows XP

2. Software: DSCH & MICRO WIND Tool

Theory: A logic circuit for the addition of three one bit binary numbers at a time is known as a full adder. The function of the circuit is to add three binary digits, producing both sum and carry. Hence the basic difference full adder and half adder is, full adder accepts an additional input that allows for handling input carriers. The carry is produced with an NAND Gate

Truth Table:

Input A	Input B	Input C	sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Schematic Diagram for Full Adder:

Symbol for Full Adder :

Waveforms for Full Adder:

2

5 Na16 ex50 W5

DEPT ECE

Result: Hence simulated and verified the schematic of Full Adder using DSCH & MICRO WIND Tool.
4. FULL SUBTRACTOR

Date:

Aim: To generate schematic for a Full Subtractor using DSCH & MICRO WIND Tool.

Tools Required:

- 1. Operating System: Windows XP
- 2. Software: DSCH & MICRO WIND Tool
- **Theory:** A logic circuit for the subtraction of three one bit binary numbers at a time is known as a full subtractor. The function of the circuit is to subtract three binary digits, producing both difference and borrow.

Truth Table:

A	В	C	BORROW	DIFFERENCE
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1
				~

Schematic Diagram for Full Subtractor:

Symbol for Full Subtractor:

Waveforms for Full Subtractor:

Layout for FULL SUBTRACTOR:

Result: Hence simulated and verified the schematic of Full Subtractor using DSCH & MICRO WIND Tool.

5. Decoder

Date:

Aim: To generate schematic for decoder using DSCH & MICRO WIND Tool.

Tools Required:

- 1. Operating System: Windows XP
- 2. Software: DSCH & MICRO WIND Tool

Theory:

A **decoder** is a multiple-input, multiple-output logic circuit that converts coded inputs into coded outputs, where the input and output codes are different. ... Sometimes an n-bit binary code is truncated to represent fewer than 2n values. A **decoder** is a combinational logic circuit which is used to change the code into a set of signals. It is the reverse process of an **encoder**. A **decoder** circuit takes multiple inputs and gives multiple outputs. A **decoder** circuit takes binary data of 'n' inputs into '2^n' unique output.

Input		Enable		Output				
1	10	E	03	02	01	00		
Х	Х	0	0	0	0	0		
0	0	1	0	0	0	1		
0	1	1	0	0	1	0		
1	0	1	0	1	0	0		
1	1	1	1	0	0	0		

Truth Table:

Schematic Diagram for decoder:

Symbol for decoder:

Waveforms for decoder:

VLSI LAB

Layout for DECODER:

Result: Hence simulated and verified the schematic of **decoder** using DSCH & MICRO WIND Tool.

6. RS LATCH

Date:

Aim: To generate schematic for RS LATCH using DSCH & MICRO WIND Tool.

Tools Required:

- 1. Operating System: Windows XP
- 2. Software: DSCH & MICRO WIND Tool
- **Theory:** A latch is a sequential device that checks all of its inputs continuously and changes its outputs accordingly at any independent of a clocking signal. RS latch uses two NAND gates, these two gates are cross coupled so that the output of a NAND gate 1 is connected to one of the input of NAND gate 2 and vice versa.

Truth Table:

S	R	Q	Q
0	0	1	1
0	1	1	0
1	0	0	1
1	1	Q	\bar{q}

Schematic Diagram for RS Latch:

Symbol for RS Latch:

Waveforms for RS Latch:

Layout for RS LATCH:

VLSI LAB

Result: Hence simulated and verified the schematic of RS Latch using DSCH & MICRO WIND Tool.

DEPT ECE

7. D-LATCH

DEPT ECE

Date:

Aim: To generate schematic and layout for a D-Latch using DSCH & MICRO WIND Tool.

Tools Required:

1. Operating System: Windows XP

2. Software: DSCH & MICRO WIND Tool

Theory: Latch is an electronic device that can be used to store one bit of information. The D latch is used to capture, or 'latch' the logic level which is present on the Data line when the clock input is high. If the data on the D line changes state while the clock pulse is high, then the output, Q, follows the input, D. When the CLK input falls to logic 0, the last state of the D input is trapped and held in the latch.

Truth Table:

CLK	D	Q	QBAR
0	0	Q	QBAR
0	1	Q	QBAR
1	0	0	1
1	1	1	0

DEPT ECE

Schematic Diagram for D-Latch:

Symbol for D-Latch:

DEPT ECE

Waveforms for D-Latch:

									E	Fill Claural	using ristma.	votage Frequencies	the lotted of the	one and carner	rates time [Vita
	Tine(cs)	1ED	16D	-	111	126	-	101	3D	-	н			21	3
				_	-										03
P=10.470,01V	500	and a		1453	Sales		si ng	STEP .		odbe	Sette		Safe		ant3_out2
X Cless								uu							
The state															111
Reset Stop	(search and a														
12 Non									******						that cut
Sep (pt)															
Int Sale															10
E															
Finguers															
Editor T MANar							_	-			-			_	100
. su sout												-	_		10
80											19:12:				
between.															
V Delay	1			L			L								
Display		130	-					-							
1 L	No.				f				474		-		-	cuerde	to matching poly

DEPT ECE

Layout for D-LATCH:

VLSI LAB

DEPT ECE

Result: Hence simulated and verified the schematic of D-latch using mentor graphics tool.

DEPT ECE

7.2 JK FLIP FLOP

DEPT ECE

Date:

Aim: To generate schematic for a JK Flip Flop using DSCH & MICRO WIND Tool.

Tools Required:

1. Operating System: Windows XP

2. Software: DSCH & MICRO WIND Tool

Theory: JK flip Flop is the most widely used of all the flip-flop designs and is considered to be a universal flip-flop circuit. Like the R-S flip-flop the outputs follow the inputs when the Clk is logic, but there are two inputs, traditionally labeled J and K. If J and K are different then the output Q takes the value of J at the next clock edge. If J and K are both low then no change occurs. If J and K both are high at the clock edge then the output will toggle from one state to the other.

Truth Table:

J	K	Q	Q'	State
0	0	Q	Q'	No change in state
0	1	0	1	Resets Q to 0
1	0	1	0	Sets Q to 1
1	1			Toggles
	J 0 1 1	J K 0 0 0 1 1 0 1 1	J K Q 0 0 Q 0 1 0 1 0 1 1 1 -	J K Q Q' 0 0 Q Q' 0 1 Q Q' 0 1 0 1 1 0 1 0 1 1 - -

Schematic Diagram for JK Flip Flop:

Symbol for JK Flip Flop:

DEPT ECE

DEPT ECE

Waveforms for JK Flip Flop:
Result: Hence simulated and verified the schematic of JK Flip Flop using DSCH & MICRO WIND Tool.

8 ASYNCHRONOUS COUNTER

DEPT ECE

Date:

Aim: To generate schematic for an Asynchronous Counter using DSCH & MICRO WIND Tool.

Tools Required:

- 1. Operating System: Windows XP
- 2. Software: DSCH & MICRO WIND Tool
- **Theory:** Asynchronous counters are those whose output is free from the clock signal. Because the flip flops in asynchronous counters are supplied with different clock signals, there may be delay in producing output. The required number of logic gates to design asynchronous counters is very less. So they are simple in design. Another name for Asynchronous counters is "Ripple counters". The rising edge of the Q output of each flip flop triggers the clock input of its next flip flop.

Truth Table:

cĸ	đ	Q2	ġ	Q°,
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Schematic Diagram for Asynchronous Counter:

Symbol for Asynchronous Counter:

Waveforms for Asynchronous Counter:

DEPT ECE

Result: Hence simulated and verified the schematic of Asynchronous Counter using DSCH & MICRO WIND Tool.

DEPT ECE

9. STATIC RAM

Date:

Aim: To generate schematic for a Static RAM using DSCH & MICRO WIND Tool.

Tools Required:

1. Operating System: Windows XP

- 2. Software: DSCH & MICRO WIND Tool
- **Theory:** A Random Access Memory (RAM) or Read Write Memory (RWM) is equal to a group of address registers. The static RAM uses bipolar or MOS flip-flops. Data is retained indefinitely as long as power is applied to the flip flops.

Truth Table:

WL	BL	\overline{WL}	Q	\bar{Q}
0	0	1	0	1
1	0	1	0	1
0	1	0	0	1
1	1	0	1	0
0	0	1	1	0

Schematic Diagram for Static RAM:

Symbol for Static RAM:

Waveforms for Static RAM:

VLSI LAB

Layout for Static RAM:

VLSI LAB

DEPT ECE

Result: Hence simulated and verified the schematic of Static RAM using DSCH & MICRO WIND Tool.

10. MULTIPLEXER

DEPT ECE

Date:

Aim: To generate schematic for 8 x1 Multiplexer using DSCH & MICRO WIND Tool.

Tools Required:

1. Operating System: Windows XP

2. Software: DSCH & MICRO WIND Tool

Theory:

Multiplexer is a combinational circuit that has maximum of 2^n data inputs, 'n' selection lines and single output line. One of these data inputs will be connected to the output based on the values of selection lines. Since there are 'n' selection lines, there will be 2^n possible combinations of zeros and ones. So, each combination will select only one data input.

8x1 Multiplexer

We implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1 Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one output. Whereas, 8x1Multiplexer has 8 data inputs, 3 selection lines and one output. So, we require two 4x1Multiplexers in first stage in order to get the 8 data inputs. Since, each 4x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by considering the outputs of first stage as inputs and to produce the final output. Let the 8x1 Multiplexer has eight data inputs I₇ to I₀, three selection lines s_2 , s_1 & s0 and one output Y.

S(2)	S (1)	S(0)	Y
0	0	0	I(0)
0	0	1	I(1)
0	1	0	I(2)
0	1	1	I(3)
1	0	0	I(4)
1	0	1	I(5)
1	1	0	I(6)
1	1	1	I(7)

Schematic Diagram for 8x1 MUX:

Symbol for 8x1 MUX :

Waveform for 8x1 MUX

VLSI LAB

VLSI LAB

DEPT ECE

Result: Hence simulated and verified the schematic of 8 x1 Multiplexer using DSCH & MICRO WIND Tool.

11. DIFFERENTIAL AMPLIFIER

Date:

Aim: To generate schematic Differential Amplifier using DSCH & MICRO WIND Tool.

Tools Required:

- 1. Operating System: Windows XP
- 2. Software: DSCH & MICRO WIND Tool
- **Theory:** A differential amplifier is a type of electronic amplifier that amplifies the difference between two input voltages but suppresses any voltage common to the two inputs. It is an analog circuit with two inputs Vin1 and Vin2 and one output Vout in which the output is ideally proportional to the difference between the two voltages.

$$Vout = A (Vin2 - Vin1)$$

Where A is the Gain of the Amplifier.

DEPT ECE

Schematic Diagram for Differential Amplifier:

Symbol for Differential Amplifier:

Simulation Diagram for Differential Amplifier:

AC Analysis

DEPT ECE

Result: Hence simulated and verified the schematic of Differential Amplifier using DSCH & MICRO WIND Tool.