Switching Theory & Logic Design

LABORATORY MANUAL

R20

II / IV B.TECH (ECE)
I – SEMESTER

DEPT. OF ELECTRONICS AND COMMUNICATION ENGINEERING

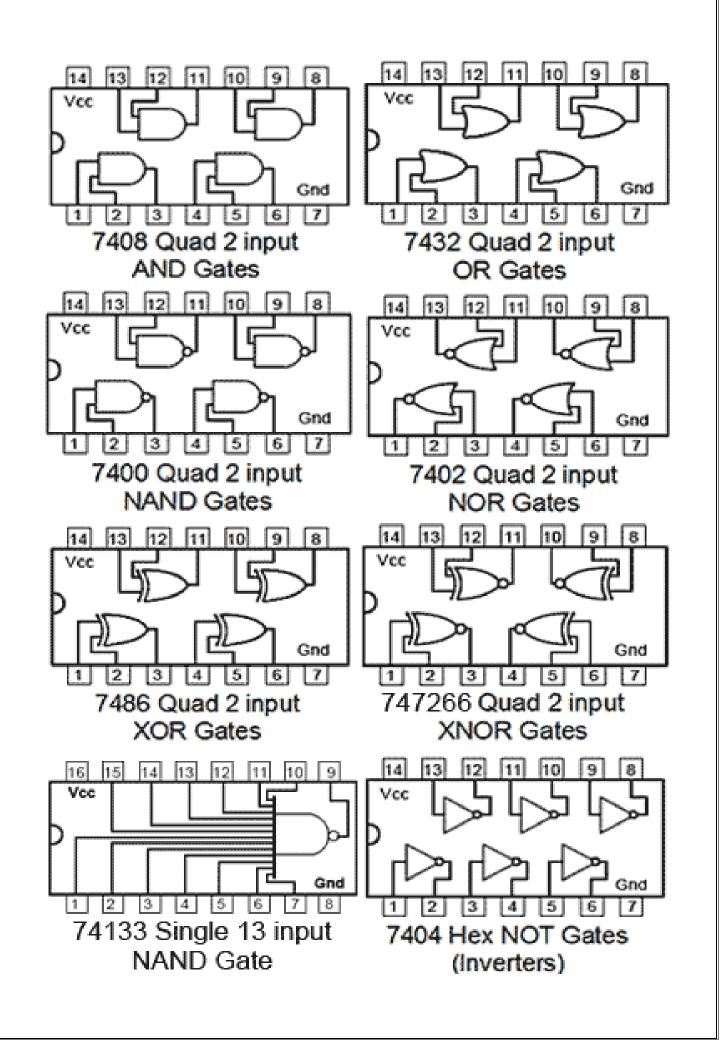
SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU – 534 007

Switching Theory & Logic Design LABORATORY MANUAL

II / IV B.TECH (ECE) I – SEMESTER

LIST OF EXPERIMENTS

Experiments shall be carried out by using Mentor Graphics/Cadence Tools


- 1. Verification of truth tables of Logic gates Two input i) NOR (ii) NAND
- 2. Verification of truth tables of Logic gates Two input (i) OR (ii) AND (iii) Exclusive OR (iv) Exclusive NOR
- 3. Design a simple combinational circuit with four variables and obtain minimal SOP expression and verify the truth table using Digital Trainer Kit
- **4.** Verification of functional table of 3 to 8 line Decoder
- 5. 4 variable logic function verification using 8 to 1 multiplexer
- 6. Design full adder circuit and verify its functional table
- 7. Verification of functional tables of (i) J K Edge triggered Flip –Flop (ii) D Flip –Flop
- 8. Design a four bit ring counter using D Flip Flops / JK Flip Flop and verify output
- 9. Verify the operation of 4-bit Universal Shift Register for different Modes of operation
- 10. Draw the circuit diagram of MOD-8 ripple counter and construct a circuit using T-Flip-flop

- 11. Design MOD 8 synchronous counter using T Flip-Flop and verify the result
- 12. Construct 7 Segment Display Circuit Using Decoder and 7 Segment LED and test it.

INDEX:

EXP		DAY TO DAY	SIGN OF
No	NAME OF EXPERIMENT	PERFORMANCE	STAFF
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
TOTA	AL		

Signature of lab in charge

1. Realization of Universal gates

<u>Aim</u>: To Realize NAND and NOR using gates.

Apparatus and Components:

S.No	Name	Quantity
1.	Digital trainer	1
2.	IC 7408	1
3.	IC 7432	1
4	IC 7404	1

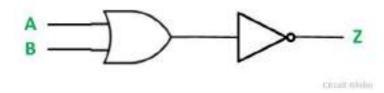
THEORY:

Procedure:

- 1. Derive truth table
- 2. Realize expression of NAND gate
- 3. Connect the circuit according to steps
- 4. Verify the truth table
- 5. Repeat above steps for nor
- 6. Derive truth table
- 7. Realize expression of NAND gate
- 8. Connect the circuit according to steps
- 9. Verify the truth table
- 10. Repeat above steps for nor

Circuit Diagram:

NAND Gate:


Equivalent gate circuit

Ao		y'=(A.B)		У
Во	٥		-	

A	В	Y

NOR Gate:

A	В	Y

Result:

Signature of lab in charge

Exp: 2

<u>Aim</u>: To Realize AND,OR,NOT,EX-OR and EX-NOR gates by using only NAND and only NOR gates.

Apparatus and Components:

S.No	Name	Quantity
1.	Digital trainer	1
2.	IC 7400	2
3.	IC 7402	2

Theory:

Procedure:

Using NAND Gates

Derive truth table

Realize expression of AND gate by using number of NAND gates

Connect the circuit according to step?

Verify the truth table

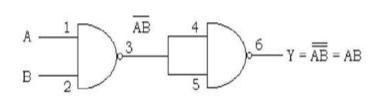
Repeat above steps for OR, NOT, EX-OR and EX-NOR gates

Using NOR Gates

Derive truth table

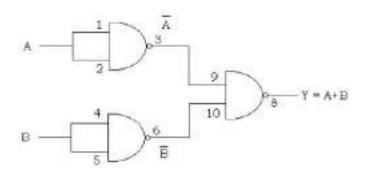
Realize expression of AND gate by using number of NOR gates

II/IV (B.E) ECE, I-SEM :: STLD Lab


Connect the circuit according to step?

Verify the truth table

Repeat above steps for OR, NOT, EX-OR and EX-NOR gates


Circuit Diagram:

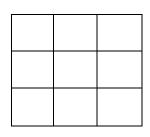
Realization of AND gate using only NAND gates

A	В	Y

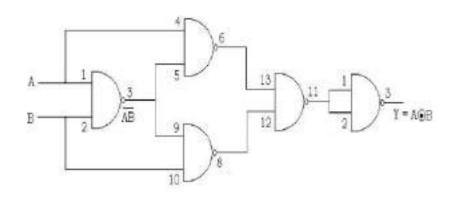
Realization of OR gate using only NAND gates

A	В	Y

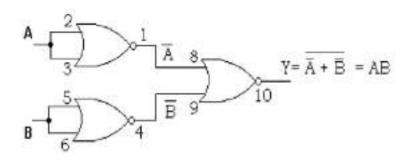

Realization of NOT gate using only NAND gates



A	Y

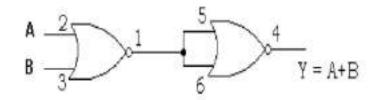

Realization of EX-OR gate using only NAND gates

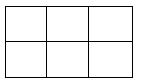
A	В	Y



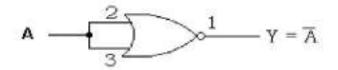
Realization of EX-NOR gate using only NAND gates

A	В	Y

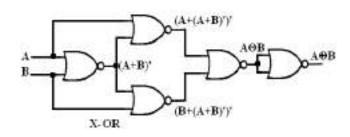

Realization of AND gate using only NOR gates



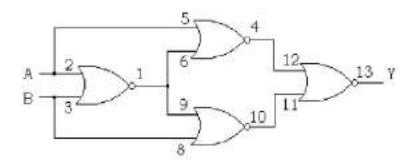
A	В	Y


Realization of OR gate using only NOR gates

A	В	Y



Realization of NOT gate using only NOR gates


A	Y

Realization of EX-OR gate using only NOR gates

A	В	Y

Realization of EX-NOR gate using only NOR gates

A	В	Y

			Sig	nature of lab in cha
Exp :3				
<u>Aim</u> : Design		inational circuit with fou		tain minimal SOP
Aim: Design expression an		th table using Digital Tra		tain minimal SOP
Aim: Design expression an	d verify the tru	th table using Digital Tra		tain minimal SOP
Aim: Design expression an	nd verify the tru	th table using Digital Tra	iner Kit	tain minimal SOP
Aim: Design expression an	and Component	th table using Digital Tra	iner Kit Quantity	tain minimal SOP
Aim: Design expression an	and Component S.No 1.	ts: Name Digital trainer	Quantity	tain minimal SOP
Aim: Design expression an	S.No 1. 2.	ts: Name Digital trainer IC 7408	Quantity 1 1	tain minimal SOP

- 1. First minimize the given expression.
- 2. Derive the truth table from the given function.
- 3. Realize the above simplified expression by using minimum number of gates.
- 4. Connect the circuit according to step 3.
- 5. Verify the truth table.

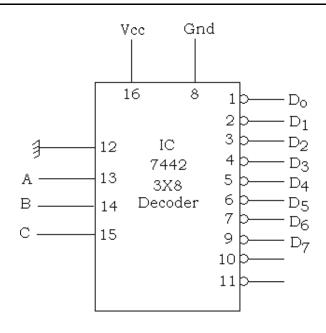
Problem statement:

1. $F = \sum m(0,1,3,4,5,6,7,12,13,14,15)$ simplify

Circuit Diagram:

Result: Exp:4 Aim: To implement Apparatus and Compon		function by using decoders		nature of lab in charge
	S.No	Name	Quantity	
	1.	Digital trainer	1	
	2.	IC 7442	1	

S.No	Name	Quantity
1.	Digital trainer	1
2.	IC 7442	1
3.	IC 7420	1
4.	IC 7421	1
5.	IC 7404	1


Procedure:

Using Decoders:

- 1. Obtain truth table from the given function
- 2. Realize the given function by using Decoders.
- 3. Connect the circuit according to step 2
- 4. Verify the truth table.

С	В	A	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0								
0	0	1								

<u>Circuit Diagram</u>: <u>Pin Diagram of 7442 DECODER</u>:

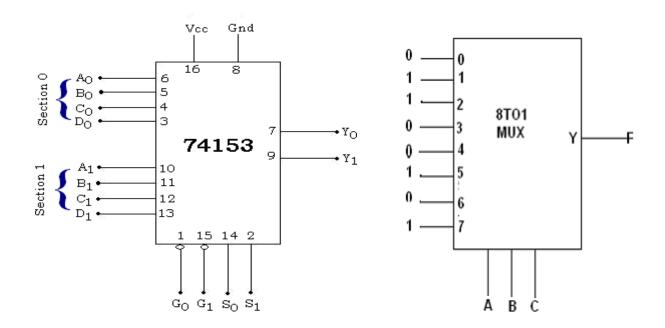
Result:-

Signature of lab in charge

Exp :5

<u>Aim</u>: To implement given function by using Multiplexer

Apparatus and Components:


S.No	Name	Quantity
1.	Digital trainer	1
2.	IC 74153	1
3.	IC 7420	1
4.	IC 7421	1
5.	IC 7404	1

Procedure:

Using Multiplexer:

- 1. Obtain truth table from the given function.
- 2. Obtain canonical SOP from the given function.
- 3. Select size of the MUX depending on the no. of input variables.
- 4. Derive the implementation table.
- 5. Realize the given function by using MUX.
- 6. Connect the circuit according to step 5.
- 7. Verify the truth table.

<u>Circuit Diagram</u>: Pin Diagram of 74153 MUX:

Implement the function $F(A, B, C) = \Sigma (1, 2, 5, 7)$

A	В	С	Selected i/p	Y (output)
0	0	0	I_0	
0	0	1	I_1	
0	1	0	I_2	
0	1	1	I_3	
1	0	0	I_4	
1	0	1	I_5	
1	1	0	I_6	
1	1	1	I ₇	

Result:-

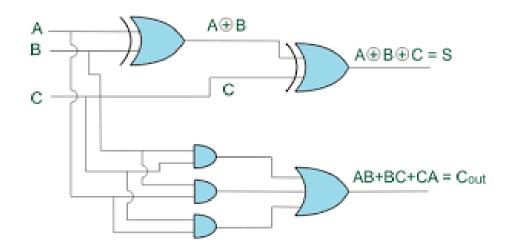
Signature of lab in charge

Exp :6

<u>Aim</u>: Design Full adder and verify is functional table.

Apparatus and Components:

Name	Quantity
Digital trainer	1
IC 7408	1
IC 7432	1
IC 7486	1
IC 7404	1
	Digital trainer IC 7408 IC 7432 IC 7486


Theory: concepts regarding K map

Procedure:

- 1. First minimize the given expression.
- 2. Derive the truth table from the given function.
- 3. Realize the above simplified expression by using minimum number of gates.

- 4. Connect the circuit according to step 3.
- 5. Verify the truth table.

Circuit Diagram:

Truth Table:-

A	В	C	S(SUM)	Cout (carry)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Result:-

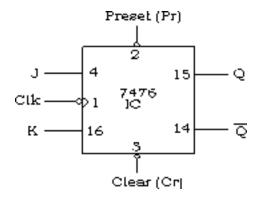
Signature of lab in charge

Exp:7

Aim: Realization of J K Flip - Flop and D K Flip - Flop

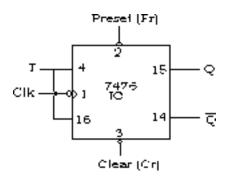
Apparatus and Components:

S.No	Name	Quantity
1.	Digital trainer	1
2.	IC 7476	1
3.	IC 7400	1
4.	IC 7486	1
5.	IC 7404	1

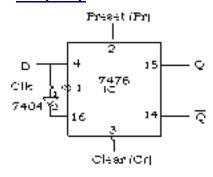

Theory:

Procedure:

- 1. RS flip-flop is wired as shown in fig and input signals are fed from logic input switches and the out put is monitored on the logic level out put condition indicators and the truth table is verified.
- 2. JK flip-flop is wired as shown in fig and the input signals are fed from logic input switches and the output is monitored on the logic level output condition indicators and the truth table is verified.
- 3. Verify the truth tables of D flip flop and T flip flop in the same procedure.


Circuit Diagram:

JK flip- flop


Clk	PR	CR	J	K	Theoretical	Practical
CIK	1 K	CK	J	IX.	Q _{n+1}	Q _{n+1}
0	0	1	X	X	1	
0	1	0	X	X	0	
\downarrow	1	1	0	0	Qn	
\downarrow	1	1	0	1	0	
	1	1	1	0	1	
\downarrow	1	1	1	1	Qn	

T flip-flop

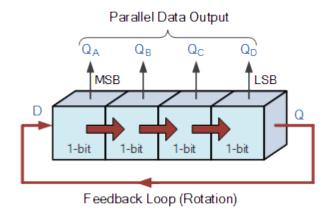
Clk	PR	CR	Т	Theoretical	Practical
CIK	1 K	CK	1	Q _{n+1}	Q_{n+1}
0	0	1	X	1	
0	1	0	X	0	
\downarrow	1	1	0	Qn	
\downarrow	1	1	1	Qn	

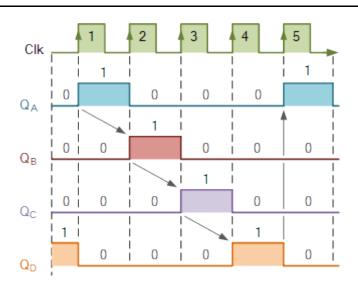
D flip-flop

Clk	PR	CR	D	Theoretical	Practical
CIR		CK	D	Q _{n+1}	Q _{n+1}
0	0	1	X	1	
0	1	0	X	0	
\downarrow	1	1	0	0	
\downarrow	1	1	1	1	

Result:-

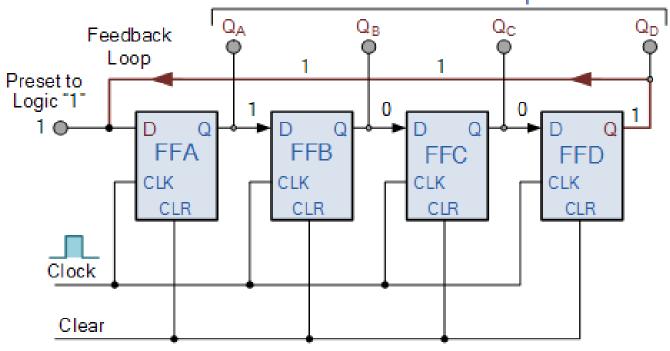
Signature of lab in charge


Exp :8


Aim :Design a four bit ring counter using D Flip-Flops /JK Flip-Flops and verify output

S.No	Name	Quantity
1.	Digital trainer	1
2	IC 7476	2
3	IC 7404	1

Procedure:


- 1. Ring counter circuit is connected as shown in the circuit diagram.
- 2. 1Hz clock pulse is applied to the pin shown.
- 3. The outputs $Q_0Q_1Q_2Q_3$ are observed and verify the truth table.

Circuit Diagram:-

Clear	Clock	QA	QB	QC	QD
1	X	0	0	0	0
0	1	1	0	0	0

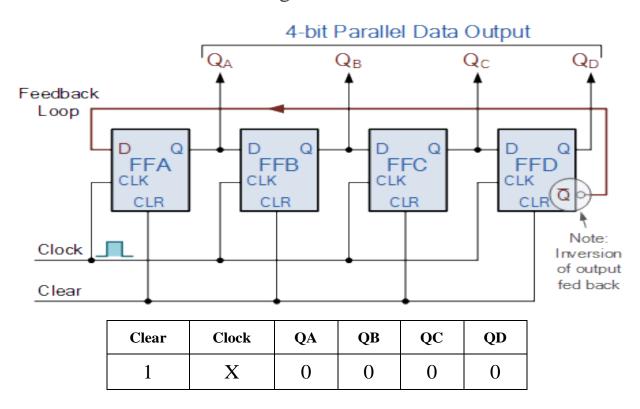
0	1	0	1	0	0
0	1	0	0	1	0
0	1	0	0	0	1
0	1	1	0	0	0
0	1	0	1	0	0
0	1	0	0	1	0
0	1	0	0	0	1

Result:-

Signature of lab in charge

II/IV (B.E) ECE, I-SEM :: STLD Lab

Exp :9


Aim: Design a four bit ring counter using D Flip-Flops /JK Flip-Flops and verify output

S.No	Name	Quantity
1.	Digital trainer	1
2	IC 7476	2
3	IC 7404	1

Procedure:

- 1. Johnson Ring counter circuit is connected as shown in the circuit diagram.
- 2. 1Hz clock pulse is applied to the pin shown.
- 3. The outputs $Q_0Q_1Q_2Q_3$ are observed and verify the truth table.

Circuit Diagram: 4-bit Johnson Ring Counter

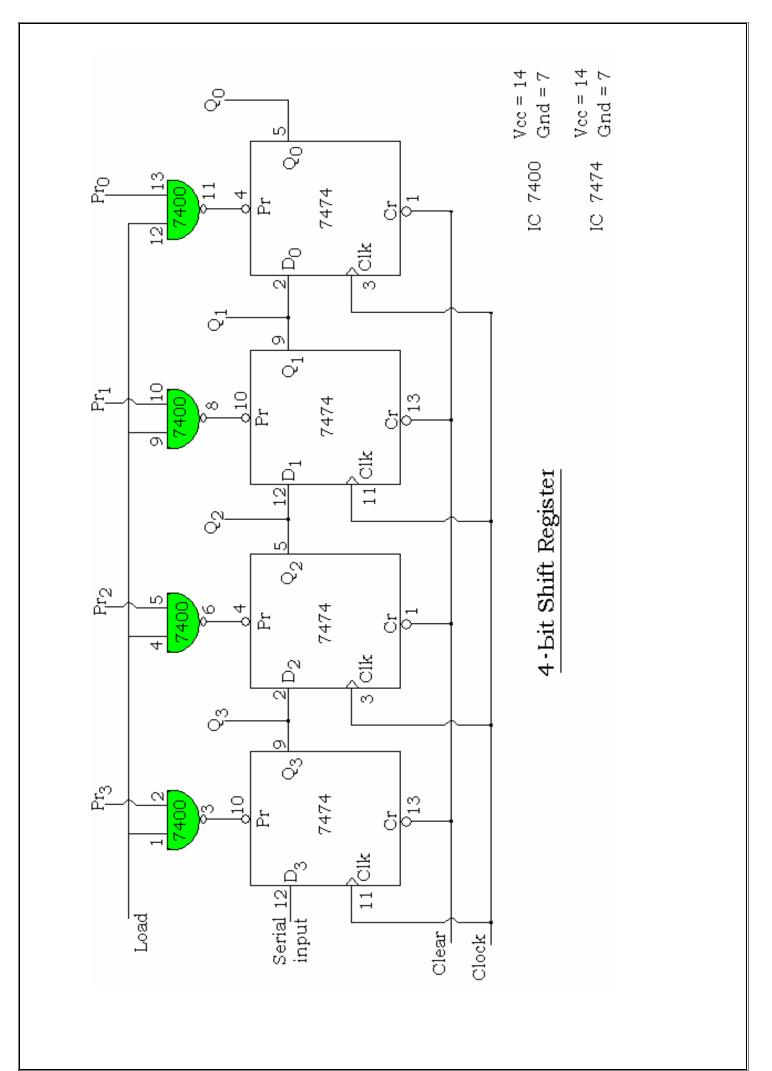
0	1	1	0	0	0
0	1	1	1	0	0
0	1	1	1	1	0
0	1	1	1	1	1
0	1	0	1	1	1
0	1	0	0	1	1
0	1	0	0	0	1
0	1	0	0	0	0

Result:-

Signature of lab in charge

EXP:10

<u>Aim</u>: Verify the operation of 4-bit Universal Shift Register for different Modes of operation.


Apparatus and Components:

S.No	Name	Quantity
1.	Digital trainer	1
2	IC 7474	2
3	IC 7400	1

Procedure:

- 1. Connect the circuit as shown in fig.
- 2. For serial loading keep load low.
- 3. First clear all the flip-flops by supplying clear = low

4. First enter serial input one by one, through clock pulse; we will get parallel output at $Q_3Q_2Q_1Q_0$. After applying 4 clock pulses we will get serial output.
5. For parallel input keep load = high
 6. Directly apply parallel input to P_{r3},P_{r2},P_{r1},P_{r0}; we will get parallel
output at Q ₃ Q ₂ Q ₁ Q ₀ . After applying 4 clock pulses we will get serial
output.

<u>4 – bit Shift Register Truth Table :</u>

Serial Input $\[\]$ Serial Output: The input is 1010.

Load	Clk	Clear	Serial i/p	Serial output Qo
О	X	0	X	0
О	1	1	0	0
О	2	1	1	0
0	3	1	0	0
О	4	1	1	0
О	5	1	0	1
О	6	1	0	0
0	7	1	0	1

Serial Input $\ensuremath{\mathbb{D}}$ Parallel Output : The input is 1010.

Load	Clk	Clear	Serial i/p	Parallel output			
				Q3	Q2	Q1	Q0
0	X	0	X	0	0	0	0
0	1	1	О	0	0	0	О
0	2	1	1	0	0	0	О
0	3	1	О	1	0	0	О
0	4	1	1	0	1	0	О
0	5	1	0	1	0	1	0
0	6	1	О	0	1	0	1
0	7	1	О	0	0	1	0
0	8	1	0	0	0	0	1

4 – bit Shift Register Truth Table

Parallel input [Serial Output

: The input is 1010.

Load	Clk	Clear		Serial output			
			Pr3	Pr2	Pr1	Pr0	Qo
0	X	0	X	X	X	X	0
1	X	1	1	0	1	0	0
0	1	1	X	X	X	X	1
0	2	1	X	X	X	X	0
0	3	1	X	X	X	X	1

Parallel input $\ \$ Parallel Output : The input is 1010.

		Parallel i/p Parallel				Parallel i/p				ıt
Load	Clk	Clear	Pr3	Pr2	Pr1	Pr0	Q3	Q2	Q1	Q0
0	X	0	X	X	X	X	0	0	0	О
1	X	1	1	0	1	0	1	0	1	0
0	1	1	X	X	X	X	0	1	0	1
0	2	1	X	X	X	X	0	0	1	0
0	3	1	X	X	X	X	0	О	0	1

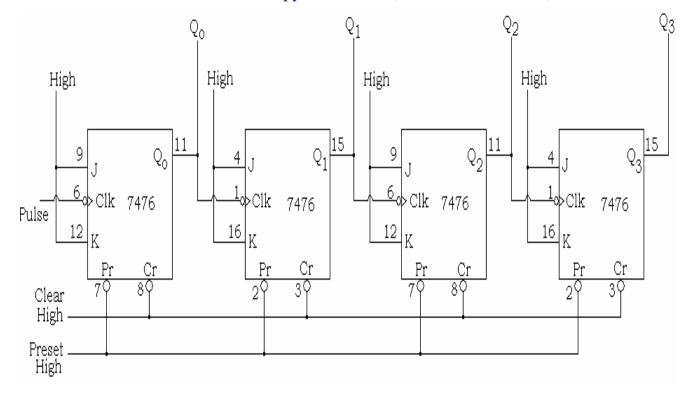
Result:-

Signature of lab in charge

EXP:11

Aim: Draw the circuit diagram of MOD-8 ripple counter and construct a circuit using T-FlipFlops

Apparatus and Components:


S.No	Name	Quantity
1.	Digital trainer	1
2.	IC 7476	2

Theory:

Procedure:

- 1. Ripple counter circuit is connected as shown in the circuit diagram.
- 2. 1Hz clock pulse is applied to the pin shown.
- 3. The outputs $Q_0Q_1Q_2Q_3$ are observed and verify the truth table.

4 – bit Ripple Counter (VCC = 5 GND=13)

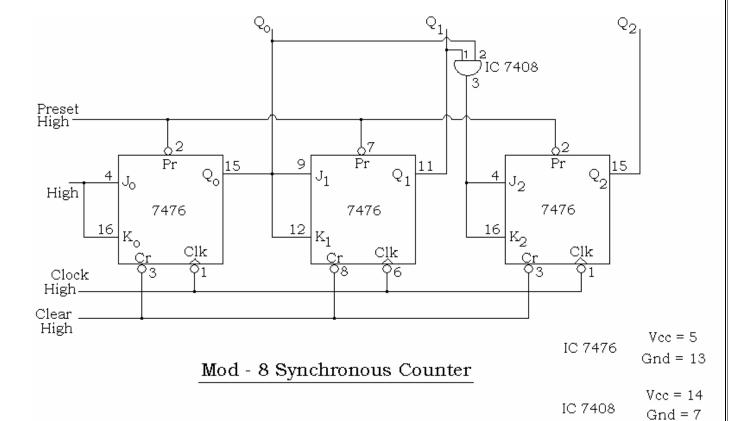
Clock pulses	Q3	Q2	Q1	Q0
О	0	0	0	0
1	0	0	0	1
2	0	0	1	О
3	0	0	1	1
4	0	1	О	О
5	0	1	0	1
6	0	1	1	0
7	O	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

Result:-

Signature of lab in charge

Exp:12

 $\underline{\text{Aim:-}}$ Design MOD – 8 synchronous counter using T Flip-Flop and verify the result and Sketch the output waveforms.


Apparatus and Components:

S.No	Name	Quantity
1.	Digital trainer	1
2.	IC 7476	2
3.	IC 7408	1

Theory

Procedure:

- 1. Mod- 8 Synchronous counter circuit is connected as shown in the circuit diagram.
- 2. 1Hz clock pulse is applied to the pin shown.
- 3. The outputs $Q_0Q_1Q_2Q_3$ are observed and verify the truth table.

Circuit Diagram:

Clock pulses	Q2	Q1	Q0
0	0	О	0
1	0	О	1
2	0	1	0
3	0	1	1
4	1	О	0
5	1	О	1
6	1	1	0
7	1	1	1
8	0	0	0

Result:-

Signature of lab in charge

EXP 13

Aim: - Construct 7 Segment Display Circuit Using Decoder and 7 Segment LED and test it.

Apparatus and Components:

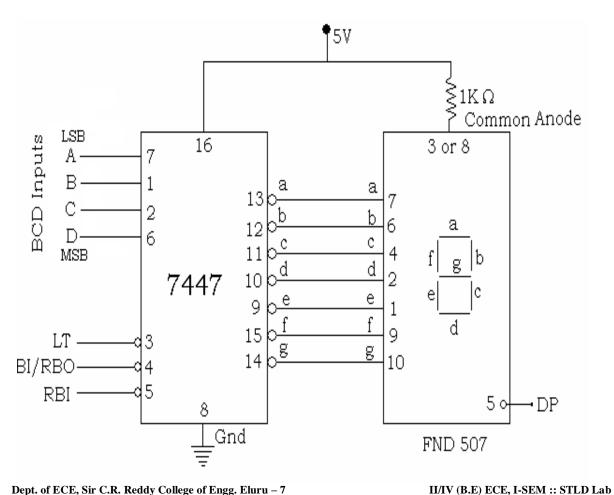
S.No	Name	Quantity
1.	Digital Trainer	1
2.	IC 7447	1
3.	IC FND 507	1

Theory:

Procedure:

- 1. Set up the Ckt as shown in fig.
- 2. Apply logic '0' level to LT and observe the seven segments of the LED. All the segments must be ON.
- 3. Apply logic '0' level to BI/RBO and observe the seven segments of the LED. All the segments must be OFF.
- 4. Apply logic '1' to LT and RBI and observe the number displayed on the LED for all the inputs 0000 through 1111. This is the normal decoding mode.
- 5. Apply logic '1' to LT and logic '0' to RBI, and observe the BI/RBO output and the number displayed on the LED for all the inputs 0000 through 1111. This is the normal decoding mode with zero blanking.

The functions of LT, RBI, RBO and BI are given below.


LT This is called the LAMP TEST terminal and is used for segment testing. If it is connected to logic '0' level, all the segements of the display connected to the decoder will be ON. For normal decoding operation, this terminal is to be connected to logic '1' level.

RBI For normal decoding operation, this is connected to logic '1' level. If it is connected to logic '0', the segment outputs will generate the data for normal 7segment decoding, for all BCD inputs except Zero. Whenever the BCD inputs correspond to Zero, the 7-segment display switches off. This is used for zero blanking in multi-digit displays.

BI If it is connected to logic '0' level, the display is switched-off irrespective of the BCD inputs. This is used for conserving the power in multiplexed displays.

RBO This output is used for cascading purposes and is connected to the RBI terminal of the succeeding stage.

Circuit Diagram:

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

Truth Table:

D	С	В	A	a	b	c	d	e	f	g	Display Number
О	0	0	0	0	0	0	0	0	0	1	
0	0	0	1	1	0	0	1	1	1	1	
0	0	1	0	0	0	1	0	0	1	0	
0	O	1	1	O	O	O	O	1	1	О	3
О	1	0	0	1	0	0	1	1	0	0	니
0	1	0	1	0	1	0	0	1	0	0	
0	1	1	0	1	1	0	0	0	0	0	
0	1	1	1	0	0	0	1	1	1	1	
1	0	0	0	0	0	0	0	0	0	0	
1	0	0	1	0	0	0	1	1	0	0	디

 \underline{Result} :

Signature of lab in charge