SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU - 534007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DIGITAL ELECTRONICS \& MICROPROCESSOR LAB MANUAL

2/4 CSE: II- SEMESTER

Faculty:
B.Homer Benny (Section-‘A')
S.K.Chaitanya.R (Section-'B')
S.Jaya Prakash (Section-‘'C')

DIGITAL ELECTRONICS \& MICROPROCESSOR LAB

2/4 CSE: II - SEMESTER

INDEX

S.No	Name of the Experiment	Page Number
1.	Study of basic gates.	3
2.	Realization of Gates by using Universal Building Blocks.	5
3.	Realization of Flip-Flops.	9
4.	4-bit Ripple counter.	11
5.	4-bit Shift Register.	14
6.	4-bit \& 8-bit Binary Adders	17
7.	Addition of two 8-bit numbers	20
8.	Subtraction of two 8 - bit numbers	23
9.	Multiplication of two 8-bit numbers	26
10.	Division of two 8-bit numbers	29
11.	Addition of two 16-bit numbers	32
12.	Subtraction of two 16 - bit numbers	35
13.	BCD addition	38
14.	BCD subtraction	42
15.	Sorting of data in Ascending order and finding Largest Number in the array	45
16.	Sorting of data in Descending order and finding Smallest Number in the array	49
17.	DAC/ADC interface	53
18.	Stepper motor controller	57
19.	$8279-$ programmable keyboard/display interface	61

AIM: To study and verify the truth table of logic gates

LEARNING OBJECTIVE:

- Identify various ICs and their specification.

COMPONENTS REQUIRED:

- Logic gates (IC) trainer kit.
- Connecting patch chords.
- IC 7400, IC 7408, IC 7432, IC 7406, IC 7402, IC 7404, IC 7486

THEORY:

The basic logic gates are the building blocks of more complex logic circuits. These logic gates perform the basic Boolean functions, such as AND, OR, NAND, NOR, Inversion, ExclusiveOR, Exclusive-NOR. Fig. below shows the circuit symbol, Boolean function, and truth. It is seen from the Fig that each gate has one or two binary inputs, A and B, and one binary output, C. The small circle on the output of the circuit symbols designates the logic complement. The AND, OR, NAND, and NOR gates can be extended to have more than two inputs. A gate can be extended to have multiple inputs if the binary operation it represents is commutative and associative.

These basic logic gates are implemented as small-scale integrated circuits (SSICs) or as part of more complex medium scale (MSI) or very large-scale (VLSI) integrated circuits. Digital IC gates are classified not only by their logic operation, but also the specific logic-circuit family to which they belong. Each logic family has its own basic electronic circuit upon which more complex digital circuits and functions are developed. The following logic families are the most frequently used.

TTL Transistor-transistor logic
ECL Emitter-coupled logic
MOS Metal-oxide semiconductor
CMOS Complementary metal-oxide semiconductor

TTL and ECL are based upon bipolar transistors. TTL has a well established popularity among logic families. ECL is used only in systems requiring high-speed operation. MOS and CMOS, are based on field effect transistors. They are widely used in large scale integrated circuits because of their high
component density and relatively low power consumption. CMOS logic consumes far less power than MOS logic. There are various commercial integrated circuit chips available. TTL ICs are usually distinguished by numerical designation as the 5400 and 7400 series.

PROCEDURE:

1. Check the components for their working.
2. Insert the appropriate IC into the IC base.
3. Make connections as shown in the circuit diagram.
4. Provide the input data via the input switches and observe the output on output LEDs

S.NO	GATE	SYMBOL	INPUTS		OUTPUT
			A	B	C
1.	$\begin{aligned} & \text { NAND IC } \\ & 7400 \end{aligned}$		0	0	1
			0	1	1
			1	0	1
			1	1	0
2.	$\begin{aligned} & \hline \text { NOR IC } \\ & 7402 \end{aligned}$		0	0	1
			0	1	0
			1	0	0
			1	1	0
3.	$\begin{aligned} & \hline \text { AND IC } \\ & 7408 \end{aligned}$		0	0	0
			0	1	0
			1	0	0
			1	1	1
4.	$\begin{array}{\|l\|} \hline \text { OR } \\ \text { IC } 7432 \\ \hline \end{array}$		0	0	0
			0	1	1
			1	0	1
			1	1	1
5.	$\begin{array}{\|l\|} \hline \text { NOT } \\ \text { IC } 7404 \end{array}$	A	1	-	0
			0	-	1
6.	$\begin{array}{\|l} \hline \text { EX-OR IC } \\ 7486 \end{array}$		0	0	0
			0	1	1
			1	0	1
			1	1	0

Aim : To Realize AND,OR,NOT,EX-OR and EX-NOR gates by using only NAND and only NOR gates

Apparatus and Components :

S.No	Name	Quantity
1.	Digital trainer	1
2.	IC 7400	2
3.	IC 7402	2

Procedure :

Using NAND Gates:

1. Derive truth table
2. Realize expression of AND gate by using number of NAND gates
3. Connect the circuit
4. Verify the truth table
5. Repeat above steps for OR, NOT, EX-OR and EX-NOR gates

Using NOR Gates:

1. Derive truth table
2. Realize expression of AND gate by using number of NOR gates
3. Connect the circuit
4. Verify the truth table
5. Repeat above steps for OR, NOT, EX-OR and EX-NOR gates

Result :

Basic gates are realized by using Universal building blocks.

Circuit Diagram :

Realization of AND gate using only NAND gates

A	B	$Y=A B$
0	0	0
0	1	0
1	0	0
1	1	1

Realization of OR gate using only NAND gates

A	B	$Y=A+B$
0	0	0
0	1	1
1	0	1
1	1	1

Realization of NOT gate using only NAND gates

A	$Y=\bar{A}$
0	1
1	0

Realization of EX-OR gate using only NAND gates

Realization of EX-NOR gate using only NAND gates

A	B	$Y=A \odot B$
0	0	1
0	1	0
1	0	0
1	1	1

Realization of AND gate using only NOR gates

A	B	$Y=A B$
0	0	0
0	1	0
1	0	0
1	1	1

Realization of OR gate using only NOR gates

A	B	$Y=A+B$
0	0	0
0	1	1
1	0	1
1	1	1

Realization of NOT gate using only NOR gates

A	$Y=\bar{A}$
0	1
1	0

Realization of EX-OR gate using only NOR gates

A	B	$Y=A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Realization of EX-NOR gate using only NOR gates

A	B	$Y=A \oplus B$
0	0	1
0	1	0
1	0	0
1	1	1

Aim : To Construct different types of flip-flops and verify the truth tables.

Apparatus and Components :

S.No	Name	Quantity
1.	Digital trainer	1
2.	IC 7476	1
3.	IC 7400	1
4.	IC 7404	1

Procedure :

1. RS flip-flop is wired as shown in fig and input signals are fed from logic input switches and the output is monitored on the logic level output condition indicators and the truth table is verified.
2. JK flip-flop is wired as shown in fig and the input signals are fed from logic input switches and the output is monitored on the logic level output condition indicators and the truth table is verified.
3. Verify the truth tables of D flip flop and T flip flop in the same procedure.

Result :

Truth tables of RS, JK, D and T flip-flops are verified.

Circuit Diagram:

Realization of RS flip- flop using NAND gates

$\mathbf{C l k}$	\mathbf{S}	\mathbf{R}	Theoretical	Practical
			$\mathbf{Q}_{\mathbf{n + 1}}$	$\mathbf{Q}_{\mathbf{n}+\mathbf{1}}$
0	X	X	$\mathrm{Q}_{\mathbf{n}}$	
1	0	0	$\mathrm{Q}_{\mathbf{n}}$	
1	0	1	0	
1	1	0	1	
1	1	1	$?$	

JK flip- flop

$\mathbf{C l k}$	$\mathbf{P R}$	$\mathbf{C R}$	\mathbf{J}	\mathbf{K}	Theoretical	Practical
					$\mathbf{Q}_{\mathbf{n}+1}$	$\mathbf{Q}_{\mathbf{n}+1}$
0	0	1	X	X	1	
0	1	0	X	X	0	
\downarrow	1	1	0	0	Q_{n}	
\downarrow	1	1	0	1	0	
\downarrow	1	1	1	0	1	
\downarrow	1	1	1	1	$\overline{\mathrm{Qn}}$	

T flip- flop

Clk	PR	$\mathbf{C R}$	\mathbf{T}	Theoretical	Practical
				$\mathbf{Q}_{\mathbf{n}+\mathbf{1}}$	$\mathbf{Q}_{\mathbf{n}+\mathbf{1}}$
0	0	1	X	1	
0	1	0	X	0	
\downarrow	1	1	0	Q_{n}	
\downarrow	1	1	1	$\overline{\mathrm{Qn}}$	

D flip- flop

Clk	PR	$\mathbf{C R}$	\mathbf{D}	Theoretical	Practical
				$\mathbf{Q}_{\mathbf{n}+\mathbf{1}}$	$\mathbf{Q}_{\mathbf{n} \mathbf{+ 1}}$
0	0	1	X	1	
0	1	0	X	0	
\downarrow	1	1	0	0	
\downarrow	1	1	1	1	

4-BIT RIPPLE COUNTER

Aim : To design Asynchronous (Ripple) counter and verify the truth table.

Apparatus and Components :

S.No	Name	Quantity
1.	Digital trainer	1
2.	IC 7476	2

Procedure:

1. Ripple counter circuit is connected as shown in the circuit diagram.
2. 1 Hz clock pulse is applied to the pin shown.
3. The outputs $\mathrm{Q}_{0} \mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{Q}_{3}$ are observed and verify the truth table.

Result :

Asynchronous counter is constructed and truth table is verified.

4 - bit Ripple Counter Truth Table.

Clock pulses	Q3	Q2	Q1	Q0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

Circuit Diagram:

Aim : To design 4-bit shift register and verify the operation of serial loading and parallel loading,

Apparatus and Components :

S.No	Name	Quantity
1.	Digital trainer	1
2.	IC 7474	2
3.	IC 7400	1

Procedure:

1. Connect the circuit as shown in fig.
2. For serial loading keep load low.
3. First clear all the flip-flops by supplying clear = low
4. First enter serial input one by one, through clock pulse; we will get Parallel output at $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{\mathrm{O}}$. After applying 4 clock pulses we will get serial output.
5. For parallel input keep load $=$ high
6. Directly apply parallel input to $\mathrm{P}_{\mathrm{r} 3}, \mathrm{P}_{\mathrm{r} 2}, \mathrm{P}_{\mathrm{r} 1}, \mathrm{P}_{\mathrm{r} 0}$; we will get parallel output at $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$. After applying 4 clock pulses we will get serial output.

Result : The operation of 4-bit shift register for serial loading and parallel loading is observed

4-bit Shift Register Truth Table :

Serial Input \rightarrow Serial Output / Parallel Output: The input is 1010.

Load	Clk	Clear	Serial i/p	Parallel output				Serial output Qo
				Q3	Q2	Q1	Q0	
0	X			0	0	0	0	0
0	1	1	0	$\mathbf{0}$	0	0	0	0
0	2	1	1	$\mathbf{1}$	$\mathbf{0}$	0	0	0
0	3	1	0	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	0	0
0	4	1	1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
0	5	1	0	0	1	0	1	$\mathbf{1}$
0	6	1	0	0	0	1	0	$\mathbf{0}$
0	7	1	0	0	0	0	1	$\mathbf{1}$

Parallel input \rightarrow Parallel Output / Serial Output : The input is 1010.

Load	Clk	Clear	Parallel i/p					Parallel output			
			Pr3	Pr2	Pr1	Pr0	Q3	Q2	Q1	Q0	
0	X		X	X	X	X	0	0	0	0	0
1	X	1	1	0	1	0	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
0	1	1	X	X	X	X	0	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
0	2	1	X	X	X	X	0	0	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
0	3	1	X	X	X	X	0	0	0	$\mathbf{1}$	$\mathbf{1}$

Circuit Diagram:

Aim : To construct and evaluate 4 bit and 8 bit adders

Apparatus and Components :

S.No	Name	Quantity
1.	Digital Trainer	1
2.	IC 7483	2
3.	IC 7486	2
4.	IC 7404	1

Procedure :

Adders:

1. The circuit is connected as shown in fig.
2. Apply two 4 bit positive numbers A and B, observe the output.
3. Verify the truth table.
4. Repeat above steps for 8 bit adders also.

Result :

The truth tables for 4 bit \& 8 bit full adders are verified.

Truth Table :

4-bit Binary Adder :

$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{0}}$	$\mathbf{C}_{\text {in }}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	$\mathbf{C}_{\text {out }}$

8-bit Binary Adder :

A7	A6	A5	A4	A3	A2	A1	A0	B7	B6	B5	B4	B3	B2	B1	B0	Cin	S7	S6	S5	S4	S3	S2	S1	S0	Cout	

Circuit Diagram:

EXPERIMENT: 7

PROGRAM:

Write an assembly language program to add two binary numbers of 8-bit data stored in memory locations 8 C 40 H and 8 C 41 H and store the result in 8 C 42 H and 8 C 43 H .

PROBLEM ANALYSIS:

To perform addition in 8085 one of the data should be in accumulator and another data can be in any one of the general purpose register or in memory. After addition the sum will be in accumulator. The sum of two 8 -bit data can be either 8 -bit (sum only) or 9 bits (sum and carry). The accumulator can be accommodated only the sum and if there is a carry, the 8085 will indicate by setting carry flag. Hence one of the register is used to account for carry.

ALGORITHM:

1. Load the address of the data in $H \mathrm{~L}$ reg. pair.
2. Clear C register.
3. Move the first data from memory to accumulator.
4. Increment the $\mathrm{H} L$ register pair (memory pointer).
5. Add the content as memory addressed by H L with accumulator.
6. Check for carry. If carry $=1$, go to step 7 or if carry $=0$, go to step 8 .
7. Increment the C register.
8. Increment the H L pair and store the sum.
9. Increment the H L pair and store the carry.
10. Stop.

FLOWCHART:

ASSEMBLY LANGUAGE PROGRAM:
MEMORY MACHINE LABEL MNEMONIC COMMENT LOCATION CODE

8 COOH	$\begin{aligned} & 21408 \mathrm{C} \\ & 0 \mathrm{E} 00 \end{aligned}$		LXI	$\mathrm{H}, 8 \mathrm{C} 40 \mathrm{H}$	Set pointer for da
8 CO 03 H			MVI	C, 00 H	// Clear C Reg. to account for carry
8C05H	7E		MOV	A,M	// Get first data in A reg.
8C06H	23		INX	H	// Increment the pointer for second data
8C07H	86		ADD	M	// Add second data which is stored in memory to A. sum in A Reg.
8C08H	D2 0C 8C		JNC	L1	// if $\mathbf{C Y}=0$, go to $\mathbf{L} 1$
8C0BH	0 C		INR	C	// if $\mathrm{CY}=1$ increment register C
8 COCH	23	L1:	INX	H	// increment the pointer to store the sum in Memory
8C0DH	77		MOV	M,A	// Store the sum in memory.
8C0EH	23		INX	H	// Increment the pointer to store the carry in Memory.
8C0FH71			MOV	M,C	// Store the carry in memory
8C10H76			HLT		// Halt the program

OUTPUT:

8C40::02
8C41::03
8C42::05
8C43::00

PROGRAM:

Write an assembly language program to subtract two numbers of 8-bit data stored in memory locations 8 C 40 H and 8 C 41 H . Store the magnitude of the result in 8 C 42 H . If the result is positive store 00 in 8 C 43 H or if the result is negative store 01 in 8 C 43 H .

PROGRAM ANALYSIS:

To perform subtraction in 8085 one of the data should be in accumulator and another data can be in anyone of the general purpose register or in memory. After subtraction the result will be in accumulator. The 8085 performs 2's complement subtraction and then complements the carry. Therefore if the result is negative then carry flag is set and accumulator will have 2 's complement of the result. Hence one of the register is used to account for sign of the result. To get the magnitude of the result again take 2 's complement of the result.

ALGORITHM:

1. Load the subtrahend (the data to be subtracted) from memory to accumulator and move it to B- register.
2. Load the minuend from memory to accumulator.
3. Clear C register to account for sign of the result.
4. Subtract the content of B-register from the content of the accumulator.
5. Check for carry . if carry $=1$ go to step 6 or if carry $=0$, go to step 7 .
6. Increment C register, complement the accumulator and add 01 H
7. store the difference in memory.
8. Move the content of C register (sign bit) to accumulator and store in memory.
9. Stop.

FLOWCHART:

MEMORY MACHINE LABEL MNEMONIC

COMMENT

 LOCATION CODE| 8C00H | 3A 418 C | | LDA | 8C41H | ; get subtrahend from 8 C 41 H and store in Acc |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8C03H | 47 | | MOV | B,A | ; move the content of the Acc. into B reg. |
| 8 C 04 H | 3A 408 C | | LDA | 8 C 40 H | ; get the minuend in A - reg |
| 8C07H | 0E 00 | | MVI | C, 00 H | ; clear C register, to account for sign. |
| 8C09H | 90 | | SUB | B | ; get the difference in A register |
| 8C0AH | D2 11 8C | | JNC | L1 | ; if $\mathbf{C Y}=0$, then go to $\mathbf{L} \mathbf{1}$ |
| 8C0DH | 0C | | INR | C | ; if $\mathrm{CY}=1$ then increment C register. |
| 8C0EH | 2F | | CMA | | ; get 2's complement of difference |
| | | | | | in A-reg |
| 8 COFH | C6 01 | | ADI | 01 | ; increment A register |
| 8C11H | 32428 C | L1 | STA | 8 C 42 H | ; store the result in memory |
| 8C14H | 79 | | MOV | A, C | ; move the barrow to accumulator |
| 8C15H | 32438 C | | STA | 8C43H | ; store the sign bit in memory. |
| 8 C 18 H | 76 | | HLT | | ; halt the program |

OUTPUT:

8C40::02
8C41::03
8C42::01
8C43::01

EXPERIMENT: 9 MULTIPLICATION OF TWO 8-BIT NUMBERS

PROBLEM:

Write an assembly language program to multiply two numbers of 8 -bit data stored in memory 8 C 4 OH and 8 C 41 H . Store the product in 8 C 42 H and 8 C 43 H .

PROBLEM ANALYSIS:

In this method multiplication is performed as repeated additions. The initial value of sum is assumed as zero. One of the data is used as count (N). For number of additions to be performed. Another data is added to the sum N times where N is the count. The result of the product of two 8 -bit data may be 16-bit data. Hence another register is used to account for over flow.

ALGORITHM:

1. Load the address of the first data in H L pair.
2. Clear C register for over flow.
3. Clear the accumulator.
4. Move the first data to B register.
5. Increment the pointer.
6. Move the second data to D register from memory.
7. Add the content of D-register to accumulator.
8. Check for carry. If $\mathrm{CY}=1$ go to step 9 or if $\mathrm{CY}=0$ go to step10.
9. Increment C register.
10. Decrement B register.
11. Check whether count has reached zero. If $\mathrm{ZF}=0$ repeat steps 7 to 11 . if $\mathrm{ZF}=1$ got to next step.
12. Increment the pointer and store the LSB of the product in memory.
13. Increment the pointer and store the MSB of the product in memory.
14. Stop.

FLOWCHART:

MEMORY MACHINE LABEL MNEMONIC LOCATION CODE

8 COOH	21408 C		LXI	H, 8C40H	set pointer for data.
8CO3H	0E 00		MVI	C, OOH	; clear C register to account for over flow
8CO5H	AF		XRA	A	; clear accumulator (initial sum=0).
8CO6H	46		MOV	B,M	; get first data in B register.
8C07H23			INX	H	; increment pointer.
8 CO 8 H	56		MOV	D,M	; get second data in D register.
8 CO 9 H	82	L1	ADD	D	; add the content D register to accumulator
8COAH	02 0E 8C		JNC	L2	; if $\mathrm{CY}=0$, go to L 2
8CODH	0 C		INR	C	; if $\mathrm{CY}=1$ increment C register
8COEH	05	L2	DCR	B	; if $\mathrm{CY}=0$ decrement B register
8 COFH	C2 09 8C		JNZ	L1	; repeat addition until $\mathrm{ZF}=1$.
8 C 12 H	23		INX	H	; Increment HL Reg pair
8 C 13 H	77		MOV	M,A	; store LSB of product in memory.
8C14H	23		INX	H	; Increment HL Reg pair
8 C 15 H	71		MOV	M,C	; store MSB of product in mory.
8C16H76					gram.

OUTPUT:

8C40::02
8C41::03
8C42::06
8C43::00

COMMENT

MNEMONIC

 for over flow; clear accumulator (initial sum=0).
; get first data in B register.
; increment pointer.
; get second data in D register.
; add the content D register to accumulator
; if $\mathrm{CY}=0$, go to L 2
; if $\mathrm{CY}=1$ increment C register
; if $\mathrm{CY}=0$ decrement B register
; repeat addition until $\mathrm{ZF}=1$.
; Increment HL Reg pair
; store LSB of product in memory.
; Increment HL Reg pair
; store MSB of product in
memory.
; halt the program.

PROBLEM:

Write an assembly language program to divide two numbers of 8 -bit data.

ALGORITHM:

1. Load Divisor and Dividend
2. Subtract divisor from dividend
3. Count the number of times of subtraction which equals the quotient
4. Stop subtraction when the dividend is less than the divisor .The dividend now becomes the remainder. Otherwise go to step 2.
5. Stop the program execution.

FLOWCHART:

\(\left.$$
\begin{array}{cclllc}\text { ADDRESS } & \text { OPCODE } & \text { LABEL } & \begin{array}{l}\text { MNEM } \\
\text { ONICS }\end{array} & \begin{array}{l}\text { OPERA } \\
\text { ND }\end{array} & \text { COMMENTS } \\
4100 & 06 & & \text { MVI } & \text { B,00 } & \text { Clear B reg for quotient } \\
4101 & 00 & & \text { LXI } & \text { H,4500 } & \text { Initialize HL reg. to } \\
4102 & 21 & & & 4500 \mathrm{H} \\
4103 & 00 & & \text { MOV } & \text { A,M } & \text { Transfer dividend to acc. } \\
4104 & 45 & & \text { INX } & \text { H } & \begin{array}{c}\text { Increment HL reg. to point } \\
\text { next mem. Location. }\end{array} \\
4105 & 7 E & & \text { SUB } & \text { M } & \begin{array}{c}\text { Subtract divisor from dividend }\end{array}
$$

4106 \& 23 \& \& INR \& B \& Increment B reg\end{array}\right]\)| LOOP |
| :---: |
| 4107 |

OUTPUT:

4500::06
4501::03
4502::00
4503::02

PROGRAM:

Write an assembly language program to add two numbers of 16-bit data stored in memory $8 \mathrm{C} 40 \mathrm{H}, 8 \mathrm{C} 41 \mathrm{H}$ and $8 \mathrm{C} 42 \mathrm{H}, 8 \mathrm{C} 43 \mathrm{H}$. The data are stored such that LSB first and then MSB and store the result from 8 C 44 H to 8 C 46 H

PROBLEM ANALYSIS:

The 16-bit addition can be performed in 8085 microprocessor either in terms of 8-bit addition or by using DAD instruction. In addition using DAD instruction, one of the data should be in H L pair and another data can be another register pair. After addition the sum will be in H L register pair. If there is a carry in addition then that is indicated by setting carry flag. Hence one the register is used to account for carry.

ALGORITHM:

1 load the first data in H L register pair.
2. Move the first data to D E register pair.
3. Load the second data in H L register pair.
4. Clear A register for carry.
5. Add the content of D E pair to H L pair.
6. Check for carry. If carry $=1$, go to step 7 or if carry $=0$ go to step 8 .
7. Increment carry register (A) to account for carry.
8. Store the sum and carry in memory.
9. Stop.

MEMORY MACHINE LABEL MNEMONIC COMMENT LOCATION CODE

| 8 C 00 H | 2 A | 40 | 8 C | LHLD | 8 C 40 H |
| :--- | :--- | :--- | :--- | :--- | :--- | ; get first data in HL reg. pair.

OUTPUT:

8C40::02
8C41::03
8C42::05
8C43::00
8C44::07
8C45::03
8C46::00

PROGRAM:

Write an assembly language program to subtract two numbers of 16-bit data stored in memory from 8 C 40 H to 8 C 43 H . The data are stored such that LSB first and then MSB. Store the result in 8 C 44 H and 8 C 45 H .

PROBLEM ANALYSIS:

The 16 -bit subtraction is performed in terms of 8 -bit subtraction. First LSB's of the data are subtracted and the result is stored in memory. Then MSB's of the data are subtracted along with borrow in the previous subtraction and the result is stored in memory.

ALGORITHM:

1. Load the low byte of subtrahend in accumulator from memory and move is to B-register.
2. Load the low byte of minuend in accumulator from memory.
3. Subtract the content of B-register from the content of accumulator.
4. Store the low byte of result in memory.
5. Load the high byte of subtrahend in accumulator from memory and move it to B-register.
6. Load the high byte of minuend in accumulator from memory.
7. Subtract the content of B-register and the carry from the content of accumulator.
8. Store high byte of result in memory.
9. Stop the program.

FLOWCHART:

det the hiofly byte of sumprahentilin gint mowe to B

thet the high hyrte of minuent in

> sulutinct the content of B register and canry from in register

store the result in memory

LOCATION CODE

MEMORY MACHINE MNEMONIC

8 COOH	3A	42 8C	LDA	8C42H	; get the LSB of subtrahend from 8 C 42 H and store in Acc
8C03H	47		MOV	B, A	; Move the LSB of subtrahend to B-register
8C04H	3A	408 C	LDA	8C40H	; get the LSB of minuend in A-register
8C07H	90		SUB	B	; get the difference of LSB's in A-register
8C08H	32	448 C	STA	8C44H	; store the result in memory.
8C0BH	3A	43 8C	LDA	8C43H	; get the MSB of subtrahend from 8C43H and store in Acc
8C0EH	47		MOV	B, A	; Move the MSB of subtrahend to B-register.
8C0FH	3A	418 C	LDA	8C41H	; get the MSB of minuend in A-register.
8C12H98			SBB	B	; get the difference of MSB's in A-register.
8C13H	32	458 C	STA	8C45H	; store the result.
8C16H	76		HLT		; halt the program
OUTPUT:					
8C40::05					
8C41::03					
8C42::02					
8C43::01					
8C44::03					
8C45::02					
8C46::00					

EXPERIMENT: 13 TWO DIGIT BCD ADDITION

PROGRAM:

Write an assembly language program to add two numbers of two digit (single precession) BCD data stored memory locations 8 C 40 H and 8 C 41 H . Store the result in 8 C 42 H and 8 C 43 H .

PROBLEM ANALYSIS:

The 8085 microprocessor will perform only binary addition. Hence for BCD addition, the binary addition of BCD data is performed and then the sum is corrected to get result in BCD. After binary addition the following correction should be made to get the result in BCD.

1. if the sum of lower nibble exceeds 9 or if there is an auxiliary carry then 06 is added to lower nibble.
2. if the sum of upper nibble exceeds 9 or if there is carry then 06 is added to upper nibble.

The above correction is taken care by DAA instruction. Therefore after binary addition execute DAA instruction to do the above correction in the sum.

ALGORITHM:

1. Load the first data in accumulator and move it to B-register.
2. Load the second data in accumulator.
3. Clear the C register for storing carry.
4. Add the content of B-register to accumulator.
5. Execute DAA instruction.
6. Check for carry. If carry $=1$, go to step 7 or if carry $=0$, go to step 8 .
7. Increment C register to account for carry.
8. Store the sum in memory.
9. Move the carry (content of C register) to accumulator and store in memory.
10. Stop.

FLOWCHART:

MEMORY MACHINE LABEL MNEMONIC LOCATION CODE

8C00H	3A 40	8C		LDA	8C40H	; get first data in accumulator.
8C03H	47			MOV	B, A	; transfer accumulator data to B-register.
8C04H	3A 41	8C		LDA	8C41H	; get second data in A-register.
8C07H	OE 00			MVI	C, 00 H	; clear C register for accounting carry.
8C09H	80			ADD	B	; add the content of B-register to A-register.
8C0AH	27			DAA		; get the sum of BCD data in A- reg.
8C0BH	D2 0E	8C		JNC	L1	; if $\mathrm{CY}=0$, go to $\mathbf{L} 1$.
8COEH	0C			INR	C	; if $\mathrm{CY}=1$, increment C - reg.
8C0FH	3242	8C	L1	STA	8C42H	; store the sum in memory.
8C12H	79			MOV	A, C	; move the carry to A- reg.
8C13H	3243	8C		STA	8C43H	; store the carry in memory.
8C16H76			HLT			he program.

8C40::80
8C41::80
8C42::60
8C43::01

PROGRAM:

Write an assembly language program to subtract BCD numbers of 2 digit BCD data stored in memory 8 C 40 H and 8 C 41 H . store the result in 8 C 42 H .

PROBLEM ANALYSIS:

The 8085 microprocessor will perform only binary subtraction. Hence for BCD subtraction 10's complement subtraction is performed. First the 10 's complement of the subtrahend is obtained and then added to minuend. The DAA instruction is executed to get the result in BCD.

ALGORITHM:

1. Load the subtrahend in A-register and move to B-register.
2. Move 99 to A-register and subtract the content of B-register from A-register.
3. Increment the A-register.
4. Move the content of A-register to B-register.
5. Load the minuend in A-register.
6. Add the content of B-register to a A-register.
7. Execute DAA instruction.
8. Store the result in memory.
9. Stop.

FLOWCHART:

```
start
```


get the subtrahend in A - reg and move to B - reg

,

get the minuend in \mathbf{A} - reg

add the content of B to A and perform DAA

store the result in memory

MEMORY MACHINE LABEL MNEMONIC LOCATION CODE

8 COOH	3A 418 C	LDA	8C41H	; get the subtrahend in to accumulator.
8CO3H	47	MOV	B,A	; move the data into B-register from A-reg.
8CO4H	3E 99	MVI	A,99	; move the 99 to A-reg.
8C06H	90	SUB	B	; subtract the subtrahend from 99.
8C07H	3C	INR	A	; 10's complement of subtrahend.
8C08H	47	MOV	B,A	; store the 10 's complement of subtrahend in B
8CO9H	3 A 408 C	LDA	8C40H	; get the minuend in A-register
8 COCH	80	ADD	B	; Get the BCD sum of minuend and 10 'complemnt of subtrahend.
8CODH	27	DAA		; the sum is the difference between given BCD data.
8COEH	32428 C	STA	8C42H	; store the result in memory.
8C11H	76	HLT		; halt the program.

8C40::80
8C41::60
8C42::20
8C43::00

COMMENT

 COME ; get the subtrahend in to accumulator.; move the data into B-register from A-reg.
; move the 99 to A-reg.
; subtract the subtrahend from 99.
; 10's complement of subtrahend.
; store the 10 's complement of subtrahend in B
; get the minuend in A-register
; Get the BCD sum of minuend and 10 'complemnt of subtrahend.
; the sum is the difference between given BCD data.
; store the result in memory.
; halt the program.

OUTPUT:

EXPERIMENT 15

SORTING OF DATA IN ASCENDING ORDER AND FINDING LARGEST NUMBER IN THE ARRAY

PROGRAM:

Write an assembly language program to sort an array of data in ascending order and find the largest number and display it in the data field. The array is stored in memory starting from 8 C 40 H . The first element of the array gives the count value for the number of elements in the array.

PROBLEM ANALYSIS:

The algorithm for bubble sorting is given below. In bubble sorting of N-data, ($\mathrm{N}-1$) comparisons are carried by taking two consecutive data at a time. After each comparison, the data are rearranged such that smallest among the two is in first memory location and largest in the next memory location. When we perform ($\mathrm{N}-1$) comparisons as mentioned above, for (N 1) times then the array consisting of N -data will be sorted in the ascending order.

ALGORITHM:

1. Load the count value from memory to A-reg. and save it in B-reg.
2. Decrement B-reg. (B is a count for N-1 repetitions)
3. Set H L pair as data address pointer.
4. Set C-register as counter for ($\mathrm{N}-1$) comparisons.
5. Load a data of the array in accumulator using the data address pointer.
6. Increment the H L pair (data address pointer).
7. Compare the data pointed by H L with accumulator.
8. if carry flag is set (if the content of the accumulator is smaller than memory) then go to step 10, otherwise go to next step.
9. Exchange the content of memory pointed by H L and the accumulator.
10. Decrement C-register. if zero flag is reset go to the step 6 otherwise go to next step.
11. Decrement B-register. If zero flag is reset go to step 3 otherwise go to next step.
12. Load the largest value from memory into accumulator.
13. Store the content of accumulator in memory location 8 FF 1 H .
14. Call subroutine to display the content of memory location 8 FF 1 H into the data field.
15. Stop.

FLOWCHART:

ASSEMBLY LANGUAGE PROGRAM:
MEMORY MACHINE LABEL MNEMONIC
LOCATION CODE

8 COOH	3A	40	8C		LDA	8 C 4 OH	; load the count value in A-reg.
8 CO 3 H	47				MOV	B,A	; set counter for ($\mathrm{N}-1$)repetitions of
8CO4H	05				DCR	B	$\mathrm{N}-1$ comparisons.
8 CO 5 H	21	40	8C	L2	LXI	$\mathrm{H}, 8 \mathrm{C} 4 \mathrm{OH}$; set pointer for array.
8 CO 8 H	4E				MOV	C,M	; set counter for ($\mathrm{N}-1$) comparisons.
8 CO 9 H	OD				DCR	C	;
8COAH	23				INX	H	; increment pointer
8COBH	7E			L1	MOV	A,M	; get one data of array in A-reg.
8COCH	23				INX	H	; increment pointer.
8CODH	BE				CMP	M	; compare next data with A-reg.
8COEH	DA	16	8C		JC	L3	; if content of A is less than memory then go to $\mathbf{L} \mathbf{3}$
8 C 11 H	56				MOV	D,M	; if the content of A is greater than
8 C 12 H	77				MOV	M,A	the content of memory then exchange
8 C 13 H	2B				DCX	H	the content of memory pointed by H L
8C14H	72				MOV	M,D	and previous location.
8 C 15 H	23				INX	H	;
8C16H	OD			L3	DCR	C	; decrement C-register.
8C17H	C2	0B	8C		JNZ	L1	; repeat comparisons until C reg. count is zero.
8C1AH	05				DCR	B	; decrement B-register.
8C1BH	C2	05	8C		JNZ	L2	; repeat until B count is zero.
8C1EH	7E				MOV	A,M	; get the largest number into accumulator.
8C1FH	32	F1	8F		STA	8FF1H	; store the content of accumulator in memory location 8 FF 1 H .
8C22H	CD	4C	04		CALL	044CH	; call subroutine to display the content of the memory location 8 FF 1 H in data field.
8C25H	76				HLT		; halt the program.

COMMENT

; load the count value in A-reg.
; set counter for ($\mathrm{N}-1$)repetitions of
N-1 comparisons.
; set pointer for array.
; set counter for ($\mathrm{N}-1$) comparisons.
; increment pointer
; get one data of array in A-reg.
; increment pointer.
; compare next data with A-reg.
; if content of A is less than memory then go to $\mathbf{L} \mathbf{3}$
; if the content of A is greater than the content of memory then exchange the content of memory pointed by H L and previous location.
; decrement C-register.
; repeat comparisons until C reg. count is zero.
; decrement B-register.
; repeat until B count is zero.
; get the largest number into accumulator.
; store the content of accumulator in memory location 8 FF 1 H .
; call subroutine to display the content of the memory location 8 FF1H in data field.
; halt the program.

OUTPUT:

8C40::03 8C43::03
8C41::01 8FF1::03
8C42::02

EXPERIMENT 16
 SORTING OF DATA IN DESCENDING ORDER
 AND FINDING SMALLEST NUMBER IN THE ARRAY

PROGRAM:

Write an assembly language program to sort an array of data in descending order and find the smallest number and display it in the data field. The array is stored in memory starting from 8 C 40 H . The first element of the array gives the count value for the number of elements in the array.

PROBLEM ANALYSIS:

The algorithm for bubble sorting is given below. In bubble sorting of N -data, ($\mathrm{N}-1$) comparisons are carried by taking two consecutive data at a time. After each comparison, the data are rearranged such that largest among the two is in first memory location and smallest in the next memory location. When we perform ($\mathrm{N}-1$) comparisons as mentioned above, for N times then the array consisting of N -data will be sorted in the descending order.

ALGORITHM:

1. Load the count value from memory to A-reg. and save it in B-reg.
2. Decrement B-reg (B is a count for $\mathrm{N}-1$ repetitions).
3. Set H L pair as data address pointer.
4. Set C-register as counter for (N-1) comparisons.
5. Load a data of the array in accumulator using the data address pointer.
6. Increment the H L pair (data address pointer).
7. Compare the data pointed by H L with accumulator.
8. If carry flag is reset (if the content of the accumulator is larger than memory) then go to step 10 , otherwise go to next step.
9. Exchange the content of memory pointed by H L and the accumulator.
10. Decrement C-register. if zero flag is reset go to the step 6 otherwise go to next step.
11. Decrement B-register. If zero flag is reset go to step 3 otherwise go to next step.
12. Load the smallest value from memory into accumulator.
13. Store the content of accumulator in memory location 8 FF 1 H .
14. Call subroutine to display the content of memory location 8 FF 1 H into the
data field.
15. Stop.

FLOWCHART:

ASSEMBLY LANGUAGE PROGRAM:
MEMORY MACHINE LABEL MNEMONIC

COMMENT

 LOCATION CODE| 8 COOH | 3A | 40 | 8C | | LDA | 8C4OH | ; load the count value in A-reg. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8CO3H | 47 | | | | MOV | B,A | ; set counter for ($\mathrm{N}-1$) repetitions of |
| 8CO4H | 05 | | | | DCR | B | $\mathrm{N}-1$ comparisons. |
| 8 CO 5 H | 21 | 40 | 8C | L2 | LXI | $\mathrm{H}, 8 \mathrm{C} 4 \mathrm{OH}$ | ; set pointer for array. |
| 8 CO 8 H | 4E | | | | MOV | C,M | ; set counter for ($\mathrm{N}-1$) comparisons. |
| 8 CO 9 H | OD | | | | DCR | C | |
| 8СОАН | 23 | | | | INX | H | ; increment pointer |
| 8COBH | 7E | | | L1 | MOV | A,M | ; get one data of array in A-reg. |
| 8COCH | 23 | | | | INX | H | ; increment pointer. |
| 8CODH | BE | | | | CMP | M | ; compare next data with A-reg. |
| 8COEH | DA | 16 | 8C | | JNC | L3 | ; if content of A is less than memory then go to $\mathbf{L 3}$ |
| 8 C 11 H | 56 | | | | MOV | D,M | ; if the content of A is greater than the content of memory then exchange the content of memory pointed by HL and previous location. |
| 8 C 12 H | 77 | | | | MOV | M, A | |
| 8 C 13 H | 2B | | | | DCX | H | |
| 8 C 14 H | 72 | | | | MOV | M, D | |
| 8C15H | 23 | | | | INX | H | |
| 8 C 16 H | OD | | | L3 | DCR | C | ; decrement C-register. |
| 8C17H | C2 | 0B | 8C | | JNZ | L1 | ; repeat comparisons until C reg. count is zero. |
| $8 \mathrm{C1AH}$ | 05 | | | | DCR | B | ; decrement B -register. |
| 8 C 1 BH | C2 | 05 | 8C | | JNZ | L2 | ; repeat until B count is zero. |
| 8C1EH | 7E | | | | MOV | A,M | ; get the smallest number into accumulator. |
| 8C1FH | 32 | F1 | 8F | | STA | 8FF1H | ; store the content of accumulator in memory location 8FF1H. |
| 8 C 22 H | CD | 4C | 04 | | CALL | 044CH | ; call subroutine to display the content of the memory location 8 FF 1 H in data field. |
| 8C25H | 76 | | | | HLT | | ; halt the program |

OUTPUT: 8C40::03 8C41::03 8C42::02 8C43:01 8FF1:01
a) To generate square wave at the DAC2 output

Source code:

		ORG 4100	
START	$:$	MVI	A, 00
		OUT	0C8H
		CALL	DELAY
		MVI	A, 0FF
		OUT	0C8H
		CALL	DELAY
		JMP	START
	$:$	MVI	B, 05
DELAY	$:$	MVI	C, 0FF
L1		DCR	C
L2		JNZ	L2
		DCR	B
		JNZ	L1
		RET	

WAVEFORM:

> Square wave

1 one wave cycle $\longrightarrow 1$

CALCULATION:
Amplitude:

Time Period:

RESULT: Hence the Square wave is generated.
b) To generate sine-wave at DAC1 output.

Source code:

START			ORG 4100H	
		:	LXI	H, 4110H
			MVI	C, 46
LOOP	$:$	MOV	A, M	
			OUT	0 COH
			INX	H
			DCR	C
			JNZ	LOOP
			JMP	START
LOOK-UP TABLE : (4110)				
7F	8A		95	A0
AA	B5		BF	C8
D1	D9		E0	E7
ED	F2		F7	FA
FC	FE		FF	FE
FC	FA		F7	F2
ED	E7		E0	D9
D1	C8		BF	B5
AA	A0		95	8A
7F	74		69	5F
53	49		3F	36
2D	25		1D	17
10	0B		07	04
01	00		01	04
07	0B		10	17
1D	25		2D	36
3F	49		53	57
69	74			

WAVEFORM:

CALCULATION: Amplitude:
Time Period:
RESULT: Hence the Sine wave is generated.
c) To generate triangular waveform at DAC2 output

Source code:

		ORG 4100H	
START	$:$	MVI	L, 00
L1	$:$	MOV A, L	
		OUT	0C8H
		INR	L
		JNZ	L1
L2		MVI	L, 0FFH
		MOV A, L	
		OUT	0C8H
		DCR	L
		JNZ	L2
		JMP	START

CALCULATION:
Amplitude:

Time Period:

RESULT: Hence the Triangular wave is generated.
d) To create a saw-tooth wave at the output of DAC1.

Source code:

		ORG	4100H
START	$:$	MVI	A,00H
L1	$:$	OUT	0C0H
		INR	A
		JNZ	L1
		JMP	START

CALCULATION:
Amplitude:
Time Period:
RESULT: Hence the Saw-tooth wave is generated.

EXPERIMENT 18

 STEPPER MOTOR CONTROLLER
a. Stepper motor at different speeds

Aim: To write an ALP for run a stepper motor at different speeds in two directions and observe the actions which takes place.

Apparatus:

1. Micro-85EB $8085 \mu \mathrm{P}$ kit
2. Stepper motor Interface Module
3. Bus card

Source Code:

START:	LXI	H, LOOK UP
	MVI	B,04
REPT:	MOV	A,M
	OUT	OC0H
DELAY	LXI	D, 0303H
	NOP	
	DCX	D
	MOV	A,E
	ORA	D
	JNZ	DELAY
	INX	H
	DCR	B
	JNZ	REPT
	LOOK UP:	
DB:	09	START
		05
	06	$0 A$

Procedure:

1. Enter the above program starting from 4100 h. Connect the stepper motor in portl and execute.
2. The stepper motor can be rotates. Speed can be varied by varying the count at DE pair.
3. Direction can be varied by entering the data in the LOOK UP table in the reverse order.

b. Stepper motor at different angles

Aim: To write an ALP for run a stepper motor for required angle within 360°, which is equivalent to 256 steps.

Apparatus:

1. Micro-85EB $8085 \mu \mathrm{P}$ kit
2. Stepper motor Interface Module
3. Bus card

Source Code:

START:	MVI	C, HEX DATA
	LXI	H, LOOK UP
	MVI	B,04
REPT:	MOV	A,M
	OUT	C0
	DCR	C
	JZ	END
	LXI	D, COUNT
DELAY:	NOP	
	DCX	D
	MOV	A, E
	ORA	D
	JNZ	DELAY
	INX	H
	DCR	B
	JNZ	REPT
	JMP	START
LOOK UP:		
DB :09	05	06 0A
END:	HLT	

Procedure:

1. Enter the above program. Connect the stepper motor in port 1 and execute.
2. By converting the required steps in decimal to hex and entering the hex data at 4101h.
3. The motor rotates for so much steps and then stops.

C. Stepper motor at both directions

Aim: To write an ALP for run stepper motor in both forward and reverse directions with delay.

Apparatus:

1. Micro-85EB $8085 \mu \mathrm{P}$ kit
2. Stepper motor Interface Module
3. Bus card

Source Code:

START:	MVI C,20H	
FORWD:	LXI H, FORLOOK	
	CALL ROTATE	
	DCR C	
	JNZ FORWD	
	CALL STOP	
REVES:	MVI C,20H	
	LXI H,REVLOOK	
	CALL ROTATE	
	DCR C	
	JNZ REVES	
	CALL STOP	
	JMP	START
ROTATE:	MVI	B,04H
REPT:	MOV A,M	
	OUT	C0H
	LXI D,0303H	
LOOP1:	DCX	D
	MOV A,E	
	ORA D	
	JNZ	LOOP1
	INX	H
	DCR B	
	JNZ	REPT
	RET	
STOP:	LXI	D,FFFFH
LOOP2:	DCX	D
	MOV A,E	
	ORA	D
	JNZ	LOOP2
	RET	

FORLOOK

DB	09 H	05 H	06 H	0 AH
REVLOOK				
DB	0 AH	06 H	05 H	09 H
	END			

Procedure:

1. Enter the above program starting from 4100h.
2. Connect the stepper motor in port1 and execute.
3. Observe that the stepper motor runs in forward direction and reverse direction continuously with a delay.

RESULT:

Hence the stepper is rotated in different directions and different angles and different speeds.

EXPERIMENT 19 8279- PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

Aim: To display the rolling message 'HELP US" in the display.

Apparatus:

1. Micro-85EB $8085 \mu \mathrm{P}$ kit
2. 8279 Interface Module (Key board \& Display)
3. Bus card

Equivalent:

CNT	EQU	C2H
DAT	EQU	C0H
POINTER	EQU	412 CH

Source Code:

START:	LXI	H, POINTER
	MVI	D, 0FH
	MVI	A, 10H
	OUT	CNT
	MVI	A, CCH
	OUT	CNT
	MVI	A, 90H
LOP:	OUT	CNT
	MOV	A,M
	OUT	DAT
	CALL	DELAY
	INX	H
	DCR	D
	JNZ	LOP
	JMP	START
	MVI	B, A0H
DELAY:	MVI	C, FFH
LOP1:	DCR	C
LOP2:	JNZ	LOP2
	DCR	B

JNZ LOP1
 RET

POINTER: FF FF FF FF
FF FF FF FF
$98 \quad 68 \quad 7 \mathrm{C} \quad$ C8
1C 29 FF FF

Procedure:

1. Enter the above program starting from 4100 h .
2. The data fetched from address 412 Ch and display in the first digit of the display.
3. The next data is displayed in the second digit of the display.
4. A time delay is given between successive digits for a lively display.

RESULT:

Hence the message HELPUS is displayed.

