
1

SIR C.R.REDDY COLLEGE OF ENGINEERING

ELURU – 534007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DIGITAL ELECTRONICS & MICROPROCESSOR

LAB MANUAL

2/4 CSE: II- SEMESTER

Faculty:

 B.Homer Benny (Section-‘A’)

 S.K.Chaitanya.R (Section-‘B’)

 S.Jaya Prakash (Section-‘C’)

2

DIGITAL ELECTRONICS & MICROPROCESSOR LAB

2/4 CSE: II - SEMESTER

INDEX

S.No Name of the Experiment
Page

Number

1. Study of basic gates. 3

2. Realization of Gates by using Universal Building Blocks. 5

3. Realization of Flip-Flops. 9

4. 4-bit Ripple counter. 11

5. 4-bit Shift Register. 14

6. 4-bit & 8-bit Binary Adders 17

7. Addition of two 8-bit numbers 20

8. Subtraction of two 8 - bit numbers 23

9. Multiplication of two 8-bit numbers 26

10. Division of two 8-bit numbers 29

11. Addition of two 16-bit numbers 32

12. Subtraction of two 16 - bit numbers 35

13. BCD addition 38

14. BCD subtraction 42

15. Sorting of data in Ascending order and finding Largest

Number in the array

45

16. Sorting of data in Descending order and finding Smallest

Number in the array

49

17. DAC/ADC interface 53

18. Stepper motor controller 57

19. 8279- programmable keyboard/display interface 61

3

EXPERIMENT: 1 STUDY OF BASIC GATES

AIM: To study and verify the truth table of logic gates

LEARNING OBJECTIVE:

• Identify various ICs and their specification.

COMPONENTS REQUIRED:

• Logic gates (IC) trainer kit.
• Connecting patch chords.
• IC 7400, IC 7408, IC 7432, IC 7406, IC 7402, IC 7404, IC 7486

THEORY:

The basic logic gates are the building blocks of more complex logic circuits. These logic

gates perform the basic Boolean functions, such as AND, OR, NAND, NOR, Inversion, Exclusive-

OR, Exclusive-NOR. Fig. below shows the circuit symbol, Boolean function, and truth. It is seen

from the Fig that each gate has one or two binary inputs, A and B, and one binary output, C. The

small circle on the output of the circuit symbols designates the logic complement. The AND, OR,

NAND, and NOR gates can be extended to have more than two inputs. A gate can be extended to

have multiple inputs if the binary operation it represents is commutative and associative.

These basic logic gates are implemented as small-scale integrated circuits (SSICs) or as part

of more complex medium scale (MSI) or very large-scale (VLSI) integrated circuits. Digital IC gates

are classified not only by their logic operation, but also the specific logic-circuit family to which they

belong. Each logic family has its own basic electronic circuit upon which more complex digital

circuits and functions are developed. The following logic families are the most frequently used.

TTL Transistor-transistor logic

ECL Emitter-coupled logic

MOS Metal-oxide semiconductor

CMOS Complementary metal-oxide semiconductor

TTL and ECL are based upon bipolar transistors. TTL has a well established popularity among

logic families. ECL is used only in systems requiring high-speed operation. MOS and CMOS, are based

on field effect transistors. They are widely used in large scale integrated circuits because of their high

4

component density and relatively low power consumption. CMOS logic consumes far less power than

MOS logic. There are various commercial integrated circuit chips available. TTL ICs are usually

distinguished by numerical designation as the 5400 and 7400 series.

PROCEDURE:

1. Check the components for their working.

2. Insert the appropriate IC into the IC base.

3. Make connections as shown in the circuit diagram.

4. Provide the input data via the input switches and observe the output on output LEDs

5

EXPERIMENT: 2 REALIZATION OF GATES BY USING UNIVERSAL

 BUILDING BLOCKS

Aim : To Realize AND,OR,NOT,EX-OR and EX-NOR gates by using only

 NAND and only NOR gates

Apparatus and Components :

Procedure :

 Using NAND Gates:

 1. Derive truth table

 2. Realize expression of AND gate by using number of NAND gates

 3. Connect the circuit

 4. Verify the truth table

 5. Repeat above steps for OR, NOT, EX-OR and EX-NOR gates

 Using NOR Gates:

 1. Derive truth table

 2. Realize expression of AND gate by using number of NOR gates

 3. Connect the circuit

 4. Verify the truth table

 5. Repeat above steps for OR, NOT, EX-OR and EX-NOR gates

Result :

 Basic gates are realized by using Universal building blocks.

S.No Name Quantity

1. Digital trainer 1

2. IC 7400 2

3. IC 7402 2

6

Circuit Diagram :

Realization of AND gate using only NAND gates

Realization of OR gate using only NAND gates

Realization of NOT gate using only NAND gates

Realization of EX-OR gate using only NAND gates

7

Realization of EX-NOR gate using only NAND gates

Realization of AND gate using only NOR gates

Realization of OR gate using only NOR gates

Realization of NOT gate using only NOR gates

8

Realization of EX-OR gate using only NOR gates

Realization of EX-NOR gate using only NOR gates

9

EXPERIMENT: 3 REALIZATION OF FLIPFLOPS

Aim : To Construct different types of flip-flops and verify the truth tables.

Apparatus and Components :

Procedure :

1. RS flip-flop is wired as shown in fig and input signals are fed from logic input

switches and the output is monitored on the logic level output condition indicators and

the truth table is verified.

2. JK flip-flop is wired as shown in fig and the input signals are fed from logic input

switches and the output is monitored on the logic level output condition indicators and

the truth table is verified.

 3. Verify the truth tables of D flip flop and T flip flop in the same procedure.

Result :

 Truth tables of RS, JK, D and T flip-flops are verified.

Circuit Diagram:

Realization of RS flip- flop using NAND gates

S.No Name Quantity

1. Digital trainer 1

2. IC 7476 1

3. IC 7400 1

4. IC 7404 1

Clk S R
Theoretical Practical

Qn+1 Qn+1

0 X X Qn

1 0 0 Qn

1 0 1 0

1 1 0 1

1 1 1 ?

10

JK flip- flop

T flip- flop

D flip- flop

Clk PR CR J K
Theoretical Practical

Qn+1 Qn+1

0 0 1 X X 1

0 1 0 X X 0

↓ 1 1 0 0 Qn

↓ 1 1 0 1 0

↓ 1 1 1 0 1

↓ 1 1 1 1 Qn

Clk PR CR T
Theoretical Practical

Qn+1 Qn+1

0 0 1 X 1

0 1 0 X 0

↓ 1 1 0 Qn

↓ 1 1 1 Qn

Clk PR CR D
Theoretical Practical

Qn+1 Qn+1

0 0 1 X 1

0 1 0 X 0

↓ 1 1 0 0

↓ 1 1 1 1

11

EXPERIMENT: 4 4-BIT RIPPLE COUNTER

Aim : To design Asynchronous (Ripple) counter and verify the truth table.

Apparatus and Components :

Procedure :

 1. Ripple counter circuit is connected as shown in the circuit diagram.

 2. 1Hz clock pulse is applied to the pin shown.

 3. The outputs QoQ1Q2Q3 are observed and verify the truth table.

Result :

 Asynchronous counter is constructed and truth table is verified.

S.No Name Quantity

1. Digital trainer 1

2. IC 7476 2

12

4 – bit Ripple Counter Truth Table.

Clock pulses Q3 Q2 Q1 Q0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

16 0 0 0 0

13

Circuit Diagram:

14

EXPERIMENT: 5 4 - BIT SHIFT REGISTER

Aim : To design 4-bit shift register and verify the operation of serial loading

 and parallel loading,

Apparatus and Components :

Procedure :

 1. Connect the circuit as shown in fig.

 2. For serial loading keep load low.

 3. First clear all the flip-flops by supplying clear = low

 4. First enter serial input one by one, through clock pulse; we will get

 Parallel output at Q3Q2Q1Qo . After applying 4 clock pulses we will

 get serial output.

 5. For parallel input keep load = high

 6. Directly apply parallel input to Pr3,Pr2,Pr1,Pr0; we will get parallel

 output at Q3Q2Q1Qo. After applying 4 clock pulses we will get serial

 output.

Result : The operation of 4-bit shift register for serial loading and parallel loading is observed

S.No Name Quantity

1. Digital trainer 1

2. IC 7474 2

3. IC 7400 1

15

4 – bit Shift Register Truth Table :

Serial Input  Serial Output / Parallel Output: The input is 1010.

Load Clk Clear Serial i/p
Parallel output

Serial output Qo

Q3 Q2 Q1 Q0

0 X 0 X 0 0 0 0 0

0 1 1 0 0 0 0 0 0

0 2 1 1 1 0 0 0 0

0 3 1 0 0 1 0 0 0

0 4 1 1 1 0 1 0 0

0 5 1 0 0 1 0 1 1

0 6 1 0 0 0 1 0 0

0 7 1 0 0 0 0 1 1

Parallel input  Parallel Output / Serial Output : The input is 1010.

Load Clk Clear
Parallel i/p Parallel output Serial

output

Qo
Pr3 Pr2 Pr1 Pr0 Q3 Q2 Q1 Q0

0 X 0 X X X X 0 0 0 0 0

1 X 1 1 0 1 0 1 0 1 0 0

0 1 1 X X X X 0 1 0 1 1

0 2 1 X X X X 0 0 1 0 0

0 3 1 X X X X 0 0 0 1 1

16

Circuit Diagram:

17

EXPERIMENT: 6 4-BIT & 8-BIT BINARY ADDERS

Aim : To construct and evaluate 4 bit and 8 bit adders

Apparatus and Components :

Procedure :

Adders:

 1. The circuit is connected as shown in fig.

 2. Apply two 4 bit positive numbers A and B, observe the output.

 3. Verify the truth table.

 4. Repeat above steps for 8 bit adders also.

Result :

 The truth tables for 4 bit & 8 bit full adders are verified.

Truth Table :

4 – bit Binary Adder :

A3 A2 A1 A0 B3 B2 B1 B0 Cin S3 S2 S1 S0 Cout

S.No Name Quantity

1. Digital Trainer 1

2. IC 7483 2

3. IC 7486 2

4. IC 7404 1

18

8 – bit Binary Adder :

A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 Cin S7 S6 S5 S4 S3 S2 S1 S0 Cout

Circuit Diagram:

19

20

EXPERIMENT: 7 ADDITION OF TWO 8-BIT NUMBERS

PROGRAM:

Write an assembly language program to add two binary numbers of 8-bit data stored in memory

locations 8C40H and 8C41H and store the result in 8C42H and 8C43H.

PROBLEM ANALYSIS:

To perform addition in 8085 one of the data should be in accumulator and another data can be in

any one of the general purpose register or in memory. After addition the sum will be in

accumulator. The sum of two 8-bit data can be either 8-bit (sum only) or 9 bits (sum and carry).

The accumulator can be accommodated only the sum and if there is a carry, the 8085 will

indicate by setting carry flag. Hence one of the register is used to account for carry.

ALGORITHM:

1. Load the address of the data in H L reg. pair.

2. Clear C register.

3. Move the first data from memory to accumulator.

4. Increment the H L register pair (memory pointer).

5. Add the content as memory addressed by H L with accumulator.

6. Check for carry. If carry=1, go to step 7 or if carry =0, go to step 8.

7. Increment the C register.

8. Increment the H L pair and store the sum.

9. Increment the H L pair and store the carry.

10. Stop.

21

FLOWCHART:

22

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC COMMENT

LOCATION CODE

8C00H 21 40 8C LXI H, 8C40H // Set pointer for data.

8C03H 0E 00 MVI C,00H // Clear C Reg. to account for

 carry

8C05H 7E MOV A,M // Get first data in A reg.

8C06H 23 INX H // Increment the pointer for

 second data

8C07H 86 ADD M // Add second data which is stored in

 memory to A. sum in A Reg.

8C08H D2 0C 8C JNC L1 // if CY=0, go to L1

8C0BH 0C INR C // if CY=1 increment register C

8C0CH 23 L1: INX H // increment the pointer to store the

 sum in Memory

8C0DH 77 MOV M,A // Store the sum in memory.

8C0EH 23 INX H // Increment the pointer to store the

 carry in Memory.

8C0FH 71 MOV M,C // Store the carry in memory

8C10H 76 HLT // Halt the program

OUTPUT:

8C40::02

8C41::03

8C42::05

8C43::00

23

EXPERIMENT: 8 SUBTRACTION OF TWO 8 - BIT NUMBERS

PROGRAM:

Write an assembly language program to subtract two numbers of 8-bit data stored in memory

locations 8C40H and 8C41H. Store the magnitude of the result in 8C42H. If the result is positive

store 00 in 8C43H or if the result is negative store 01in 8C43H.

PROGRAM ANALYSIS:

To perform subtraction in 8085 one of the data should be in accumulator and another data can be

in anyone of the general purpose register or in memory. After subtraction the result will be in

accumulator. The 8085 performs 2’s complement subtraction and then complements the carry.

Therefore if the result is negative then carry flag is set and accumulator will have 2’s

complement of the result. Hence one of the register is used to account for sign of the result. To

get the magnitude of the result again take 2’s complement of the result.

ALGORITHM:

1. Load the subtrahend (the data to be subtracted) from memory to accumulator and move it

to B- register.

2. Load the minuend from memory to accumulator.

3. Clear C register to account for sign of the result.

4. Subtract the content of B-register from the content of the accumulator.

5. Check for carry . if carry =1 go to step 6 or if carry=0 , go to step 7.

6. Increment C register , complement the accumulator and add 01H

7. store the difference in memory.

8. Move the content of C register (sign bit) to accumulator and store in memory.

9. Stop.

24

FLOWCHART:

25

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC COMMENT

LOCATION CODE

8C00H 3A 41 8C LDA 8C41H ; get subtrahend from 8C41H and

 store in Acc

8C03H 47 MOV B,A ; move the content of the

 Acc. into B reg.

8C04H 3A 40 8C LDA 8C40H ; get the minuend in A - reg

8C07H 0E 00 MVI C,00H ; clear C register , to account for sign.

8C09H 90 SUB B ; get the difference in A register

8C0AH D2 11 8C JNC L1 ; if CY = 0 , then go to L1

8C0DH 0C INR C ; if CY = 1 then increment C register.

8C0EH 2F CMA ; get 2’s complement of difference

 in A-reg

8C0FH C6 01 ADI 01 ; increment A register

8C11H 32 42 8C L1 STA 8C42H ; store the result in memory

8C14H 79 MOV A,C ; move the barrow to accumulator

8C15H 32 43 8C STA 8C43H ; store the sign bit in memory.

8C18H 76 HLT ; halt the program

OUTPUT:

8C40::02

8C41::03

8C42::01

8C43::01

26

EXPERIMENT: 9 MULTIPLICATION OF TWO 8-BIT NUMBERS

PROBLEM:

Write an assembly language program to multiply two numbers of 8–bit data stored in memory

8C4OH and 8C41H. Store the product in 8C42H and 8C43H.

PROBLEM ANALYSIS:

In this method multiplication is performed as repeated additions. The initial value of sum is

assumed as zero. One of the data is used as count (N) . For number of additions to be performed.

Another data is added to the sum N times where N is the count. The result of the product of two

8-bit data may be 16-bit data. Hence another register is used to account for over flow.

ALGORITHM:

1. Load the address of the first data in H L pair.

2. Clear C register for over flow.

3. Clear the accumulator.

4. Move the first data to B register.

5. Increment the pointer.

6. Move the second data to D register from memory.

7. Add the content of D-register to accumulator.

8. Check for carry. If CY=1 go to step 9 or if CY=0 go to step10.

9. Increment C register.

10. Decrement B register.

11. Check whether count has reached zero. If ZF=0 repeat steps 7 to 11. if ZF=1 got to next

step.

12. Increment the pointer and store the LSB of the product in memory.

13. Increment the pointer and store the MSB of the product in memory.

14. Stop.

27

FLOWCHART:

28

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC COMMENT

LOCATION CODE

8COOH 21 40 8C LXI H, 8C40H ; set pointer for data.

8CO3H 0E 00 MVI C, OOH ; clear C register to account

 for over flow

8CO5H AF XRA A ; clear accumulator

 (initial sum=0).

8CO6H 46 MOV B,M ; get first data in B register.

8C07H 23 INX H ; increment pointer.

8CO8H 56 MOV D,M ; get second data in D register.

8CO9H 82 L1 ADD D ; add the content D register to

 accumulator

8COAH 02 0E 8C JNC L2 ; if CY=0, go to L2

8CODH 0C INR C ; if CY=1 increment C register

8COEH 05 L2 DCR B ; if CY=0 decrement B register

8COFH C2 09 8C JNZ L1 ; repeat addition until ZF=1.

8C12H 23 INX H ; Increment HL Reg pair

8C13H 77 MOV M,A ; store LSB of product

 in memory.

8C14H 23 INX H ; Increment HL Reg pair

8C15H 71 MOV M,C ; store MSB of product in

 memory.

8C16H 76 HLT ; halt the program.

OUTPUT:

8C40::02

8C41::03

8C42::06

8C43::00

29

EXPERIMENT: 10 DIVISION OF TWO 8-BIT NUMBERS

PROBLEM:

Write an assembly language program to divide two numbers of 8 –bit data.

ALGORITHM:

1. Load Divisor and Dividend

2. Subtract divisor from dividend

3. Count the number of times of subtraction which equals the quotient

4. Stop subtraction when the dividend is less than the divisor .The dividend now

becomes the remainder. Otherwise go to step 2.

5. Stop the program execution.

30

FLOWCHART:

 NO

 YES

B  00

M  A-M

 [B]  [B] +1

IS A<0

 A  A+ M

 B  B-1

[HL] 4500

 A  M

[HL]  [HL]+1

START

STOP

[HL] [HL]+1

[M] [A]

[M] [B]

[HL] [HL]+1

31

ASSEMBLY LANGUAGE PROGRAM:

ADDRESS OPCODE LABEL MNEM

ONICS

OPERA

ND

COMMENTS

4100 06 MVI B,00 Clear B reg for quotient

4101 00

4102 21 LXI H,4500 Initialize HL reg. to

4500H 4103 00

4104 45

4105 7E MOV A,M Transfer dividend to acc.

4106 23 INX H Increment HL reg. to point

next mem. Location.

4107 96 LOOP SUB M Subtract divisor from dividend

4108 04 INR B Increment B reg

4109 D2 JNC LOOP Jump to LOOP if result does

not yield borrow 410A 07

410B 41

410C 86 ADD M Add divisor to acc.

410D 05 DCR B Decrement B reg

410E 23 INX H Increment HL reg. to point

next mem. Location.

410F 77 MOV M,A Transfer the remainder from

acc. to memory.

4110 23 INX H Increment HL reg. to point

next mem. Location.

4111 70 MOV M,B Transfer the quotient from B

reg. to memory.

4112 76 HLT Stop the program

OUTPUT:

4500::06

4501::03

4502::00

4503::02

32

EXPERIMENT: 11 16-BIT ADDITION

PROGRAM:

Write an assembly language program to add two numbers of 16-bit data stored in memory

8C40H, 8C41H and 8C42H, 8C43H. The data are stored such that LSB first and then MSB and

store the result from 8C44H to 8C46H

PROBLEM ANALYSIS:

 The 16-bit addition can be performed in 8085 microprocessor either in terms of 8-bit addition

or by using DAD instruction. In addition using DAD instruction, one of the data should be in H

L pair and another data can be another register pair. After addition the sum will be in H L

register pair. If there is a carry in addition then that is indicated by setting carry flag. Hence

one the register is used to account for carry.

ALGORITHM:

1 load the first data in H L register pair.

2. Move the first data to D E register pair.

3. Load the second data in H L register pair.

4. Clear A register for carry.

5. Add the content of D E pair to H L pair.

6. Check for carry. If carry =1, go to step 7 or if carry=0 go to step 8.

7. Increment carry register (A) to account for carry.

8. Store the sum and carry in memory.

9. Stop.

33

FLOWCHART:

34

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC COMMENT

LOCATION CODE

8C00H 2A 40 8C LHLD 8C40H ; get first data in HL reg. pair.

8C03H EB XCHG ; store first data in DE reg. pair

8C04H 2A 42 8C LHLD 8C42H ; get second data in HL reg. pair

8C07H AF XRA A ; clear A register for carry

8C08H 19 DAD D ; get the sum in HL pair.

8C09H D2 0D 8C JNC L1 ; if CY=0 go to L1

8C0CH 3C INR A ; if CY=1, increment A reg.

8C0DH 22 44 8C L1 SHLD 8C44H ; store the sum in memory.

8C10H 32 46 8C STA 8C46H ; store the carry in memory.

8C13H 76 HLT ; halt the program

OUTPUT:

8C40::02

8C41::03

8C42::05

8C43::00

8C44::07

8C45::03

8C46::00

35

EXPERIMENT: 12 16-BIT SUBTRACTION

PROGRAM:

Write an assembly language program to subtract two numbers of 16-bit data stored in memory

from 8C40H to 8C43H. The data are stored such that LSB first and then MSB. Store the result in

8C44H and 8C45H.

PROBLEM ANALYSIS:

The 16-bit subtraction is performed in terms of 8-bit subtraction. First LSB’s of the data are

subtracted and the result is stored in memory. Then MSB’s of the data are subtracted along with

borrow in the previous subtraction and the result is stored in memory.

ALGORITHM:

1. Load the low byte of subtrahend in accumulator from memory and move is to B-register.

2. Load the low byte of minuend in accumulator from memory.

3. Subtract the content of B-register from the content of accumulator.

4. Store the low byte of result in memory.

5. Load the high byte of subtrahend in accumulator from memory and move it to B-register.

6. Load the high byte of minuend in accumulator from memory.

7. Subtract the content of B-register and the carry from the content of accumulator.

8. Store high byte of result in memory.

9. Stop the program.

36

FLOWCHART:

37

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE MNEMONIC COMMENT

LOCATION CODE

8C00H 3A 42 8C LDA 8C42H ; get the LSB of subtrahend from

 8C42H and store in Acc

8C03H 47 MOV B, A ; Move the LSB of subtrahend

 to B-register

8C04H 3A 40 8C LDA 8C40H ; get the LSB of minuend in

 A-register

8C07H 90 SUB B ; get the difference of LSB’s in

 A-register

8C08H 32 44 8C STA 8C44H ; store the result in memory.

8C0BH 3A 43 8C LDA 8C43H ; get the MSB of subtrahend from

 8C43H and store in Acc

8C0EH 47 MOV B, A ; Move the MSB of subtrahend to

 B-register.

8C0FH 3A 41 8C LDA 8C41H ; get the MSB of minuend in

 A-register.

8C12H 98 SBB B ; get the difference of MSB’s in

 A-register.

8C13H 32 45 8C STA 8C45H ; store the result.

8C16H 76 HLT ; halt the program

OUTPUT:

8C40::05

8C41::03

8C42::02

8C43::01

8C44::03

8C45::02

8C46::00

38

EXPERIMENT: 13 TWO DIGIT BCD ADDITION

PROGRAM:

 Write an assembly language program to add two numbers of two digit (single precession) BCD

data stored memory locations 8C40H and 8C41H. Store the result in 8C42H and 8C43H.

PROBLEM ANALYSIS:

 The 8085 microprocessor will perform only binary addition. Hence for BCD addition, the binary

addition of BCD data is performed and then the sum is corrected to get result in BCD. After

binary addition the following correction should be made to get the result in BCD.

1. if the sum of lower nibble exceeds 9 or if there is an auxiliary carry then 06 is added

to lower nibble.

2. if the sum of upper nibble exceeds 9 or if there is carry then 06 is added to upper

nibble.

The above correction is taken care by DAA instruction. Therefore after binary addition execute

DAA instruction to do the above correction in the sum.

ALGORITHM:

1. Load the first data in accumulator and move it to B-register.

2. Load the second data in accumulator.

3. Clear the C register for storing carry.

4. Add the content of B-register to accumulator.

5. Execute DAA instruction.

6. Check for carry. If carry=1, go to step 7 or if carry=0, go to step 8.

7. Increment C register to account for carry.

8. Store the sum in memory.

9. Move the carry (content of C register) to accumulator and store in memory.

39

10. Stop.

40

FLOWCHART:

41

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC COMMENT

LOCATION CODE

8C00H 3A 40 8C LDA 8C40H ; get first data in accumulator.

8C03H 47 MOV B, A ; transfer accumulator data

 to B-register.

8C04H 3A 41 8C LDA 8C41H ; get second data in A-register.

8C07H 0E 00 MVI C, 00H ; clear C register for accounting

 carry.

8C09H 80 ADD B ; add the content of B-register to

 A-register.

8C0AH 27 DAA ; get the sum of BCD data in

 A- reg.

8C0BH D2 0E 8C JNC L1 ; if CY=0, go to L1.

8COEH 0C INR C ; if CY=1, increment C- reg.

8C0FH 32 42 8C L1 STA 8C42H ; store the sum in memory.

8C12H 79 MOV A, C ; move the carry to A- reg.

8C13H 32 43 8C STA 8C43H ; store the carry in memory.

8C16H 76 HLT ; halt the program.

OUTPUT:

8C40::80

8C41::80

8C42::60

8C43::01

42

EXPERIMENT 14 TWO DIGIT BCD SUBTRACTION

PROGRAM:

Write an assembly language program to subtract BCD numbers of 2 digit BCD data stored in

memory 8C40H and 8C41H. store the result in 8C42H.

PROBLEM ANALYSIS:

The 8085 microprocessor will perform only binary subtraction. Hence for BCD subtraction 10’s

complement subtraction is performed. First the 10’s complement of the subtrahend is obtained

and then added to minuend. The DAA instruction is executed to get the result in BCD.

ALGORITHM:

1. Load the subtrahend in A-register and move to B-register.

2. Move 99 to A-register and subtract the content of B-register from A-register.

3. Increment the A-register.

4. Move the content of A-register to B-register.

5. Load the minuend in A-register.

6. Add the content of B-register to a A-register.

7. Execute DAA instruction.

8. Store the result in memory.

9. Stop.

43

FLOWCHART:

44

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC COMMENT

LOCATION CODE

8COOH 3A 41 8C LDA 8C41H ; get the subtrahend in to

 accumulator.

8CO3H 47 MOV B,A ; move the data into B-register from

 A-reg.

8CO4H 3E 99 MVI A,99 ; move the 99 to A-reg.

8C06H 90 SUB B ; subtract the subtrahend from 99.

8C07H 3C INR A ; 10’s complement of subtrahend.

8C08H 47 MOV B,A ; store the 10’s complement

 of subtrahend in B

8CO9H 3A 40 8C LDA 8C40H ; get the minuend in A-register

8COCH 80 ADD B ; Get the BCD sum of minuend and

 10’complemnt of subtrahend.

8CODH 27 DAA ; the sum is the difference

 between given BCD data.

8COEH 32 42 8C STA 8C42H ; store the result in memory.

8C11H 76 HLT ; halt the program.

OUTPUT:

8C40::80

8C41::60

8C42::20

8C43::00

45

EXPERIMENT 15 SORTING OF DATA IN ASCENDING ORDER AND

 FINDING LARGEST NUMBER IN THE ARRAY

PROGRAM:

Write an assembly language program to sort an array of data in ascending order and find the

largest number and display it in the data field. The array is stored in memory starting from

8C40H. The first element of the array gives the count value for the number of elements in the

array.

PROBLEM ANALYSIS:

The algorithm for bubble sorting is given below. In bubble sorting of N-data,

(N-1) comparisons are carried by taking two consecutive data at a time. After each comparison,

the data are rearranged such that smallest among the two is in first memory location and largest

in the next memory location. When we perform (N-1) comparisons as mentioned above, for (N-

1) times then the array consisting of N-data will be sorted in the ascending order.

ALGORITHM:

1. Load the count value from memory to A-reg. and save it in B-reg.

2. Decrement B-reg . (B is a count for N-1 repetitions)

3. Set H L pair as data address pointer.

4. Set C-register as counter for (N-1) comparisons.

5. Load a data of the array in accumulator using the data address pointer.

6. Increment the H L pair (data address pointer).

7. Compare the data pointed by H L with accumulator.

8. if carry flag is set (if the content of the accumulator is smaller than memory) then go to

step 10, otherwise go to next step.

9. Exchange the content of memory pointed by H L and the accumulator.

10. Decrement C-register. if zero flag is reset go to the step 6 otherwise go to next step.

11. Decrement B-register. If zero flag is reset go to step 3 otherwise go to next step.

12. Load the largest value from memory into accumulator.

13. Store the content of accumulator in memory location 8FF1H.

14. Call subroutine to display the content of memory location 8FF1H into the data field.

46

15. Stop.

47

FLOWCHART:

48

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC COMMENT

LOCATION CODE

8COOH 3A 40 8C LDA 8C4OH ; load the count value in A-reg.

8CO3H 47 MOV B,A ; set counter for (N-1)repetitions of

8CO4H 05 DCR B N-1 comparisons.

8CO5H 21 40 8C L2 LXI H,8C4OH ; set pointer for array.

8CO8H 4E MOV C,M ; set counter for (N-1) comparisons.

8CO9H OD DCR C ;

8COAH 23 INX H ; increment pointer

8COBH 7E L1 MOV A,M ; get one data of array in A-reg.

8COCH 23 INX H ; increment pointer.

8CODH BE CMP M ; compare next data with A-reg.

8COEH DA 16 8C JC L3 ; if content of A is less than

 memory then go to L3

8C11H 56 MOV D,M ; if the content of A is greater than

8C12H 77 MOV M,A the content of memory then exchange

8C13H 2B DCX H the content of memory pointed by H L

8C14H 72 MOV M,D and previous location.

8C15H 23 INX H ;

8C16H OD L3 DCR C ; decrement C-register.

8C17H C2 0B 8C JNZ L1 ; repeat comparisons until C reg.

 count is zero.

8C1AH 05 DCR B ; decrement B-register.

8C1BH C2 05 8C JNZ L2 ; repeat until B count is zero.

8C1EH 7E MOV A,M ; get the largest number into

 accumulator.

8C1FH 32 F1 8F STA 8FF1H ; store the content of accumulator

 in memory location 8FF1H.

8C22H CD 4C 04 CALL 044CH ; call subroutine to display the

 content of the memory location

 8FF1H in data field.

8C25H 76 HLT ; halt the program.

OUTPUT:

8C40::03 8C43::03

8C41::01 8FF1::03

8C42::02

49

EXPERIMENT 16 SORTING OF DATA IN DESCENDING ORDER

 AND FINDING SMALLEST NUMBER IN THE ARRAY

PROGRAM:

Write an assembly language program to sort an array of data in descending order and find the

smallest number and display it in the data field. The array is stored in memory starting from

8C40H. The first element of the array gives the count value for the number of elements in the

array.

PROBLEM ANALYSIS:

The algorithm for bubble sorting is given below. In bubble sorting of N-data , (N-1) comparisons

are carried by taking two consecutive data at a time. After each comparison, the data are

rearranged such that largest among the two is in first memory location and smallest in the next

memory location. When we perform (N-1) comparisons as mentioned above, for N times then

the array consisting of N-data will be sorted in the descending order.

ALGORITHM:

1. Load the count value from memory to A-reg. and save it in B-reg.

2. Decrement B-reg (B is a count for N-1 repetitions).

3. Set H L pair as data address pointer.

4. Set C-register as counter for (N-1) comparisons.

5. Load a data of the array in accumulator using the data address pointer.

6. Increment the H L pair (data address pointer).

7. Compare the data pointed by H L with accumulator.

8. If carry flag is reset (if the content of the accumulator is larger than memory) then go to

step 10, otherwise go to next step.

9. Exchange the content of memory pointed by H L and the accumulator.

10. Decrement C-register. if zero flag is reset go to the step 6 otherwise go to next step.

11. Decrement B-register. If zero flag is reset go to step 3 otherwise go to next step.

12. Load the smallest value from memory into accumulator.

13. Store the content of accumulator in memory location 8FF1H.

14. Call subroutine to display the content of memory location 8FF1H into the

50

 data field.

15. Stop.

51

FLOWCHART:

52

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC COMMENT

LOCATION CODE

8COOH 3A 40 8C LDA 8C4OH ; load the count value in

 A-reg.

8CO3H 47 MOV B,A ; set counter for

 (N-1) repetitions of

8CO4H 05 DCR B N-1 comparisons.

8CO5H 21 40 8C L2 LXI H,8C4OH ; set pointer for array.

8CO8H 4E MOV C,M ; set counter for

 (N-1) comparisons.

8CO9H OD DCR C ;

8COAH 23 INX H ; increment pointer

8COBH 7E L1 MOV A,M ; get one data of array in

 A-reg.

8COCH 23 INX H ; increment pointer.

8CODH BE CMP M ; compare next data with

 A-reg.

8COEH DA 16 8C JNC L3 ; if content of A is less than

 memory then go to L3

8C11H 56 MOV D,M ; if the content of A is

 greater than the content of

 memory then exchange the

 content of memory pointed

 by H L and previous location.

8C12H 77 MOV M, A

8C13H 2B DCX H

8C14H 72 MOV M, D

8C15H 23 INX H

8C16H OD L3 DCR C ; decrement C-register.

8C17H C2 0B 8C JNZ L1 ; repeat comparisons until

 C reg. count is zero.

8C1AH 05 DCR B ; decrement B -register.

8C1BH C2 05 8C JNZ L2 ; repeat until B count is zero.

8C1EH 7E MOV A,M ; get the smallest number

 into accumulator.

8C1FH 32 F1 8F STA 8FF1H ; store the content of

 accumulator in memory

 location 8FF1H.

8C22H CD 4C 04 CALL 044CH ; call subroutine to display the

 content of the memory

 location 8FF1H in data field.

8C25H 76 HLT ; halt the program

OUTPUT: 8C40::03 8C41::03 8C42::02 8C43:01 8FF1:01

53

EXPERIMENT 17 DIGITAL TO ANALOG CONVERSION

a) To generate square wave at the DAC2 output

Source code:

ORG 4100

START : MVI A, 00

 OUT 0C8H

 CALL DELAY

 MVI A, 0FF

 OUT 0C8H

 CALL DELAY

 JMP START

DELAY : MVI B, 05

L1 : MVI C, 0FF

L2 : DCR C

 JNZ L2

 DCR B

 JNZ L1

 RET

CALCULATION:

Amplitude:

Time Period:

RESULT: Hence the Square wave is generated.

54

b) To generate sine-wave at DAC1 output.

Source code:

ORG 4100H

START : LXI H, 4110H

 MVI C, 46

LOOP : MOV A, M

 OUT 0C0H

 INX H

 DCR C

 JNZ LOOP

 JMP START

LOOK-UP TABLE : (4110)

7F 8A 95 A0

AA B5 BF C8

D1 D9 E0 E7

ED F2 F7 FA

FC FE FF FE

FC FA F7 F2

ED E7 E0 D9

D1 C8 BF B5

AA A0 95 8A

7F 74 69 5F

53 49 3F 36

2D 25 1D 17

10 0B 07 04

01 00 01 04

07 0B 10 17

1D 25 2D 36

3F 49 53 57

69 74

CALCULATION: Amplitude: Time Period:

RESULT: Hence the Sine wave is generated.

55

c) To generate triangular waveform at DAC2 output

Source code:

 ORG 4100H

START : MVI L, 00

L1 : MOV A, L

 OUT 0C8H

 INR L

 JNZ L1

 MVI L, 0FFH

L2 : MOV A, L

 OUT 0C8H

 DCR L

 JNZ L2

 JMP START

CALCULATION:

Amplitude:

Time Period:

RESULT: Hence the Triangular wave is generated.

56

d) To create a saw-tooth wave at the output of DAC1.

Source code:

 ORG 4100H

START : MVI A, 00H

L1 : OUT 0C0H

 INR A

 JNZ L1

 JMP START

CALCULATION:

Amplitude:

Time Period:

RESULT: Hence the Saw-tooth wave is generated.

57

EXPERIMENT 18 STEPPER MOTOR CONTROLLER

a. Stepper motor at different speeds

Aim: To write an ALP for run a stepper motor at different speeds in two directions and observe

the actions which takes place.

Apparatus:

 1. Micro-85EB 8085 µP kit

 2. Stepper motor Interface Module

 3. Bus card

Source Code:

 START: LXI H, LOOK UP

MVI B,04

REPT: MOV A,M

OUT 0C0H

LXI D, 0303H

DELAY NOP

DCX D

MOV A,E

ORA D

JNZ DELAY

INX H

DCR B

JNZ REPT

JMP START

LOOK UP:

DB: 09 05 06 0A

Procedure:

1. Enter the above program starting from 4100h. Connect the stepper motor in port1 and

execute.

2. The stepper motor can be rotates. Speed can be varied by varying the count at DE pair.

3. Direction can be varied by entering the data in the LOOK UP table in the reverse order.

58

b. Stepper motor at different angles

Aim: To write an ALP for run a stepper motor for required angle within 3600, which is

equivalent to 256 steps.

Apparatus:

 1. Micro-85EB 8085 µP kit

 2. Stepper motor Interface Module

 3. Bus card

Source Code:

MVI C, HEX DATA

START: LXI H, LOOK UP

MVI B,04

REPT: MOV A,M

OUT C0

DCR C

JZ END

LXI D, COUNT

DELAY: NOP

DCX D

MOV A,E

ORA D

JNZ DELAY

INX H

DCR B

JNZ REPT

JMP START

LOOK UP:

DB :09 05 06 0A

END: HLT

Procedure:

1. Enter the above program. Connect the stepper motor in port1 and execute.

2. By converting the required steps in decimal to hex and entering the hex data at 4101h.

3. The motor rotates for so much steps and then stops.

59

C. Stepper motor at both directions

Aim: To write an ALP for run stepper motor in both forward and reverse directions with delay.

Apparatus:

 1. Micro-85EB 8085 µP kit

 2. Stepper motor Interface Module

 3. Bus card

Source Code:

START: MVI C,20H

FORWD: LXI H, FORLOOK

CALL ROTATE

DCR C

JNZ FORWD

CALL STOP

MVI C,20H

REVES: LXI H,REVLOOK

CALL ROTATE

DCR C

JNZ REVES

CALL STOP

JMP START

ROTATE: MVI B,04H

REPT: MOV A,M

OUT C0H

LXI D,0303H

LOOP1: DCX D

MOV A,E

ORA D

JNZ LOOP1

INX H

DCR B

JNZ REPT

RET

STOP: LXI D,FFFFH

LOOP2: DCX D

MOV A,E

ORA D

JNZ LOOP2

RET

FORLOOK

60

DB 09H 05H 06H 0AH

REVLOOK

DB 0AH 06H 05H 09H

END

Procedure:

1. Enter the above program starting from 4100h.

2. Connect the stepper motor in port1 and execute.

3. Observe that the stepper motor runs in forward direction and reverse direction

continuously with a delay.

RESULT:

Hence the stepper is rotated in different directions and different angles and different speeds.

61

EXPERIMENT 19 8279- PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE

Aim: To display the rolling message ‘HELP US” in the display.

Apparatus:

 1. Micro-85EB 8085 µP kit

 2. 8279 Interface Module (Key board & Display)

 3. Bus card

Equivalent: CNT EQU C2H

DAT EQU C0H

POINTER EQU 412CH

Source Code:

 START: LXI H, POINTER

 MVI D, 0FH

MVI A, 10H

OUT CNT

MVI A, CCH

OUT CNT

MVI A, 90H

OUT CNT

LOP: MOV A,M

OUT DAT

CALL DELAY

INX H

DCR D

JNZ LOP

JMP START

DELAY: MVI B, A0H

LOP1: MVI C, FFH

LOP2: DCR C

JNZ LOP2

DCR B

62

JNZ LOP1

RET

POINTER: FF FF FF FF

 FF FF FF FF

 98 68 7C C8

 1C 29 FF FF

Procedure:

1. Enter the above program starting from 4100h.

2. The data fetched from address 412Ch and display in the first digit of the display.

3. The next data is displayed in the second digit of the display.

4. A time delay is given between successive digits for a lively display.

RESULT:

Hence the message HELPUS is displayed.

