
Object Oriented Software Engineering Laboratory (CSE 4.1.8)

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

Object Oriented Software Engineering (CSE- 4.1.8)

SIR C.R.REDDY COLLEGE OF ENGINEERING
ELURU – 534 007

1

Object Oriented Software Engineering Laboratory (CSE 4.1.8)
Object Oriented software Engineering Laboratory (CSE 4.1.8)

S. no Content Page No.

1. Object oriented software engineering laboratory Syllabus 2

2. Introduction to Project and Definition 5

3. Software Requirement Specification 9

4. Introduction to UML and Use Case Diagram 13

5. System Modeling 18

6. Documenting Use Cases and Activity Diagrams 22

7. Object Oriented Analysis: Discovering Classes 27

8. Interaction Diagrams: Sequence and Collaboration Diagrams 31

9.
Software Design: Software Architecture and Object Oriented
Design

37

10. State Chart Diagram 40

11. Implementation Diagrams: Component and Deployment Diagrams 44

12. Template Code 48

13. Appendix A 50

14. Appendix B 58

2

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Laboratory Syllabus 1

3

Object Oriented Software Engineering Laboratory (CSE 4.1.8)
1. OBJECT ORIENTED SOFTWARE ENGINEERING LAB

Instruction: 3 periods/ week Sessional marks: 50

UNIV: 3 hours UNIV-Exam marks: 50

Sessional marks allotment:

Monthly meeting participation 10%

Monthly progress report 15%

Design / code document 15%

Presentation 10%

Proto type demonstration 10%

Final project 30%

Final project report 10%

Course Objectives:

 To Design & implement complex software solutions using state of the art software solutions

using state of art software Engineering Techniques.
 To provide working knowledge of UML (Unified Modeling Languages) Sources control

and project Management.
 To provide working knowledge of the technologies essentially for incorporating in the

project.
 To expertise for testing and document software.
 To inculcate and excel working capabilities as part of software term and develop significant

projects under a tight deadline time / schedules.
 To present the project in a professional manner.
TOPICS TO BE COVERED:

1: Introduction and Project Definition

2: Software Requirements Specification

3: Introduction to Unified Modeling Languages (UML) and Use case Diagram

4: System Modeling (DFD or ER or Both)

5: Flow of Events and Activity Diagrams

6: OO Analysis: Discovering classes

7: Interaction Diagrams: Sequence and Collaboration Diagrams

8: Software Design: Software Architecture and Object Oriented Design

9: State Chart Diagram

10: Component and Deployment Diagrams

11: Software Testing

12: Presentations

4

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Introduction and Project
Definition 2

5

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Lab 2: Introduction and Project Definition

Objectives

 Introduce the lab environment and tools used in the software engineering lab.

 Discuss the project and learn how to write project definition.

1. Outline

 Introduction to the lab plan and objectives.

 Project definition.

2. Background

The software engineer is a key person and analyzing the business, identifying opportunities
for improvement, and designing information systems to implement these ideas. It is
important to understand and develop through practice the skills needed to successfully
design and implement new software systems.

2.1 Introduction

 In this lab you will practice the software development life cycle (Project

Management, Requirements Engineering, System Modeling, Software Design,
Prototyping and Testing) using CASE tools within a team work environment.

 UML notation is covered in this lab as the modeling language for analysis and

design.

2.2 Tools used in the lab

 Software Engineering lab is one of the most challenging of all labs. Developing a
complete software application requires from each of you a good level of know – how
of various tools.

 There are some tools which will be taught, but there are some which are assumed you

already know, if you don’t then you learn should it individually.

o Rational Rose for UML diagrams (Object Oriented Analysis and Design)

2.3 Software Engineering Lab Objectives

 Learn the software life cycle phases (Project management, requirements engineering,

software design, prototyping and testing).

 Practice the software phases using a project.

6

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 Learn a number of CASE tools and use them in a project within a team work

environment.

 Get familiar with UML (modeling language for analysis and design).

2.4 Lab Plan

Week # Lab Content Deliverables Tool

Week 1
Introduction and project
definition

Week 2 Software requirements
Specification

Plan doc

Week 3
Introduction to UML and
use
case diagrams

Requirement and design
tool (Rational Rose)

Week 4 System modeling (DFD or
ER)

Microsoft Word

Week 5 Flow of events and activity
diagram

SRS doc Rational Rose

Week 6 OO analysis: discovering
classes

Rational Rose

Week 7
Interaction diagrams:
sequence and collaboration
diagrams

Rational Rose

Week 8
Software Design: software
architecture and object
oriented design

Design doc (ver. 1) Rational Rose

Week 9 State Transition Diagram Rational Rose

Week 10
Component and
deployment
diagrams

Design doc (Final ver.) Rational Rose

Week 11 Template Code Generation Rational Rose

Week 12 Presentations Final document Microsoft Word

3. CASE tools – No tools are used for this lab.

4. Exercises

1. Form groups of 4 students (with one of them as a leader).

2. Brainstorm and list 3 suitable project titles

3. Present these to the class

4. Choose one of the projects from your list

5. Try to write (a hypothetical) project definition for it.

7

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

6. Present it to the instructor/ class

5. Deliverables

 Form teams of 4 students for the term mini-project.

 Suggest/ research a project and write a project definition/ problem statement.

8

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Software Requirement
Specification 3

9

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Lab 3: Software Requirement Specification (SRS)

Objectives

 Gain a deeper understanding of the Software Requirement Specification phase and the
Software Requirement Specification (SRS).

 Learn how to write requirements and specifications.

1. Outline

 Review of the requirements engineering process.

 Write requirements and specifications.

 Software Requirement Specification (SRS).

2. Background

A requirement is a statement of a behavior or attribute that a system must possess for the
system to be acceptable to a stakeholder.

Software Requirement Specification (SRS) is a document that describes the requirements of
a computer system from the user's point of view. An SRS document specifies:

 The required behavior of a system in terms of: input data, required processing, output
data, operational scenarios and interfaces.

 The attributes of a system including: performance, security, maintainability,
reliability, availability, safety requirements and design constraints.

Requirements management is a systematic approach to eliciting, organizing and
documenting the requirements of a system. It is a process that establishes and maintains
agreement between the customer and the project team on the changing requirements of a
system.

Requirements management is important because, by organizing and tracking the
requirements and managing the requirement changes, you improve the chances of
completing the project on time and under budget. Poor change management is a key cause of
project failure.

2.1 Requirements Engineering Process

Requirements engineering process consists of four phases:

 Requirements elicitation: getting the customers to state exactly what the
requirements are.

 Requirements analysis: making qualitative judgments and checking for
consistency and feasibility of requirements.

 Requirements validation: demonstrating that the requirements define the system
that the customer really wants.

10

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 Requirements management: the process of managing changing requirements
during the requirements engineering process and system development, and
identifying missing and extra requirements.

2.2 Writing Requirements

Requirements always need to be correct, unambiguous, complete, consistent, and testable.

2.2.1 Recommendations When Writing Requirements

 Never assume: others do now know what you have in mind.
 Use meaningful words; avoid words like: process, manage, perform, handle, and

support.

 State requirements not features:

o Feature: general, tested only for existence.

o Requirement: specific, testable, measurable.

 Avoid:

o Conjunctions: ask yourself whether the requirement should it be split into
two requirements.

o Conditionals: if, else, but, except, although.

o Possibilities: may, might, probably, usually.

2.3 Writing Specifications

Specification is a description of operations and attributes of a system. It can be a
document, set of documents, a database of design information, a prototype, diagrams or
any combination of these things.

Specifications are different from requirements: specifications are sufficiently complete -
not only what stakeholders say they want; usually, they have no conflicts; they describe
the system as it will be built and resolve any conflicting requirements.

Creating specifications is important. However, you may not create specifications if:

 You are using a very incremental development process (small changes).
 You are building research or proof of concept projects.

 You rebuilding very small projects.

 It is not cheaper or faster than building the product.

2.4 Software Requirement Specification (SRS)

Remember that there is no “Perfect SRS”. However, SRS should be:

11

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 Correct: each requirement represents something required by the target system.
 Unambiguous: every requirement in SRS has only one interpretation.

 Complete: everything the target system should do is included in SRS (no sections
are marked TBD-to be determined).

 Verifiable: there exists some finite process with which a person/machine can
check that the actual as-built software product meets the requirements.

 Consistent in behavior and terms.

 Understandable by customers.

 Modifiable: changes can be made easily, completely and consistently.

 Design independent: doesn't imply specific software architecture or algorithm.

 Concise: shorter is better.

 Organized: requirements in SRS are easy to locate; related requirements are
together.

 Traceable: each requirement is able to be referenced for later use (by the using
paragraph numbers, one requirement in each paragraph, or by using convention
for indication requirements)

3. CASE Tools – Nil

4. In-Class Demo

An overview of the requirements engineering process, and writing requirements and
specifications.

5. Exercises

 Write SRS for your project

6. Deliverables

 SRS for your project

12

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Introduction to UML and Use
Case Diagram 4

13

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

14

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Lab 4: Introduction to UML and Use Case Diagram

Objectives
 Study the benefits of visual modeling.
 Learn use case diagrams: discovering actors and discovering use cases.
 Practice use cases diagrams using Rational Rose.

1. Outline

 Visual modeling.
 Introduction to UML.

 Introduction to visual modeling with UML.

 Use case diagrams: discovering actors and use cases.

2. Background

Visual Modeling is a way of thinking about problems using models organized around real-world
ideas. Models are useful for understanding problems, communicating with everyone involved
with the project (customers, domain experts, analysts, designers, etc.), modeling enterprises,
preparing documentation, and designing programs and databases.

2.1 Visual Modeling

 Capture the structure and behavior of architectures and components.
 Show how the elements of the system fit together.

 Hide or expose details appropriate for the task.

 Maintain consistency between a design and its implementation.

 Promote unambiguous communication.

2.2 What is UML?

The UML is the standard language for visualizing, specifying, constructing and documenting the
artifacts of a software-intensive system. UML can be used with all processes throughout the
development life cycle and across different implementation technologies.

2.3 History of UML

The UML is an attempt to standardize the artifacts of analysis and design: semantic models,
syntactic notation and diagrams. The first public draft (version 0.8) was introduced in October
1995. Feedback from the public and Ivar Jacobson's input were included in the next two versions
(0.9 in July 1996 and 0.91 in October 1996). Version 1.0 was presented to the Object
Management Group (OMG) for standardization in July 1997. Additional enhancements were
incorporated into the 1.1 version of UML, which was presented to the OMG in September 1997.
In November 1997, the UML was adopted as the standard modeling language by the OMG.

15

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

2.4 Putting UML into Work: Use Case Diagram

The behavior of the system under development (i.e. what functionality must be provided by the
system) is documented in a use case model that illustrates the system's intended functions (use
cases), its surroundings (actors), and relationships between the use cases and actors (use case
diagrams).

2.5 Actors

 Are NOT part of the system – they represent anyone or anything that must interact with
the system.

 Only input information to the system.

 Only receive information from the system.

 Both input to and receive information from the system.

 Represented in UML as a stickman.

2.6 Use Case

 A sequence of transactions performed by a system that yields a measurable result of
values for a particular actor

 A use case typically represents a major piece of functionality that is complete from
beginning to end. A use case must deliver something of value to an actor.

16

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

2.7 Use Case Relationships

 Between actor and use case.
 Association / Communication.

 Arrow can be in either or both directions; arrow indicates who initiates communication.

 Between use cases (generalization):

– Include

o Where inclusion use case is compulsory.

– Extends

o Optional behavior.
o Behavior only runs under certain conditions (such as alarm).

o Several different flows run based on the user’s selection.

3. CASE Tools

The Rational Rose product family is designed to provide the software developer with a complete
set of visual modeling tools for development of robust, efficient solutions to real business needs
in the client/server, distributed enterprise and real-time systems environments. Rational Rose
products share a common universal standard, making modeling accessible to nonprogrammers
wanting to model business processes as well as to programmers modeling applications logic.

4. In-Class Example

Now you will learn how to apply the above-mentioned methods to draw use case diagrams from
the problem statement. Please refer to Lab 5 slides which explain the process in detail with some
examples.

17

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

5. Exercises

Read carefully the following problem statement

We are after a system that controls a recycling machine for returnable bottles and cans. The
machine will allow a customer to return bottles or cans on the same occasion. When the
customer returns an item, the system will check what type has been returned. The system will
register how many items each customer returns and, when the customer asks for a receipt, the
system will print out what he deposited, the value of the returned items and the total return sum
that will be paid to the customer. The system is also be used by an operator. The operator wants
to know how many items of each type have been returned during the day. At the end of the day,
the operator asks for a printout of the total number of items that have been deposited in the
machine on that particular day. The operator should also be able to change information in the
system, such as the deposit values of the items. If something is amiss, for example if a can gets
stuck or if the receipt roll is finished, the operator will be called by a special alarm signal.

After reading the above problem statement, find:

1. Actors

2. Use cases with each actor

3. Find extend or include use cases (if applicable)

4. Finally: draw the main use case diagram:

6. Deliverables

You should submit the solutions for the previous exercises.

You should use these techniques to draw use case diagrams for your term project using Rational
Rose.

18

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

System Modeling 5

19

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Lab 5: System Modeling

Objective
Deeper understanding of System modeling:
 Data model: entity-relationship diagram (ERD).
Functional model: data flow diagram (DFD).

1. Outline

System analysis model elements:
Data model: entity-relationship diagram (ERD)
Functional model: data flow diagram (DFD)

2. Background

Modeling consists of building an abstraction of reality. These abstractions are
simplifications because they ignore irrelevant details and they only represent the relevant
details (what is relevant or irrelevant depends on the purpose of the model).

2.1 Why Model Software?

Software is getting larger, not smaller; for example, Windows XP has more than 40 million
lines of code. A single programmer cannot manage this amount of code in its entirety. Code
is often not directly understandable by developers who did not participate in the
development; thus, we need simpler representations for complex systems (modeling is a
mean for dealing with complexity). A wide variety of models have been in use within various
engineering disciplines for a long time. In software engineering a number of modeling
methods are also available.

2.2 Analysis Model Objectives
To describe what the customer requires.
To establish a basis for the creation of a software design.
To define a set of requirements that can be validated once the software is built.

2.3 The Elements of the Analysis Model

The generic analysis model consists of:
An entity-relationship diagram (data model).
A data flow diagram (functional model).
A state transition diagram (behavioral model).

20

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

NOTE: state transition diagram will be covered in lab 9.

2.3.1 Entity Relationship Diagram

An entity relationship diagram (ERD) is one means of representing the objects and their
relationships in the data model for a software product.

Entity Relationship diagram notation:

Entity

Relationship

To create an ERD you need to:
Define “objects” by underlining all nouns in the written statement of scope:
 producers/consumers of data, places where data are stored, and “composite” data

items.
Define “operations” by double underlining all active verbs: processes relevant to the
 application and data transformations.
Consider other “services” that will be required by the objects.
Then you need to define the relationship which indicates “connectedness”: a "fact" that
must
 be "remembered" by the system and cannot be or is not computed or derived
mechanically.

2.3.2 Data Flow Diagram

A data flow data diagram is one means of representing the functional model of a software
product. DFDs do not represent program logic like flowcharts do.

Data flow diagram notation:

External Entity

Process

21

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Data Flow

Control Flow

Data Store

To create a DFD you need to:
 Review ERD to isolate data objects and grammatical parse to determine operations.
 Determine external entities (producers and consumers of data).
 Create a level 0 DFD “Context Diagram” (one single process).
 Balance the flow to maintain data flow continuity.
 Develop a level 1 DFD; use a 1:5 (approx.) expansion ratio.

Data Flow Diagram Guidelines:
All icons must be labeled with meaningful names.
Always show external entities at level 0.
Always label data flow arrows.
Do not represent procedural logic.
Each bubble is refined until it does just one thing.

3. CASE Tools

You can use MS word to create your ERD and DFD since we do not have a license for a
case tool that supports these diagrams.

4. In-Class Example

Now you will learn how to create ERD and DFD.

5. Exercises

ERD and DFD for your Project

6. Deliverables

You should create ERD and DFD for your term project

22

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Documenting Use Cases and
Activity Diagrams 6

23

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

24

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Lab 6: Documenting Use Cases and Activity Diagrams

Objectives
 Study how to document use cases in detail.
 Know about scenarios (flow of events) and its importance.
 Deeper understanding of UML activity diagrams.
 Practicing flow of events and activity diagrams using Rational Rose.

1. Outline
 Writing flow of events.
 Flow of events template and example.
 Activity diagrams.
 Examples.

2. Background
Each use case is documented with a flow of events. The flow of events for a use case is a
description of the events needed to accomplish the required behavior of the use case. Activity
diagrams may also be created at this stage in the life cycle. These diagrams represent the
dynamics of the system. They are flow charts that are used to show the workflow of a system;
that is, they show the flow of control from one activity to another in the system.

2.1 Flow of Events
A description of events required to accomplish the behavior of the use case, that:

 Show WHAT the system should do, not HOW the system does it.
 Written in the language of the domain, not in terms of implementation.
 Written from an actor point of view.

A flow of events document is created for each use case:
 Actors are examined to determine how they interact with the system.
 Break down into the most atomic actions possible.

2.2 Contents of Flow of Events
 When and how the use case starts and ends.
 What interaction the use case has with the actors.
 What data is needed by the use case.
 The normal sequence of events for the use case.
 The description of any alternate or exceptional flows.

2.3 Template for the flow of events document
Each project should use a standard template for the creation of the flow of events document. The
following template seems to be useful.
X Flow of events for the <name> use case
X.1 Preconditions
X.2 Main flow
X.3 Sub-flows (if applicable)
X.4 Alternative flows
where X is a number from 1 to the number of use cases.

25

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

A sample completed flow of events document for the Select Courses to Teach use case follows.
1. Flow of Events for the Select Courses to Teach Use Case
1.1 Preconditions
Create course offerings sub-flow of the maintain course information use case must execute
before this use case begins.

1.2 Main Flow
This use case begins when the professor logs onto the registration system and enters his/her
password. The system verifies that the password is valid (E-1) and prompts the professor to
select the current semester or a future semester (E-2). The professor enters the desired semester.
The system prompts the Professor to select the desired activity: ADD, DELETE, REVIEW,
PRINT, or QUIT.

If the activity selected is ADD, the S-1: add a course offering sub-flow is performed.

If the activity selected is DELETE, the S-2: delete a course offering sub-flow is performed.

If the activity selected is REVIEW, the S-3: review schedule sub-flow is performed.

If the activity selected is PRINT, the S-4: print a schedule sub-flow is performed.

If the activity selected is QUIT, the use case ends.

1.3 Sub-flows
S-1: Add a Course Offering:
The system displays the course screen containing a field for a course name and number. The
professor enters the name and number of a course (E-3). The system displays the course
offerings for the entered course (E-4). The professor selects a course offering. The system links
the professor to the selected course offering (E-5). The use case then begins again.

S-2: Delete a Course Offering:
The system displays the course offering screen containing a field for a course offering name and
number. The professor enters the name and number of a course offering (E-6). The system
removes the link to the professor (E-7). The use case then begins again.

S-3: Review a Schedule:
The system retrieves (E-8) and displays the following information for all course offerings for
which the professor is assigned: course name, course number, course offering number, days of
the week, time, and location. When the professor indicates that he or she is through reviewing,
the use case begins again.

S-4: Print a Schedule
The system prints the professor schedule (E-9). The use case begins again.

1.4 Alternative Flows
E-1: An invalid professor ID number is entered. The user can re-enter a professor ID number or
terminate the use case.

E-2: An invalid semester is entered. The user can re-enter the semester or terminate the use case.

E-3: An invalid course name/number is entered. The user can re-enter a valid name/number
combination or terminate the use case.

26

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

E-4: Course offerings cannot be displayed. The user is informed that this option is not available
at the current time. The use case begins again.

E-5: A link between the professor and the course offering cannot be created. The information is
saved and the system will create the link at a later time. The use case continues.

E-6: An invalid course offering name/number is entered. The user can re-enter a valid course
offering name/number combination or terminate the use case.

E-7: A link between the professor and the course offering cannot be removed. The information is
saved and the system will remove the link at a later time. The use case continues.

E-8: The system cannot retrieve schedule information. The use case then begins again.

E-9: The schedule cannot be printed. The user is informed that this option is not available at the
current time. The use case begins again.
Use case flow of events documents are entered and maintained in documents external to
Rational Rose. The documents are linked to the use case.

2.4 Activity Diagrams
Activity diagrams are flow charts that are used to show the workflow of a system.
They also:

 Represent the dynamics of the system.
 Show the flow of control from activity to activity in the system.
 Show what activities can be done in parallel, and any alternate paths through

 the flow.
Activity diagrams may be created to represent the flow across use cases or they may be created
to represent the flow within a particular use case. Later in the life cycle, activity diagrams may
be created to show the workflow for an operation.

2.5 Activity Diagram Notation
 Activities- performance of some behavior in the workflow.
 Transition- passing the flow of control from activity to activity.
 Decision- show where the flow of control branches based on a decision point:

o Guard condition is used to determine which path from the decision point is
 taken.

 Synchronization-what activities are done concurrently? What activities must be
 completed before processing may continue (join).

3. CASE Tools
Rational Rose.

4. In-Class Example
Now you will learn how to apply the above mentioned methods to write flow of events and
drawing activity diagrams from the use case(s) flow of events.

5. Exercises
Apply to your Project

6. Deliverables

27

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

You should use these techniques to write flow of events and draw activity diagrams for your
term project.

28

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

29

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Object Oriented Analysis:
Discovering Classes 7

Lab 7: Object-Oriented Analysis: Discovering Classes

Objective
 Learn the object-oriented analysis phase by understanding the methods of class

elicitation and finding the classes in an object-oriented system.

1. Outline
 Object-Oriented concepts
 Discovering classes’ approaches: noun phrase approach, common class patterns, use case

driven method, CRC (Class-Responsibility-Collaboration) and mixed approach.
 Examples.

2. Background
Classes: a description of a group of objects with common properties (attributes), common
behavior (operations), common relationships to other objects and common semantics.

2.1 Object-Oriented Concepts
 Attribute: the basic data of the class.
 Method (operation): an executable procedure that is encapsulated in a class and is

designed to operate on one or more data attributes that are defined as part of the class.
 Object: when specific values are assigned to all the resources defined in a class, the

result is an instance of that class. Any instance of any class is called an object.

2.2 Discovering Classes
Discovering and defining classes to describe the structure of a computerized system is not an
easy task. When the problem domain is new or unfamiliar to the software developers it can be
difficult to discover classes; a cookbook for finding classes does not exist.

2.3 Classes Categories
Classes are divided into three categories:

30

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 Entity: models information and associated behavior that is long-lived, independent of the
surrounding, application independent, and accomplishes some responsibility

 Boundary: handles the communication between the system surroundings and the inside
of the system, provides interface, and facilitates communication with other systems

 Control: model sequencing behavior specific to one or more use cases. Control classes
coordinate the events needed to realize the behavior specified in the use case, and they
are responsible for the flow of events in the use case.

2.4 Discovering Classes Approaches
 Methods of discovering classes:

2.4.1 Noun Phrase Approach: Examine the requirements and underline each noun.
 Each noun is a candidate class; divide the list of candidate classes into:

 Relevant classes: part of the application domain; occur frequently in requirements.
 Irrelevant classes: outside of application domain
 Fuzzy classes: unable to be declared relevant with confidence; require additional

analysis

2.4.2 Common Class Patterns: Derives candidate classes from the classification theory of
objects; candidate classes and objects come from one of the following sources:
 Tangible things: e.g. buildings, cars.
 Roles: e.g. teachers, students.
 Events: things that happen at a given date and time, or as steps in an ordered

sequence: e.g. landing, request, interrupt.
 Interactions: e.g. meeting, discussion.
 Sources, facilities: e.g. departments.
 Other systems: external systems with which the application interacts.
 Concept class: a notion shared by a large community.
 Organization class: a collection or group within the domain.
 People class: roles people can play.
 Places class: a physical location relevant to the system.

2.4.3 Use Case Driven Method: The scenarios - use cases that are fundamental to the system
operation are enumerated. Going over each scenario leads to the identification of the
objects, the responsibilities of each object, and how these objects collaborate with other
objects.

2.4.4 CRC (Class-Responsibility-Collaboration): Used primarily as a brainstorming tool for
analysis and design. CRC identifies classes by analyzing how objects collaborate to
perform business functions (use cases). A CRC card contains: name of the class,
responsibilities of the class and collaborators of the class. Record name of class at the
top; record responsibilities down the left-hand side; record other classes (collaborators)
that may be required to fulfill each responsibility on the right-hand side. CRC cards are
effective at analyzing scenarios; they force you to be concise and clear; they are cheap,
portable and readily available.

2.4.5 Mixed Approach: A mix of these approaches can be used, one possible scenario is:
 Use CRC for brainstorming.
 Identify the initial classes by domain knowledge.

31

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 Use common class patterns approach to guide the identification of the classes.
 Use noun phrase approach to add more classes.
 Use the use case approach to verify the identified classes.

2.5 Class Elicitation Guidelines
 A class should have a single major role.
 A class should have defined responsibilities (use CRC cards if needed).
 Classes should be of a manageable size: if a class has too many attributes or operations,

consider splitting it.
 A class should have a well-defined behavior, preferably by implementing a given

requirement or an interface.

3. CASE Tools
Rational Rose.

32

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

4. In-Class Example
Now you will learn how to apply the above mentioned methods of finding classes from the
problem statement.

5. Exercises
Apply to your Project

6. Deliverables
You should use these class elicitation techniques to identify the classes for your term project.

33

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Interaction Diagrams:
Sequence and Collaboration

Diagrams
8

34

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Lab 8: Interaction Diagrams: Sequence & Collaboration Diagrams

Objectives
 Better understanding of the interaction diagrams.
 Get familiar with sequence & collaboration diagrams.
 Practice drawing the interaction diagrams using Rational Rose.

1. Outline
Interaction diagrams:

 Sequence diagrams
 Collaboration diagrams

2. Background
Interaction diagrams describe how groups of objects collaborate in some behavior. An
interaction diagram typically captures the behavior of a single use case. Interaction diagrams do
not capture the complete behavior, only typical scenarios.

2.1 Analyzing a System’s Behavior
UML offers two diagrams to model the dynamics of the system: sequence and collaboration
diagrams. These diagrams show the interactions between objects.

2.2 Sequence Diagrams
Sequence diagrams are a graphical way to illustrate a scenario:

 They are called sequence diagrams because they show the sequence of message passing
between objects.

 Another big advantage of these diagrams is that they show when the objects are created
and when they are destructed. They also show whether messages are synchronous or
asynchronous.

2.3 Creating Sequence Diagrams
 You must know the scenario you want to model before diagramming sequence diagrams.
 After that specify the classes involved in that scenario.
 List the involved objects in the scenario horizontally on the top of the page.
 Drop a dotted line beneath every object. They are called lifelines.
 The scenario should start by a message pass from the first object.
 You must know how to place the objects so that the sequence is clear.
 You may start the scenario by an actor.
 Timing is represented vertically downward.
 Arrows between life lines represents message passing.
 Horizontal arrows may pass through the lifeline of another object, but must stop at some

other object.

35

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 You may add constraints to these horizontal arrows.
 Objects may send messages to themselves.

 Long, narrow rectangles can be placed over the lifeline of objects to show when the
object is active. These rectangles are called activation lines.

2.4 Collaboration Diagrams
They are the same as sequence diagrams but without a time axis:

 Their message arrows are numbered to show the sequence of message sending.
 They are less complex and less descriptive than sequence diagrams.
 These diagrams are very useful during design because you can figure out how

objects communicate with each other.

2.5 Notes
 Always keep your diagrams simple.
 For “IF... then ...” else scenarios, you may draw separate sequence diagrams for the

different branches of the “if statement”. You may even hide them, (at least during the
analysis phase) and document them by the text description accompanying the
sequence diagrams.

3. CASE Tools
Rational Rose.

4. In-Class Example
Now you will learn how to apply the above mentioned methods of drawing sequence and
collaboration diagrams from the problem statement.

5. Exercises
Apply to your Project.

6. Deliverables
You should use these techniques to create sequence and collaboration diagrams for your
term project.

36

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Software Design: Software
Architecture and Object

Oriented Design
9

37

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

38

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Lab 9: Software Design: Software Architecture and Object-Oriented Design

Objectives
 Deeper understanding of software design and the software design document (SDD).
 Learn how to find the relationships between classes to create UML class diagram.

1. Outline
 Software design concepts and principals.
 Software architecture.
 Specifying the attributes and the operations and finding the relationships between

classes.
 Creating UML class diagram.
 Software design document.

2. Background
The purpose of software design is “to produce a workable (implementable) solution to
a given problem.” David Budgen in Software Design: An Introduction.

2.1 The Design Process
Software design is an iterative process that is traceable to the software requirements analysis
process. Many software projects iterate through the analysis and design phases several times.
Pure separation of analysis and design may not always be possible.

2.2 Design Concepts
 The design should be based on requirements specification.
 The design should be documented (so that it supports implementation, verification, and

maintenance).
 The design should use abstraction (to reduce complexity and to hide unnecessary detail).
 The design should be modular (to support abstraction, verification, maintenance, and

division of labor).
 The design should be assessed for quality as it is being created, not after the fact.
 Design should produce modules that exhibit independent functional characteristics.
 Design should support verification and maintenance.

2.3 Software Architecture
Software architecture is a description of the subsystems and components of a software system
and the relationships between them.
You need to develop an architectural model to enable everyone to better understand the system,
to allow people to work on individual pieces of the system in isolation, to prepare for extension
of the system and to facilitate reuse and reusability.

2.4 Describing an Architecture Using UML
All UML diagrams can be useful to describe aspects of the architectural model. Four
UML diagrams are particularly suitable for architecture modeling:

 Package diagrams
 Subsystem diagrams
 Component diagrams
 Deployment diagrams

39

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

2.5 Specifying Classes
Each class is given a name, and then you need to specify:

 Attributes: initially those that capture interesting object states. Attributes can be public,
protected, private or friendly/package.

 Operations: can be delayed till later analysis stages or even till design. Operations also
can be public, protected, private or friendly/package.

 Object-Relationships:
o Associations: denote relationships between classes.
o An aggregation: a special case of association denoting a “consists of” hierarchy.
o Composition: a strong form of aggregation where components cannot exist without

the aggregate.
o Generalization relationships: denote inheritance between classes.

This will build the class diagram, which is a graphical representation of the classes (including
their attributes and operations) and their relationship with other classes.

3. CASE Tools
Rational Rose.

4. In-Class Example
Now you will learn how to specify classes’ attributes, methods and the relationships between the
classes.

6. Exercises
Apply to your Project

7. Deliverables
Also you should use specifying class attributes, methods and the relationship with other classes
you learned in your term project.

40

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

State Chart Diagram 10

41

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Lab 10: State Transition Diagrams

Objectives
 Deeper understanding of UML state transition diagrams (STD).
 Practicing using Rational Rose.

1. Outline
 UML state diagrams.
 UML state diagram notation
 UML state details
 Examples

2. Background
Mainly, we use interaction diagrams to study and model the behavior of objects in our system.
Sometimes, we need to study the behavior of a specific object that shows complex behavior to
better understand its dynamics. For that sake, UML provides state transition diagrams used to
model the behavior of objects of complex behavior. In this Lab, UML state transition diagrams
will be introduced. We will study their notation and how can we model them using Rational
Rose.

2.1 UML State Diagrams
State diagrams show how one specific object changes state as it receives and processes
messages:

 Since they are very specific, they are used for analyzing very specific situations if we
compare them with other diagrams.

 A state refers to the set of values that describe an object at a specific moment in time.
 As messages are received, the operations associated with the object’s parent class are

invoked to deal with the messages.
 These messages change the values of these attributes.
 There is no need to prepare a state diagram for every class you have in the system.

2.2 Creating State Transition Diagrams
 States are represented by rectangles with rounded corners with an attribute name with a

values associated with it.
 The name of the state is placed within the box.
 Events are shown by arrows.
 An event occurs when at an instant in time when a value is changed.
 A message is data passed from one object to another.
 The name of a state usually refers to the name of the attribute and the values associated

to it.
 Example, a student object may receive a message to change its name. The state of that

object changes from the first name state to the new state name.
 The name of the state is placed in the top compartment.
 State variables are placed in the next compartment.
 The operations associated with the state are listed in the lowest compartment of the state

box.
 In the operations part, we usually use one of the following reserved words:

o Entry: a specific action performed on the entry to the state.

42

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

o Do: an ongoing action performed while in the state.
o On: a specific action performed while in the state.
o Exit: a specific action performed on exiting the state.

 There are two special states added to the state transition diagram- start state and end
state.

 Notation of start state is a solid black circle and for the end state a bull’s eye is used.

2.3 State Transition Details
 A state transition may have an action and/or guard condition associated with it and it may

also trigger an event.
 An action is the behavior that occurs when the state transition occurs.
 An event is a message that is sent to another object in the system.
 A guard condition is a Boolean expression of attribute values that allows a state

transition only if the condition is true.
 Both actions and guards are behaviors of the object and typically become operations.

Also they are usually private operations (used by the object itself).
 Actions that accompany all state transitions into a state may be placed as an entry action

within the state.
 Actions that accompany all state transitions out of a state may be placed as exit actions

within the state.
 A behavior that occurs within the state is called an activity.
 An activity starts when the state is entered and either completes or is interrupted by an

outgoing state transition.
 A behavior may be an action, or it may be an event sent to another object.
 This behavior is mapped to operations on the object.

43

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

3. CASE Tools
Rational Rose.

4. In-Class Example
Now you will learn how to apply the above mentioned methods of drawing state transition
diagrams (STD).

5. Exercises
Apply to your Project.

6. Deliverables
You should use these techniques to create state transition diagrams for your term project.

44

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Implementation Diagrams:
Component and Deployment Diagrams 11

45

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

46

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Lab 11: Implementation Diagrams: Component & Deployment Diagrams

Objectives
 Become familiar with the implementation diagrams: component and deployment

diagrams.
 Practice using Rational Rose.

1. Outline
 Implementation diagrams: component and deployment diagrams.
 Examples.

2. Background
Implementation diagrams capture design information. The main implementation diagrams in
UML are: component and deployment diagrams. In this Lab we will study these diagrams and
their notation.

2.1 UML Implementation Diagrams
The main implementation diagrams we have in UML are: component diagrams and deployment
diagrams. These diagrams are high level diagrams in comparison with old diagrams you have
already learned.

2.2 UML Component Diagram
Component diagrams capture the physical structure of the implementation.

 Remember always that when you talk about components, you are talking about the
physical models of code.

 You can name them and show dependency between different components using arrows.
 A component diagram shows relationships between component packages and

components.
 Each component diagram provides a physical view of the current model.
 Component diagrams contain icons representing:

o Component packages.
o Components.
o Main programs.
o Packages.
o Subprograms.
o Tasks.
o Dependencies.

2.3 Deployment Diagrams
A deployment diagram shows processors, devices and connections. Each model contains a single
deployment diagram which shows the connections between its processors and devices, and the
allocation of its processes to processors.

2.3.1 Deployment Diagrams: Processor
A processor is a hardware component capable of executing programs.

 A processor is given a name and you should specify the processes that will run on that
processor.

 You can also specify the scheduling of these processes on that processor.

47

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 Types of scheduling are:
o Pre-emptive: a higher priority process may take the process from lower priority one.
o Non-preemptive: a process will own the processor until it finishes
o Cyclic: control passes from one process to another.
o Executive: an algorithm controls the scheduling of the processes.
o Manual: scheduling buy the user.

2.3.2 Deployment Diagrams: Device
A device is a hardware component with no computing power. Each device must have a name.
Device names can be generic, such as “modem” or “terminal.”

2.3.3 Deployment diagrams: Connection
A connection represents some type of hardware coupling between two entities. An entity is
either a processor or a device. The hardware coupling can be direct, such as an RS232 cable, or
indirect, such as satellite-to-ground communication. Connections are usually bi-directional.

3. CASE Tools
Rational Rose.

4. In-Class Example
Now you will learn how to apply the above mentioned methods of creating component and
deployment diagrams.

5. Exercises
Apply system and its components and draw deployment and component diagrams.

6. Deliverables
You should use these techniques to create component and deployment diagrams for your term
project.

48

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Template Code 12

49

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

50

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Lab 12: Template Code

Objectives
 Generating Template Code.
 Practicing using Rational Rose.

1. Outline
 Forward Engineering.
 Reverse Engineering.
 Examples.

2. Background
We can generate template code using Rational Rose. Logic should be written by student after
obtaining template code. Template code will be generated by unique identity number for every
generation.
In this Lab, UML template code generation will be introduced. We will study their generation
and how can we add logic code to template code.

2.1 Forward Engineering
From model to code.

2.2 Reverse Engineering
From code to model.

3. CASE Tools
Rational Rose.

4. In-Class Example
Now you will learn how to generate template code.

5. Exercises
Apply to your Project

6. Deliverables
You should use these techniques to generate template code for your term project.

51

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Appendix A

52

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

RATIONAL ROSE

Rational Rose is the visual modeling ware solution that lets you create, analyze, design,

view, modify and manipulate components. You can graphically depict on overview of the

behavior your system with a use case diagram .Rational Rose provides the collaboration diagram

as an alternative to a use case diagram .It shows object interactions organized around objects and

their links to one another. The state chart diagram provides additional analysis techniques for

classes with significant dynamic behavior .Activity diagrams provide a way to model a class

operation or the work flow of a business process.

Rational Rose provides the notation needed to specify and document the system

architecture .The logical architecture is captured in class diagrams that contain the classes and

relationships that represent the key abstractions of the system under development .The

component architecture is captured in component diagrams that focus

on the actual software module organization with in the development environment .The

deployment architecture is captured in deployment diagrams that map software to processing

nodes showing the configuration of the run time processing elements and their software

processes .

FEATURES

Rational Rose provides the following features facilitates the analysis, design and iterative

construction of your application

 Use-Case Analysis

 Object –Oriented Modeling

 User-configurable Support for UML ,COM ,OMT and Booch’93

 Semantic Checking

 Support for Controlled Iterative Development

 Round-Trip Engineering

 Parallel Multi- user Development.

 Integration with Data Modeling tools

 Document generation

 Rational Rose scripting for integration and Extensibility

 OLE Linking

53

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 OLE Automation

 Multi Platform Availability

EXTENDING RATIONAL ROSE

The add-in feature allows you to quickly and accurately customize your Rational Rose

environment depending on your development needs. Using the add-in tool, you can install

language and non language tools while in Rational Rose.

When an add-in is installed, it is automatically in an activated state. Add-ins can install

 Menus(.mnu files)

 Help files(.hlp files)

 Contents tab files(.cnt files)

 Properties (.pty files)

 Executables (.exe)

 Script files(.ebs script source file and .ebx compiled script file)

 OLE servers(.dll files)

 Additionally, an add-in can define fundamental types, predefined stereotypes,

and metafiles. Note that an add-in is not to be considered strictly a one-to one association

with a round-trip engineering integration.

ADD-IN MANAGER

The Add-in Manager allows you to control the state of the add-in, whether it is activated

or deactivated. If the add-in is deactivated, it is still visible through the Add-in Manager.

However, the add-in’s properties and menus are not available.

The student is expressed to take up about five mini-projects and model them and
produce Use Cases, Anal

Actors in the University Course Registration System:

1.Student want to register for courses.

2.Professors want to select courses to teach

3.The register must create the curriculum to teach

54

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

4.The register must maintain all the information about courses ,professors and students.

5.The billing system must receive billing information from the system.

The actors identified are:

1 Student

2 Professors

3 Register

A use case represents the functionality provided by the system.

The following questions will help to identify the use cases in the system:

1. What are the tasks of each actor?
2. Will any actor create, store,change ,remove,or read this information?
3. What use case will create ,store,change,remove or read this information?
4. Does any actor need to be informed about certain occurance in the system?
5. What use cases will support and maintain the system?
6. Can all functional requirements be performed by the use access?

The following needs must be addressed by the system.

1 The student actor needs to use the system to register for courses.

2 After the courses selection process is completed ,the billing system must be supplied with
billing information.

 3 The professor actor needs to use the system to select the course to teach for a semester and
must be able to receive a course roster from the system.

4 The register is responsible for the generation of the course for a semester and for the
maintenance of all information about the curriculum, the students and the professors needed
by the system.

The uses cases identified are

1. Register for courses
2. Select courses to teach
3. Request for roster
4. Maintain courses information
5. Maintain professor information
6. Maintain student information
7. Create course catalog.

Creating Class Diagrams:

 The purpose of a class diagram is to specify the structural makeup of the system. This
includes class relationship and the attributes and behaviors associated with class. Class
diagrams are remarkable at inheritance and composite relations hips.

55

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

A good class captures one and only one abstraction-it should have one major theme.

The following questions will help to identify the classes in the system:

1. Identify the main members of the problem given.
2. Determine how they are related to each other
3. Identify the characteristics of each member of the problem.
4. Find relations among the members.
5. Decide the inheritance of personal traits and characters.

The following needs must be addresses by the system for classes are:

1 Courses that are offered by the system for classes are:

2 Details about the professors present.

3 Information about the students that are taking admissions.

4 Information about the university

The classes that are identified are:

1 Courses

2 professor

3 student

4 Home

The following questions will help to identify the attributes for classes:

1 What it is going to do with a property or characteristic?

2 How it is going to collaborate with other classes?

 3 What it need to know?

 4 What state information it should remember over time?

5 In what sates it will exist?

For example for the class student the attributes are name, age ,roll no, address, branch etc.

 Guidelines for identifying methods for classes:

 Object provides and describes abstract data. Method or behaviour or operations usually
corresponding to queries about attributes.

For example for the class student the methods are get detail (), registration request () etc.

Guidelines for identifying relationship between classes:

56

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

1 Is the class of fulfilling the required task by itself?
2 If not, what does it need?
3 From what other class can it require it needs?

For example there is a relationship between students class and professor’s class.

Creating interaction diagrams:

There are two of interaction diagrams: sequence and collaboration diagrams.

A Sequence diagram is a model that describe how groups of objects Collaboration in some
behaviour over time. The Sequence diagram captures the behaviour of a single use case and
shows the objects and the messages that are passed between these objects in the timeframe of the
specific use case The Sequence diagram does not show relationships between objects.

The sequence diagram may be used to:

1 Describe the overall sequence of the flow of control when there are many short methods
in different classes.

2 Show concurrent processes and activations.
3 Show time sequences that are not easily depicted in a Collaboration diagram.
4 Show general forms that do not deal with objects but with class interaction.

Guidelines for identifying relationship between objects:

 1 We need to identify a set of software objects with clearly defined responsibilities.

 2 Use of Jacobsen’s ‘interference’, ‘control’, and ‘entity’ categories, or of the CRC technique,

 are well –defined and fruitful approaches.

 3 The initial development of object interaction diagrams (sequence diagrams and
collaboration

 Diagrams) provides much of the information required to develop an initial class diagram.

4 Messages received by an object require you to define corresponding operations in the
object’s class

5 Parameters or return data involved in the message imply a requirement for attributes;
interaction between two objects implies some form of relation between their classes.

CERATING ACTIVITY DIAGRAM:

Activity diagram represent the dynamics of the system. They are used to show the flow of
control from activity to activity in the system, what activities can be done in parallel and any
alternate paths through the flow. Activity diagrams may be created to represent the flow with in
a particular use cases or across the use cases. It may be created to shoe the work flow for an
operation

57

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

THE FOLLOWING POINTS TO DRAW THE ACTIVITY DIAGRAM IN THE
SYSTEM:

1. Identify the scope of the activity diagram.

Begin by identifying what it is you are modeling. Is it a single use case? A portion of a
use case? A business process that includes several use cases? A single method of a class?
Once you identify the scope of your diagram, you should a label at the top, using a note,
indicating an appropriate title for the diagram and a unique identifier for it. you may also
want to include the date and even the names of the authors of the diagram.

2. Add start and end points

Every activity diagram has a starting point and ending point.
3. add activities

if you are modeling a use case, introduce an activity in each major step initiated by an
actor if you are modeling a high level business process, introduce an activity for each
major process, often a usecase or a package of usecases. finally if you are modelling a
method, then it is common to9 have an activity for this step in the code.

4. Add transitions from the activities.

My Style is always to exit an activity even if it is simply toan ending point.whwnever there is
more than one transition out of activity,you must label each transition appropriately.

5. Add decision points

Sometimes the logic of what you are modelling calls for a decision to be made.

6.Identity oppurtunities for parallel activities

Two Activities can occur in parallel when no direct relationship exits between them and
tehey must both finish before a third activity can.

The activities identified are:

1.create the curriculum

2.select courses to each

3.create catalogue

4.Open registration

5.Assign professors to teach

6.Place catalogue in the book store

7.Mail catalogue to students.

58

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

59

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Appendix B

60

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 A Point-of-Sale (POS) system

Project Analysis:

 A POS system is a computerized application used to record sales and handle payments; it is
typically used in retail store. It includes hardware components such as a computer and bar code
scanner , and software to run to run the system. It interfaces to various applications, such as
third party tax calculator and inventory control. These systems must be relatively fault tolerant;
that is ,even if remote services are temporarily unavailable they must still be of capturing sales
and handling at least cash payments . A POS system must support multiple and varied client-side
terminals and interfaces such as browser, PDAs, touch-screens.

Creating Use case Diagrams:

Identifying actors:

1. Supermarket is a hardware thing where goods are brought
2. Customer is a person who buys items in a super market.
3. Staff is a person who interacts with super market.
4. Bank is a actor who gives loan to super market.
5. Items are part of super market

Identifying use cases:

1. Sell items
2. Pay salaries
3. Maintenance
4. Issue bills
5. Take salary
6. Select items
7. Buy items
8. Give loans
9. Collect loans
10. Display
11. Sales
12. Profit
13. Loss
14. Pay money

 Identifying relationships:

 Association:

1. Supermarket Sell items
2. Supermarket Pay salaries
3. Supermarket Maintain
4. Supermarket Issue bills
5. Staff works in Supermarket
6. Customer selects items
7. Star takes salaries
8. Customer selects items
9. Bank gives loans

61

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

10. Bank collects loans
11. Items are display in supermarket

Creating Class Diagrams:

Identifying classes:

1. Supermarket
2. Customer
3. Cash payment
4. Staff
5. Items
6. Bank
7. Sales
8. Cashier
9. Profit
10. Loss
11. Billing system
12. hardware
13. software
14. scanner
15. Barcode reader
16. Determine tax
17. Stationary

Identifying relationship between classes:

 Aggregation:

1. Staff is a part of supermarket
2. Items are a part of supermarket
3. Billing system is a part of supermarket

Association:

1. Items are sold through sales
2. Bank provide loans to supermarket
3. Customer pays the cash payment
4. Cashier determine the tax
5. Sale are done by supermarket
6. Billing system determine the tax

Generalization:

1. Stationary is a kind of item
2. Vegetables is a kind of item
3. Chocolates is a kind of item
4. Fruits is a kind of item
5. Glossaries is a kind of item
6. Hardware is a kind of billing system
7. Software is a kind of billing system
8. Scanner is a kind of hardware

62

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

9. Barcode reader is a kind of hardware

 Dependency:

1. Profit is dependent on sales
2. Loss is dependent on sales

Identifying attributes:

1. Supermarket: name, location, branches, code
2. Cash payment: cheque, credit card, debit card, cash
3. Billing system: sensors, serial no
4. Barcode scanner
5. Loss
6. Customer: name, credit card
7. Bank; name, location
8. Sales: no of items sold, cost of item sold
9. Staff: name, id, designation
10. Items: name, code, cost, quantity
11. Cashier: name, id
12. Hardware: name, serial no
13. Software
14. Scanner
15. Determine tax: amount, percentage
16. Glossaries
17. Stationary
18. Profit

Identifying operations

1.Supermaket:sell items

2.Customer:buy items

3.Cash patment:display

4.Staff:Worktimings:salary

5.Items:display

6.Sales:Display

7.Cashier:Collect cash

8.profit:display

9.loss:display

10.billing system:issuable,display

11.hardware

63

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

12.software

13.scanner:scam code

14.barcode reader:barcodescan

15.determine tax;display

16.staionary:display

Creating collaboration diagrams:

Identifying objects:

1.s.supermarket

2.cp.cash payment

3.st.staff

4.i.items5.b.bank

6.sl.sales

7.cs.cashier

8.bs.billing systems

9.br.barcode reader

Identifying messages:

1.Supermarket exhibit items to customer

2.Supermarket gives item details to customers

3.customer enters to super market

4.pos check password of customer

5.customer selects item

6.staff guide customer

7.Barcode scanner identify product of super market

8.Super market produces the billing from

9.Cashier verifies the account of customer

10.customer pay bill system

11.Cashier give product to customer

64

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

Creating activity diagrams:

Identifying activities:

1. Take loans from bank
2. Customer enters supermarket
3. Staff shows the items
4. Customer selects the items
5. Select
6. Decline
7. Selected items submit at cashier
8. Enter details in billing system
9. Issue the bill
10. Pay bill
11. Cashier collects the bill

65

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 ONLINE BOOKSHOP Example

Project Analysis:

Online book shop is an application used to maintain information about the items that are
generally available in that book shop. Any customer can access the information about the item
and he can also order item through online by creating his login in that site. Customer can change
the already entered details. The items information in that site is entered by the bookshop staff
and it can be change if there are any modifications.

 Creating use case diagrams:

The following needs must be addressed by the system for actors are:

1 Customers to order books, access the details of the books and to receive books.
2 Bookshop staff provides the details of books and to send the books.

Actors identified are:

1 Costumer
2 Bookshop staff

The following needs must be addressed by the system for use cases are:

1 Customer registers the details of the books that are required and his personal details.
2 Customer browses the site of bookshop and selects the required books and orders.
3 The books that ordered by the customers are delivered to the appropriate customers.
4 If customer wants to change his details that are registered then it is possible through

customer update details.
5 If any new items enter the book shop or any items that removed are entered by the

bookshop details.

The uses cases identified are:

 1 Customer registers details

 2 Customer browses and orders items

3 Bookshop staff ships to customer
4 Customer updates details
5 Bookshop staff updates items

Creating class diagrams:

 The following needs must be addressed by the system for classes are:

1 Home page of the bookshop is placed in the class book.
2 Details of customer who wants to order books.
3 Information about the items those are present the bookshop.

66

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

The main classes identified are:

1 Book
2 Item
3 Customer

From these classes sub classes can be identified. They are:

1 Bookshop staff

2 Music cd
3 Software
4 Book
5 Address

For each class attributes, relationships must be made.

For example the book attributes are book name, book id, author name etc.

Identifying relationships between classes:

Inheritance:

1 Book is an item
2 Music cd is an item
3 Software is an item
4 Billing address is an address
5 Shipping address is an address

Aggregation:

1 Item is part of book shop
2 Bookshop staff is a part of bookshop

Association:

1 address is given to customer
2 Billing address is given to customer
3 Shipping address is given to bookshop

Dependency:

1 Order is dependent on bookshop.
2 Customer is dependent on bookshop.
3 Item order is dependent on customer.

Identify attributes:

1 Bookshop: name, address
2 Bookshop staff: name, id
3 Item: title, publisher, year published, price
4 Book: author
5 Music cd: software
6 Software: version

67

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

7 Item order: item, quantity
8 Order: sales tax, shipping fee, total
9 Customer: name, id, password
10 Address: street number, street name, city, state, country, postcode
11 Shopping cart
12 Billing address
13 Shipping address

Identifying operations for classes:

 Bookshop

 Welcome message

 Login and password

 Error message

 Browse and order

 Show order and cost

Book:

 Display

Music cd:

 Display

Software:

 Display

Shopping cart:

 Additem

 Display

 Itemorder

Order:

 Computeitemstotal

 Printinvoice

 Display

 Itemorder

Customer:

68

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 Verifypassward

 Additemtoshoppingcart

 Creat order

 Printbillinglable

 Printshppinglable

 Address:

 Print

 Billingaddress:

 Print

 Shippingadrress:

 Print

Creating collaboration diagram:

Identifying objects:

1. B.Bookshop
2. Bs.Bookshop staff
3. O.Order
4. C.Customer
5. a.Address
6. sc.Shopping

Identifying messages:

1. Bookshop gives welcome message to customer
2. Bookshop checks password of customer
3. Customer gets verify of password from bookshop
4. Item are displayed for the customers
5. Staff explains to customer
6. Customer selects an item
7. Staff maintains customer details
8. Bookshop takes order from customer
9. Bookshop sends items to customers
10. Customer pay bill to bookshop
11. A bookshop collects travelling charges from customers
12. Bookshop sends item to the customers address

Creating activity diagrams:

The following needs must be the addresses by the systems for the activities are:

1. When the custom opens the site then welcome message must be displayed.
2. If the customer wants to order books then he creates the login name and password.

69

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

3. Authentication is done after the customer login.
4. Customer can login the desired books.
5. The ordered books are transferred to the appropriate customers.

Activities identified are:

1. System welcome message.

2. Customer login

3. System validates password.

4. Customer browses.

5. System displays item information.

6. Customer selects number

7. System creates order

8. Customer done

9. System creates order

10. System shows order and cost

11. Customer agree to pay

12. System sends invoice to customer

13. Bookshop staff ships to customer

70

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

An Automated Company

Projected Analysis:

 Automate a small manufacturing company. The resulting application will enable the user
to take out a loan, purchase a machine, and over a series of monthly production runs, follow the
performance of their company.

Creating use case diagram:

Identifying actors

1. Company is hardware thing
2. Employee is a person in company
3. Technical employee is a person in company
4. Non technical employee is person in company
5. Bank is hardware thing that gives loan to company
6. Customer is a person who buys goods

Identifying use cases

1. Recruit employee
2. Give salary
3. Pay for raw materials
4. Maintain machines
5. Dismiss employee
6. Product goods
7. Work
8. Maintain union
9. Take salary
10. Give loan
11. Collect interest
12. Collect loan
13. Bye goods
14. Pay money

Identifying relationships
Generalization

1. Technical staff is a type of employee
2. Non technical staff is a type of employee

Association

 1.Company recruits employee

 2.Company gives salaries.

 3.Company pays for raw materials

 4.Company maintains machines

 5.Company dismisses employee.

71

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

 6.Company product goods

 7.Employee works in company.

 8.Employee takes salary.

 9.Bank gives loan

 10.Bank collect interest

 11.Customer buy goods

 12.Customer pays

Create class diagrams:

Identifying classes:

1.Company

2.Bank

3.Employees

4.Technical

5.Non technical

6.Customers

7.Shares

8.Machines

9.Goods

10.Customer

11.Market

12.Sales

13.Status

14.Profit

15.Loss

16.Rawmaterials

17.Department

Identifying relationships between classes:

Inheritence:

72

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

1.status contains profit

2.status contains loss

3.employee contais non technical

Aggregation:

1.employee is a part of company

2.machines are part of company

3.department is a part of company

Association:

1.shares are provided by the company

2.bank provide loan for company

3.machines produce the goods

4.raw materials are given to the company

5.sales tells the status

6.customer buys goods through sales in market

Dependency:

1.market is dependent on goods

Identifying attributes:

1.company:name,code,address

2.bank:name,address,branchname

3.employee:department,hrswork

4.technical:name,id,hourswork

5.nontechnical:name,id,hourswork

6.shares:code

7.machines:type,cost,size,capacity

8.goods:name,code

9.customer:name

10.market:name,address

11.sales:quantity,quantity sold, quantity left

73

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

12.status:mention status

13.profit

14.loss

15.rawmaterials:type,code, quality type

16.department:name of dept, type

Identifying operations for classes:

Company:

1.check attendance

2.give salary

3.pay for salary

4.maintained machines

5.sell goods to markets

6.recruit employee

7.dismiss employee

8.note raw materials

Customer:

1.buy goods

2.pay money

Bank:

1.give loan

2.collect interest

3.collect loan

Employee:

1.work

2.take salary

3.maintain union

Non technical:

1.work

74

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

2.take salary

3.maintain union

Shares

1.increase on profit

2.decrease on loss

machines

1.process raw materials

2.give finished goods

market

1.receive goods

2.sell goods

3.pay for company

4.collect form customer

sales

1.calculate status

Status

profit

1.compute profit or loss

2.calculate status

3.profit amount

loss

1.compute profit or loss

2.calculate status

3.loss amount

Creating collaboration diagram:

Identifying objects

1.c:company

2.s:shares

75

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

3.r:raw materials

4.m:machinery

5.sa:sales

6.c:customer

7. m:market

8.g:goods

9.e:employee

10.b:bank

Identifying messages

1.company plans for its development

2.company request loan from bank

3.bank check account of the company

4.company purchase machinery

5.company purchase raw materials

6.company receives order

7.company decides the quality of products

8.company manufactures the products

9.company analyze quality in market

10.customer buys from market

11.production analyses the sales depending on market

12.monthly production decides profit or loss depending on sales

Creating activity diagrams:

Identification of activities:

1.company takes loan from banks2.buy raw materials

 Multi-threaded airport automation

Automate the operations in an airport. your application should support multi aircrafts using
several run ways and gates avoiding collisions/conflicts. landing: an aircraft uses the runway,

76

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

lands and then taxes over to the terminal. Take-off: an air craft taxies to the run way and then
takes off.

Creating use case diagram:

Identifying the cases:

1. check luggage

2. give ticket

3. ticket booking

4. take money

5. maintainance

6. give salary

7. take off

8. land off

9. visa check

10. shopping stalls

11. timings

12. pays the amount

13. management

Identifying relationships:

Genenaralization:

1.technical is a kind of staff

2.non technical is a kind of staff

3.local plane are part of aero planes

4.non local planes are part of aero planes

Association:

1. Staff checks luggage

2. Staff gives ticket

3. Staff does the ticket booking

4. Staff maintains the airport

77

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

5. Pilot makes the aero plane to take off

6. Pilot makes the aero plane to lane

7. Passenger books the ticket

8. Passenger pays the amount

Include

1. After ticket booking money should be taken

2. Management should give salaries

Extend

1 .after ticket booking the air plane may or may not come in time

Creating class diagram:

Identifying classes:

1. Airport

2. Location management

3. Staff

4. Security

5. Technical staff

6. Non technical staff

7. Customer

8. Visa check

9. Ticket booking

10. online booking

11. aeroplane

12.local planes

13.international planes

14. stopping stalls

15. bakery

16. stationary

17. electronic restaurant

78

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

18. Timings

19. Pilots

20. Helpdesk

Identifying relationships between classes:

Aggregation:

1.staff is a part of airport

2.aeroplanes is a part of airport

3.shopping stalls is a part of airport

4.online booking is a part of ticket booking

Generalization:

1. Staff contain visa check
2. Staff contains security
3. Staff contains technical staff
4. Staff contains customs
5. Staff contains nontechnical
6. Staff contains helpdesk
7. Aeroplanes contains local planes
8. Aeroplanes contains international planes
9. Shopping stalls contains bakery
10. Shopping stalls contains stationery
11. Shopping stalls contains electronic
12. Shopping stalls contains restaurant

Dependency:

1.timings are dependent on airport

2.ticket booking is dependent on technical staff

3.aeroplanes are dependent on pilots

Identifying attributes:

1. Airport: name, code

2 . location: name, city, country, state, pincode

3.management: name, designation

4.staff:name,id,type, salary, workinghrs

5.security: name,id,type

6.technical staff: name, id

79

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

7.nontechnical staff: name, id, type

8.customs:name,id

9.visacheck:name,id

10.ticketbooking:name of the lane, code, price, seatno, classtype, timings

11.onlinebooking:name,code,destination

12.shopping stalls: name, code, type

13.bakery:name, code, type of items

14.stationery:name, code, type of goods

15.electronic:name,code, type of items

16.restaurant:name,code, type of items

17.timings:name of the plane, code of the plane, time of plane

18.pilots:name, id

19.helpdesk:name, id

Identifying operations for classes:

airport

 take off

 landing

 parking of planes

management

 gives salary

maintenance

 control staff

staff

 work

 take salary

customs

 check luggage

 check persons

80

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

visa check

 visa check

ticket booking

 book ticket

 give ticket

 Take money

Aeroplanes

 Reach destination

Takeoff

Buy goods

Bakery

Pay to management

Stationary

Pay to management

Electronic

Pay to management

Restaurant

Pay to management

Pilots

Fly the plane

Helpdesk

Tell details

Creating collaboration diagrams:

Identifying objects:

1.P:Passenger

2.T:ticket booking

3.St:timings

4.Aa:aeroplanes

81

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

5.T:timings

6.A:airport

7.S:shoppingstalls

Identifying messages:

1.passenger uses online reservation of ticket reservation counter

2.passenger know details form ticket booking

3.passenger reserve ticket from ticket booking

4.ticket booking staff check allotments for passenger

5.ticket booking staff allots ticket to passengers

6.passenger know the arrival time of air plane

7.passenger enter to passenger

8.staff check passport

9.Custom staff check luggage of passenger

10.airplane starts check luggage of passenger

11.Passenger travels in plane

Creating Activity Diagram:

Identification of activities;

1.passenger enters

2. Check visa.

3. Grant permission

4.Send out

5.if brought good in shop

6.pay money

7.Don’t pay

8.Pilots land aeroplane in airport

9.inform arrival

10.Boarding of passenger

11.take off of plane

82

Object Oriented Software Engineering Laboratory (CSE 4.1.8)

12.reach destination.

83

