Code No: R1921042

SET - 1

II B. Tech I Semester Supplementary Examinations, September - 2021 SWITCHING THEORY AND LOGIC DESIGN

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 75

		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 63 53
1	a)	Add the following numbers using the 2's complement method.  (i) +49 and -37 (ii)-48 and +31	[6M]
	b)	Given the 8 bit data word 01011011, generate the 12 bit composite word for the hamming code that corrects and detects single errors.	[7M]
	c)	Convert the binary number $(101111.1101)_2$ into its decimal equivalent.	[2M]
		Or	
2	a)	Explain Demorgan's theorems in Boolean Algebra.	[6M]
	b)	Implement EX OR gate using only four two input NAND gates.	[4M]
	c)	Convert the Boolean function $F(A,B,C,D) = A+BC+ACD$ into standard POS form.	[5M]
3	a)	Minimize the following expression using Quine-McCluskey method $Y = \bar{A} B \bar{C} \bar{D} + \bar{A} B \bar{C} D + A B \bar{C} \bar{D} + A B \bar{C} D + A \bar{B} \bar{C} D$	[12M]
	b)	What are the advantages and disadvantages of K-map?	[3M]
		Or	
4	a)	Implement full adder using decoder and OR gates	[5M]
	b)	Design a 4-bit BCD to gray code converter and draw its logic diagram.	[10 <b>M</b> ]
5	a)	Define an encoder. Design octal to binary encoder	[10 <b>M</b> ]
	b)	List the applications of multiplexers.	[3M]
	c)	What is a magnitude comparator?	[2M]
		Or	
6	a)	Design a combinational circuit using PROM that accepts 3-bit binary number and generates its equivalent excess-3 code.	[10M]
	b)	Compare the three combinational PLDs – PROM, PLA and PAL.	[5M]
7	a)	Differentiate between synchronous and asynchronous counters.	[4M]
	b)	What is a shift register? Name the different types of shift registers.	[4M]
	c)	Explain the operation of the bi-directional shift register.	[7M]
		Or	
8	a)	Convert a J-K flip-flop into a T type flip-flop.	[10 <b>M</b> ]
	b)	Discuss the effects of propagation delay in ripple counters.	[5M]
		1 of 2	

**SET** - 1

9 a) A sequential circuit has one input and one output .The state diagram is shown below. Design the sequential circuit with D flip-flops.

[9M]



b) Discuss the capabilities and limitations of Finite State Machines.

[6M]

Or

10 a) Reduce the state table using partition technique.

[10M]

Present	Next State		Output	
State	x = 0	x = 1	x = 0	X = 1
a	d	b	0	0
ь	e	a	0	0
c	g	f	0	1
d	a	d	1	0
e	a	d	1	0
f	c	b	0	0
g	a	e	1	0

b) Distinguish Mealy and Moore machines.

[5M]