ANALOG ELECTRONIC CIRCUITS (AEC) LABORATORY MANUAL

II / IV B.E. (ECE): II - SEMESTER

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU – 534 007

ANALOG ELECTRONIC CIRCUITS (AEC) - LAB

II / IV B.E. (ECE): II - SEMESTER

LIST OF EXPERIMENTS

- 1. APPLICATIONS OF OPERATIONAL AMPLIFIER
- 2. PARAMETERS OF OPERATIONAL AMPLIFIER
- **3. FEEDBACK AMPLIFIER**
- 4. COLPITTS OSCILLATOR
- 5. RC-PHASE SHIFT OSCILLATOR
- 6. FREQUENCY RESPONSE OF OP-AMP
- 7. TWO STAGE RC-COUPLED AMPLIFIER
- 8. TUNED VOLTAGE AMPLIFIER
- 9. WEIN BRIDGE OSCILLATOR
- **10. HARTLEY OSCILLATOR**
- 11. CLASS-B PUSH PULL AMPLIFIER
- **12. VOLTAGE SERIES FEED BACK AMPLIFIER**

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7 II/IV (B.E) ECE, II-SEM :: AEC Lab Manual

APPLICATIONS OF

OPERATIONAL AMPLIFIER

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM:

Non - inverting Amplifier:

20mV + 15V 1KHz - Voltage Follower

Fig. 3

Summing Amplifier

Fig. 4

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

APPLICATIONS OF OPERATIONAL AMPLIFIER

AIM: To check the following applications of OP-AMP.

- a) Inverting Amplifier.
 - b) Non inverting amplifier.
- c) Voltage Follower.
- d) Summer.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	Fixed power supply	[-15V - 0V - +15V]	1
2.	OP-AMP	μA741C	1
3.	Resistors	1ΚΩ, 4.7ΚΩ, 10ΚΩ, 33ΚΩ	Each 1
4.	Function generator		1
5.	CRO		1

PROCEDURE:

INVERTING & NON - INVERTING AMPLIFIER:

- 1. Connect the circuit as shown in the figure -1
- 2. Switch on the power supply and signal generator.
- 3. Apply a sinusoidal signal with peak to peak amplitude of 20mV at a frequency of 1KHz.
- 4. Note down the amplitude of O/P signal in the C.R.O.
- 5. Repeat the above steps for different values of R_{f} .
- 6. Repeat the above steps for the circuit of fig -2.
- 7. Tabulate the readings.

VOLTAGE FOLLOWER:

- 1. Connect the circuit as shown in the fig -3 apply a 20 mV sinusoidal signal at a frequency of 1KHz.
- 2. Vary the frequency in steps of 1KHz and note the amplitude of the O/P wave form.
- 3. Tabulate the readings.

SUMMER:

- 1. Connect the circuit as shown in the figure-4.
- 2. Apply the DC signals as shown in the fig-4 and measure the O/P and compare it with the theoretical value.

INVERTING AMPLIFIER:

 $V_i = 20 mV$

S.NO	$R_{f}(\Omega)$	$R_1(\Omega)$	V ₀ (mV)	$Gain = V_0 / V_i$	Theoretical Gain = (-R _f /R ₁)
1	4.7K	1K			
2	10K	1K			
3	33K	1K			

NON-INVERTING AMPLIFIER:

 $V_i = 20mV$

S.NO	$R_f(\Omega)$	$R_1(\Omega)$	V ₀ (mV)	Gain= V ₀ / V _i	Theoretical Gain = (1+R _f /R ₁)
1	4.7K	1K			
2	10K	1K			
3	33K	1K			

VOLTAGE FOLLOWER:

 $V_i = 20mV$

S.No	Frequency (Hz)	V ₀ (mV)
1	1K	
2	2K	
3	3K	
4	4K	
5	5K	
6	6K	
7	7K	
8	8K	
9	9K	
10	10K	

SUMMER:

$$V_0 \text{ (Theoretical)} = -\frac{R_f}{R_1}(V_1 + V_2) = -----Volts.$$

$$V_0 \text{ (Practical)} = -----Volts.$$

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

RESULT:

VIVA QUESTIONS:

- 1. What are the ideal Characteristics of an OP-AMP?
- 2. Explain the concept of virtual ground?
- 3. What are the internal stages in an OP-AMP IC ?
- 4. What type of transistor Configuration is used at the front end of an OP-AMP IC ?
- 5. Draw the circuit diagram of an integrator and a differentiator using an OP-AMP?
- 6. Why square wave is used to test any amplifier ?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

PARAMETERS OF OPERATIONAL AMPLIFIER

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

PARAMETERS OF OPERATIONAL AMPLIFIER

AIM: To determine the following parameters of OP-AMP µ A741 C.

a) Input Bias Current.

c) Input Offset Voltage.

b) Input Offset Current. d) CMRR.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	Fixed Power supply	[-15V - 0V - +15V]	1
2.	Operational Amplifier	μΑ 741C	1
3.	Resistors	1ΜΩ, 10ΚΩ, 100ΚΩ, 100Ω	Each 1
4.	Capacitors	0.01µ F	1
5.	Function generator		1
6.	Multimeter		1
7.	CRO		1

PROCEDURE:

- 1. Connect the circuit as shown in the figure (1).
- 2. The O/P voltage V_0 is measured from the O/P terminals.
- 3 I_B^- is calculated by using $I_B^- = \frac{V_0}{R_f}$.
- 4. The circuit is connected as shown in the figure (2).
- 5. The O/P voltage V_0 is measured from the O/P terminals.

6. I_B+ is calculated by using
$$I_B^+ = \frac{V_0}{R_1}$$
.

7. Input bias current

8. The circuit is connected as shown in the figure (3).9. The Input offset current is measured by using the formula

$$I_{io} = \frac{V_0}{R_f}$$
. The circuit is connected as shown in the figure (4)

 $I_B = \frac{I_B^+ + I_B^-}{2}.$

10. Input offset voltage

$$V_{io} = \frac{V_0}{\left(1 + \frac{R_f}{R_1}\right)}$$

- 11. The circuit is connected as shown in the figure (5).
- 12. A 50 mV sinusoidal signal at a frequency of 1 KHz is applied at the I / P.
- 13. The O/P voltage V_0 is measured.
- 14. The CMRR is found by using,

$$CMRR = \left(1 + \frac{R^1}{R}\right) \frac{V_s}{V_o} \,.$$

15. CMRR in decibels = 20log (CMRR).

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

RESULT:

VIVA QUESTIONS:

- 1. What are the different parameters of an OP-AMP?
- 2. Define input offset voltage?
- 3. Define Input bias current and Input offset current?
- 4. What is meant by slew rate?
- 5. Why we need to calculate the offset values?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

FEEDBACK AMPLIFIER

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM:

WITHOUT FEEDBACK:

Without feedback Amplifier

WITH FEEDBACK:

MODEL GRAPH:

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7 II/IV (B.E) ECE, II-SEM :: AEC Lab Manual

FEEDBACK AMPLIFIER

AIM: To plot the frequency response curve of an amplifier with and without feedback.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	Regulated Power Supply	(0-30V)	1
2.	Transistor	BC 107	1
3.	Resistors	100ΚΩ,4.7ΚΩ,10ΚΩ	Each 1
4.	Resistors	1ΚΩ	2
5.	Capacitors	10µF	3
6.	Function generator		1
7.	CRO		1

PROCEDURE:

AMPLIFIER WITHOUT FEED BACK:

- 1. Connect the circuit as shown in the figure -1.
- 2. Apply a 20 mV sinusoidal signal at a frequency of 100 Hz and observe the I / P signal in the C.R.O.
- 3. Determine the O / P voltage V_0 using the C.R.O.
- 4. Determine the gain of the amplifier $A_V = V_0 / V_I$.

5. Now vary the frequency in convenient steps upto 1MHz, keeping the I / P voltage constant and for each frequency note down the O / P voltage.

- 6. Tabulate the readings.
- 7. Draw a graph between the frequency and the gain in decibels and determine the band width.

AMPLIFIER WITH FEEDBACK:

- 1. Connect the circuit as shown in the figure -2.
- 2. Apply a 20 mV sinusoidal signal at a frequency of 100 Hz and observe the I / P signal in the C.R.O.
- 3. Determine the O / P voltage V_0 using the C.R.O.
- 4. Determine the gain of the amplifier with feedback $A_{Vf} = V_0 / V_I$.Compare this gain with the gain of the Amplifier without feedback.
- 5. Now vary the frequency in convenient steps up to 1MHz ,keeping the I / P voltage constant and for each frequency note down the O / P voltage.
- 6. Tabulate the readings.
- 7. Draw a graph between the frequency and the gain in decibels and determine the band width. Compare the band width with the band width of the Amplifier without feedback.

TABULAR FORM:

Enguara	Without Feedback			With Feedback		
(Hz)	V ₀ (Volts)	Gain A _V =V ₀ /Vi	Gain in db (20logA _V)	V ₀ (Volts)	Gain A _{Vf} =V ₀ /V _I	Gain in db (20logA _V)
50						
100						
300						
500						
700						
1K						
3K						
5K						
7K						
10K						
30K						
50K						
70K						
100K						
300K						
500K						
700K						
1MHz						

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

RESULT:

Gain of the Amplifier without feedback $A_V =$ Gain of the Amplifier with feedback $A_{Vf} =$ Band width of the Amplifier without feedback = Band width of the Amplifier with feedback =

VIVA QUESTIONS:

- 1. What are the different types of feedback techniques?
- 2. What is the type of feedback incorporated in oscillators?
- 3. What are the advantages of negative feedback?
- 4. Why positive feedback is not used in amplifiers?
- 5. What is the expression for the desensitivity factor in case of negative feedback?
- 6. What happens to the band width of an amplifier if we incorporate negative Feedback?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

COLPITTS OSCILLATOR

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

Colpitts Oscillator

TABULAR FORM:

S NO	L (II)	С(C (μF)		Theoretical
S.NO. L (mH)	C ₁	C ₂	(Hz)	(Hz)	
1					
2					
3					

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

COLPITTS OSCILLATOR

AIM: To determine the frequency of oscillations of a given Colpitts Oscillator.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	DC Regulated Power Supply	(0-30V)	1
2.	Resistors	560Ω, 47 ΚΩ	Each 1
4.	Resistors	4.7 ΚΩ	2
5.	Capacitors	100µF, 0.047µF	Each 1
6.	Decade Inductance Box		1
7.	Decade Capacitance Box		2
8.	CRO		1

PROCEDURE:

- 1. Connect the circuit diagram as shown in the figure.
- 2. Switch on the power supply.
- 3. Connect the out put terminals to CRO.
- 4. Adjust the capacitances until a sinusoidal wave form is observed on the CRO.
- 5. Measure the time period of the sinusoidal wave form (T) and determine the Frequency (1/T).
- 6. Repeat the above steps for different values of L, $C_1 \& C_2$.
- 7. Tabulate the readings and compare with theoretical values

CALCULATIONS:

f ₀ (practical)	=1/T Hz.	
f_0 (theoretical)	$f_0 = \frac{1}{2\pi\sqrt{LC_{eq}}} .$	[Where $C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$]

RESULT:

VIVA QUESTIONS:

- 1. Why RC network oscillator cannot be used at Radio frequencies?
- 2. Why LC network oscillators are preferred at high frequencies?
- 3. Why a buffer amplifier is required in between an oscillator and a load?
- 4. What is meant by ringing in an amplifier?
- 5. Why the crystal oscillator is highly stable?
- 6. Draw the electrical equivalent circuit of a crystal oscillator?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

RC-PHASE SHIFT OSCILLATOR

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM:

RC-Phase shift Oscillator

TABULAR FORM:

S.No	Resistance (KΩ)	Capacitance (µF)	Practical Frequency (Hz)	Theoretical Frequency (Hz)
1	4.7	0.1		
2	4.7	0.01		
3	4.7	0.001		

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

RC-PHASE SHIFT OSCILLATOR

AIM : To determine the frequency of oscillations of a given RC phase shift Oscillator.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	DC Regulated power supply	(0 - 30V)	1
2.	Transistor	BC 107	1
3.	Resistors	1ΚΩ, 47ΚΩ, 560Ω	Each 1
4.	Resistors	4.7ΚΩ	4
5.	Capacitors	0.1µF, 0.01µF, 0.001µF	Each 3
6.	Capacitors	0.047μ F	1
7.	Capacitors	$\frac{100 \ \mu F}{20V}$	1

PROCEDURE:

- 1. Connect the circuit diagram as shown in the figure.
- 2. Switch on the power supply.
- 3. Connect the O/P terminals to C.R.O.
- 4. Observe the sinusoidal wave form on C.R.O.
- 5. Determine the time period (T) of the wave form and frequency (1/T).
- 6. Repeat the above procedure for different sets of Capacitors.
- 7. Tabulate the readings and compare with theoretical values.

CALCULATIONS:

f(practical) = 1/T Hz.

$$f_o = \frac{1}{2\pi RC\sqrt{6+4K}}$$
 (Theoretical)

Where $K = R_C / R = 1$.

$$R_1 = R_2 = R_3 = R.$$

 $C_1 = C_2 = C_3 = C.$

RESULT:

VIVA QUESTIONS:

- 1. Which type of feedback is incorporated in RC phase shift oscillator ?
- 2. Can we built up an RC phase shift oscillator using two stages of RC network of each 90^{0} phase shift ?
- 3. State Barkhausen criterion?
- 4. What is the condition imposed on A and β to get sustained oscillations?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

FREQUENCY RESPONSE OF OP-AMP

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM:

MODEL GRAPH:

TABULAR FORM:

Vi = 20mV

S.No.	Frequency (KHz)	V ₀ (mV)	Gain A _V =V ₀ / V _i	Gain in db (20 log A _V)
1	50			
2	100			
3	300			
4	500			
5	700			
6	1K			
7	3K			
8	5K			
9	7K			
10	10K			
11	30K			
12	50K			
13	70K			
14	100K			
15	300K			
16	500K			
17	700K			
18	1MHz			

FREQUENCY RESPONSE OF OP-AMP

AIM: To plot the frequency response characteristics of OP-AMP μ A 741 C and to obtain the band width.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	Fixed power supply	[-15V - 0V - +15V]	1
2.	OP-AMP	μΑ 741 C	1
3.	Resistors	10ΚΩ, 1ΚΩ	Each 1
4.	Function generator		1
5.	CRO		1

PROCEDURE:

- 1. Connect the circuit as shown in the figure.
- 2. Switch on the power supply and the function generator.
- 3. Apply a 20 mV sinusoidal signal at the I/P.
- 4. Vary the frequency in convenient steps and note down the amplitude of the O/P Wave form.
- 5. Tabulate the readings.
- 6. Plot a graph between gain and frequency.
- 7. Determine the band width.

RESULT:

Upper cut-off frequency	=	KHz.
Lower cut-off frequency	=	Hz.
Band Width	=	KHz

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

TWO STAGE RC-COUPLED AMPLIFIER

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM:

Two Stage RC-Coupled Amplifier

MODEL GRAPH:

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7 II/IV (B.E) ECE, II-SEM :: AEC Lab Manual

TWO STAGE RC-COUPLED AMPLIFIER

AIM: To plot the frequency response of Two stage RC – Coupled Amplifier and to obtain its band width.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	D.C Regulated power supply	(0 - 30V)	1
2.	Transistors	BC 107	2
3.	Resistors	10ΚΩ, 100ΚΩ, 4.7ΚΩ	Each 2
4.	Resistors	1ΚΩ	3
5.	Capacitors	10µF	5
6.	Function Generator		1
7.	CRO		1

PROCEDURE:

- 1. Connect the circuit as shown in the figure.
- 2. Switch on the power supply and the Function generator.
- 3. Apply a 5mV sinusoidal signal at the I/P.
- 4. Vary the frequency in convenient steps and note down the O/P voltage.
- 5. Tabulate the readings and calculate the gain in dB.
- 6. Plot a graph between gain and frequency.
- 7. Determine the band width.

RESULT:

Upper cut-off frequency	=	KHz.
Lower cut-off frequency	=	Hz.
Bandwidth	=	KHz.

VIVA QUESTIONS:

- 1. What is the need for Two stage Amplifier?
- 2. Differentiate between interacting and non- interacting stages?
- 3. Give the expression for the overall upper cut-off frequency of a multistage amplifier?
- 4. What is the effect of multistage amplifier on band width?
- 5. What is the choice of transistor configuration in multistage amplifier?
- 6. What is cascade amplifier?
- 7. What is the advantage of cascade amplifier?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

TABULAR FORM:

Voltage Gain Frequency Gain in dB Vo (mV) S.No Av=(Vo/Vi) (Hz) (20logAv) 1 50 2 100 3 300 4 500 5 700 6 1K 7 3K 8 5K 9 7K 10 10K 30K 11 12 50K 13 70K 14 100K 15 300K 500K 16 17 700K 18 1MHz

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

II/IV (B.E) ECE, II-SEM :: AEC Lab Manual

Vi = 20mV

WEIN BRIDGE OSCILLATOR

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM:

TABULAR FORM:

S.No	Capacitance C (µ F)	Resistance R (Ω)	Theoretical Frequency = 1/2π RC (Hz)	Practical Frequency=1/T (Hz)
1	0.047	3.3K		
2	0.33	220		

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

WEIN BRIDGE OSCILLATOR

AIM: To determine the frequency of oscillations of a given Wein Bridge oscillator and compare it with the theoretical value.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	Fixed Power Supply	[-15V - 0V - +15V]	1
2.	OP-AMP	μ Α741C	1
3.	Potentiometer	47 Κ Ω	1
4.	Resistors	3.3 Κ Ω, 220Ω	Each 2
5.	Resistors	12 ΚΩ	1
6.	Capacitors	0.047µ F, 0.33µ F	Each 2
7.	CRO.		1

PROCEDURE:

- 1. Connect the circuit as shown in the figure.
- 2. Connect 0.047 μ F, and 3.3 K Ω $\,$ in place of C and R.
- 3. Connect the O/P to the C.R.O and observe the sinusoidal signal and measure its frequency.
- 4. Connect 0.33 μ F, and 220 Ω in places of C and R.
- 5. Observe the sinusoidal signal and measure its frequency.
- 6. Tabulate the readings and Compare it with theoretical values

FORMULAS:

Practical Frequency	$f_o = \frac{1}{T}$
Theoretical Frequency	$f_o = \frac{1}{2\pi RC}$

RESULT:

Theoretical frequency	=	KHz.
Practical frequency	=	KHz.

VIVA QUESTIONS:

- 1. What are the different techniques for the stabilization of an oscillator?
- 2. What is the principle of operation of Wein Bridge oscillator?
- 3. What is the condition imposed on R_f and R₁ to get oscillations in case of Wien Bridge oscillator?
- 4. State barkhausen criterion?
- 5. What is the condition imposed on A and β to get sustained oscillations?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

TUNED VOLTAGE AMPLIFIER

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM:

MODEL GRAPH:

TABULAR FORM:

				Vi = 5mV
	S.No	Frequency (Hz)	Output Voltage (V ₀) (mV)	Gain in dB = 20 log (V ₀ / V _i)
	1	50		
	2	100		
	3	300		
	4	500		
ĺ	5	700		
	6	1K		
	7	3K		
	8	5K		
	9	7K		
	10	10K		
	11	30K		
	12	50K		
	13	70K		
	14	100K		
	15	300K		
	16	500K		
	17	700K		
	18	1MHz		

TUNED VOLTAGE AMPLIFIER

AIM: To obtain the frequency response of a tuned voltage amplifier. and to obtain the band width.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	Transistor	SL100	1
2.	Resistors	1 K Ω , 22 K Ω , 1.8K Ω , 470 Ω	Each 1
3.	Capacitors	10F, 33F	Each 1
4.	IF Transformer		1

PROCEDURE:

- 1. Connect the circuit as shown in the figure.
- 2. Apply a 4 mV sinusoidal signal at a frequency of 1 KHz and note down the O/P.
- 3. Now vary the frequency of the input signal upto 1MHz in suitable steps by keeping the input voltage constant.
- 4. Note down the O/P voltage V_0 .
- 5. Tabulate the readings.
- 6. Draw gain Vs frequency graph on semi log sheet and determine the band width.

RESULT:

VIVA QUESTIONS:

- 1. What is a tuned amplifier?
- 2. Distinguish between a single tuned and a double tuned amplifier?
- 3. What is meant by stagger tuned amplifier?
- 4. Is the tuned amplifier a narrow band or a wide band amplifier?
- 5. Define selectivity?
- 6. What parameters shall be selected for a highly tuned amplifier?
- 7. Where the tuned amplifiers are used?
- 8. What type of tuning is used in the IF stage of a Radio receiver ?
- 9. What is the relation between the band width of a double tuned and a stagger tuned amplifier?
- 10. How to improve the band width of a tuned amplifier?
- 11. What is meant by critical tuning?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

HARTLEY OSCILLATOR

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM:

Hartley Oscillator

TABULAR FORM:

Capacitance	Inductance (mH)		Practical	Theoretical	
C (μ F)	L_1	L ₂	Frequency (Hz)	Frequency (Hz)	

HARTLEY OSCILLATOR

AIM: To Determine the frequency of oscillations of a Hartley Oscillator and compare it with the theoretical values.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	D.C Regulated Power Supply	(0 - 30V)	1
2.	Resistors	1ΚΩ, 10kΩ, 47ΚΩ	Each 1
3.	Capacitors	0.22µF	2
4.	Decade Capacitance Box		1
5.	Decade Inductance Box		2
6.	CRO		1

PROCEDURE:

- 1. Connect the circuit as shown in the figure.
- 2. Connect the O / P of the oscillator to the C.R.O.
- 3. Adjust the Capacitance and Inductance Boxes until a sinusoidal signal is observed in the CRO.
- 4. Determine the frequency of the wave form.
- 5. Determine the frequency by varying the capacitance in convenient steps.
- 6. Tabulate the readings and compare the readings with the theoretical values.

FORMULAS:

Theoretical Frequency
$$f_0 = \frac{1}{2\pi \sqrt{L_{eq}C}}$$

Practical Frequency F: $\frac{1}{T}$

CALCULATIONS:

RESULT:

VIVA QUESTIONS:

- 1. Why RC network oscillator cannot be used at Radio frequencies?
- 2. Why LC network oscillators are preferred at high frequencies?
- 3. Why a buffer amplifier is required in between an oscillator and a load?
- 4. What is meant by ringing in an amplifier?
- 5. Why the crystal oscillator is highly stable?
- 6. Draw the electrical equivalent circuit of a crystal oscillator?

CLASS-B PUSH PULL AMPLIFIER

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CLASS-B PUSH PULL AMPLIFIER

AIM: To Plot the Graph between Load and Power of a Class B Push pull Power Amplifier.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	Push pull power amplifier module		1
2.	D.C Regulated Power supply	(0-30V).	1
3.	Function generator		1
4.	CRO		1

PROCEDURE:

- 1. Connect the circuit diagram as shown in the figure.
- 2. Determine the maximum signal handling capacity of the push pull amplifier.
- 3. Apply sinusoidal signal of 4mV peak to peak voltage at a frequency of 1 KHz.
- 4. Connect Power meter at the O/P terminals.
- 5. By changing the load at the O/P terminals measure the power in the Power meter.
- 6. Tabulate the readings.
- 7. plot the graph between Power vs load

RESULT:

VIVA QUESTIONS:

- 1. What is meant by conversion efficiency? Which type of power amplifier has the maximum conversion efficiency? Why?
- 2. To which class does the push-pull amplifier belongs and what are the advantages of it?
- 3. What is meant by crossover distortion? In which power amplifier it is maximum?
- 4. Why class-A amplifier is used in transmitter modulators?
- 5. What is the maximum theoretical efficiency of a class-A amplifier?
- 6. Which harmonics are eliminated in the class –B push-pull amplifier?
- 7. What is meant by complementary symmetry push-pull amplifier? State its advantages.
- 8. Why the load is to be coupled through a transformer in a class-A amplifier?
- 9. Discuss the stability techniques of power amplifier?
- 10. Draw the thermal equivalent circuit of a power amplifier?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

VOLTAGE SERIES FEED BACK AMPLIFIER

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM:

WITHOUT FEEDBACK:

Voltage-Series W/O F/B Amplifier

Voltage-Series with F/B Amplifier

MODEL GRAPH:

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

VOLTAGE SERIES FEED BACK AMPLIFIER

AIM: To Plot the frequency response curve of an amplifier with and without feedback.

APPARATUS:

S.No	Name	Range / Value	Quantity
1.	Regulated Power Supply	(0-30V)	1
2.	Transistor	BC 107	1
3.	Resistors	100ΚΩ, 10ΚΩ	Each 1
4.	Resistors	1ΚΩ	2
5.	Capacitors	10µF	3
6.	Function generator		1
7.	CRO		1

PROCEDURE:

AMPLIFIER WITHOUT FEEDBACK:

- 1. Connect the circuit as shown in figure -1.
- 2. Apply a 20mV sinusoidal signal at a frequency of 100Hz and observe the I/P waveform in the CRO.
- 3. Determine the O/P Voltage Vo using the CRO.
- 4. Determine the gain of the amplifier Av = Vo/Vi.
- 5. Now vary the frequency in convenient steps up to 1MHz keeping the I/P constant and for each frequency note down the O/P voltage.
- 6. Tabulate the readings.
- 7. Draw the graph between the frequency and the gain in decibels and determine the band width.

AMPLIFIER WITH FEEDBACK:

- 1. Connect the circuit as shown in figure -2.
- 2. Apply a 20mV sinusoidal signal at a frequency of 100Hz and observe the I/P waveform in the CRO.
- 3. Determine the O/P Voltage Vo using the CRO.
- 4. Determine the gain of the amplifier Avf = Vo/Vi. Compare this gain with the gain of the Amplifier without feedback.
- 5. Now vary the frequency in convenient steps up to 1MHz keeping the I/P constant and for each frequency note down the O/P voltage.
- 6. Tabulate the readings.
- 7. Draw the graph between the frequency and the gain in decibels and determine the band width. Compare the band width with the band width of the Amplifier without feedback.

TABULAR FORM:

Vi = 20mV

Frequency (Hz)	Without Feedback		With Feedback			
	V ₀ (Volts)	Gain A _V =V ₀ /Vi	Gain in db (20logA _V)	O/P V ₀ (Volts)	Gain A _{Vf} =V ₀ /V _I	Gain in db (20logA _V)
50						
100						
300						
500						
700						
1K						
3K						
5K						
7K						
10K						
30K						
50K						
70K						
100K						
300K						
500K						
700K						
1MHz						

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

RESULT:

Gain of the Amplifier without feed back at	Av =	=
Gain of the Amplifier with feedback at	Avf=	=
Band width of the Amplifier without feed ba	ick =	_
Band width of the Amplifier with feed back	=	=

VIVA QUESTIONS:

- 1. What are the different types of feedback topologies?
- 2. Which type of feed back incorporated in oscillators?
- 3. What are the advantages of negative feedback?
- 4. Why positive feedback is not used in Amplifiers?
- 5. What is the expression for the desensitivity factor in case of negative feed back?
- 6. What is the effect of negative feed back on band width of an Amplifier?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7