LINEAR INTEGRATED CIRCUITS (LIC's) LABORATORY MANUAL

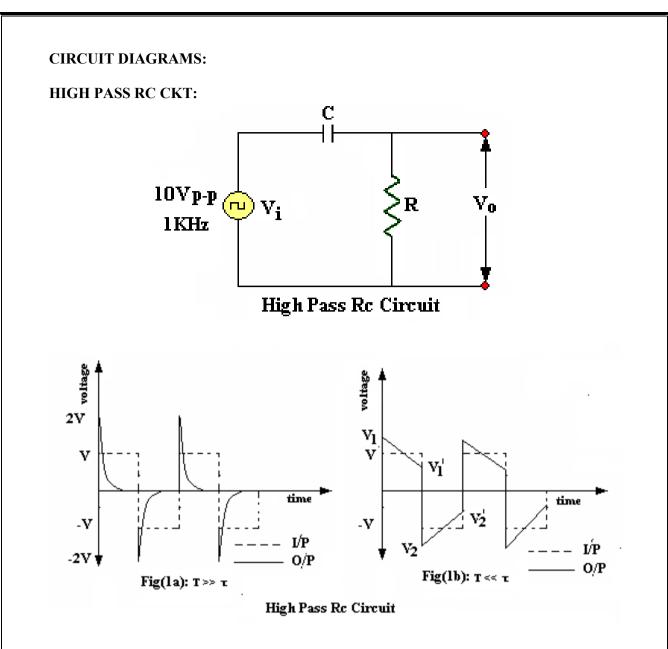
III / IV B.E (ECE), I - SEMESTER

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU – 534 007

LINEAR IC's & PULSE CIRCUITS (LIC's) - LAB

III / IV B.E (ECE), I - SEMESTER


LIST OF EXPERIMENTS

- 1. LINEAR WAVE SHAPING
- 2. NON-LINEAR WAVE SHAPING
- 3. OP-AMP AS SQUARE WAVE GENERATOR
- 4. **BISTABLE MULTIVIBRATOR**
- 5. MONOSTABLE MULTIVIBRATOR
- 6. ASTABLE MULTIVIBRATOR
- 7. SCHMITT TRIGGER
- 8. VOLTAGE REGULATOR
- 9. UJT RELAXATION OSCILLATOR
- **10. 555 TIMER AS ASTABLE & MONOSTABLE MULTIVIBRATOR**
- 11. OP-AMP AS ACTIVE INTEGRATOR & DIFFERENTIATOR
- **12. BOOT STRAP TIME BASE GENERATOR**

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7 III/IV (B.E) ECE, I-SEM :: LICs Lab Manual

LINEAR WAVE SHAPING

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

High pass RC ckt acts as perfect differentiator when $T \gg \tau$

<u>Tilt</u>: When square wave input of V volts peak is applied to a High pass RC ckt, percentage Tilt is given by

$$\mathbf{P} = [(\mathbf{V}_1 - \mathbf{V}_1^{\ 1}) / \mathbf{V}] * 100$$

Where V_1 and V_1^1 are voltages indicated in Fig. The approximate expression for % Tilt when T << τ is given by

$$P = (T / 2RC) *100$$

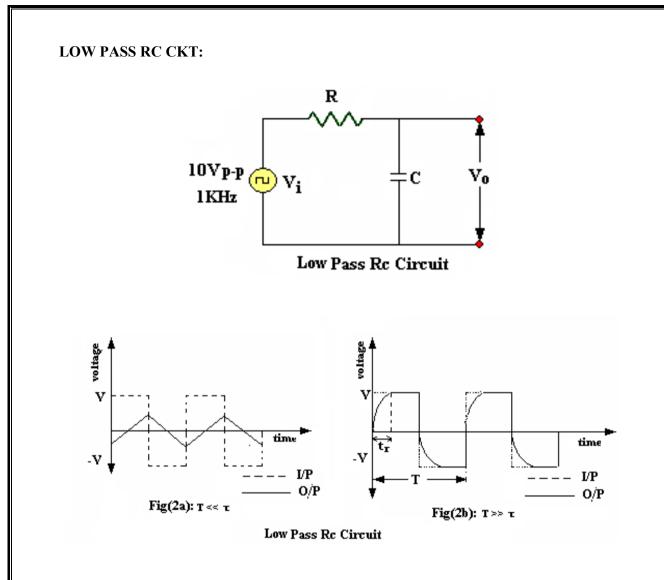
Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

LINEAR WAVE SHAPING

AIM: To Design a High pass and Low pass RC circuits for an I/p time period of 1 m sec and Observe the conditions under which they respectively act as Differentiator and Integrator.

APPARATUS:

S.No	Items	Range	Quantity
1	Resistors	1ΜΩ, 10ΚΩ	Each 1
2	Capacitors	0.01µf	1
3	Function Generator		1
4	Bread Board & Connecting wires	-	1 Set


PROCEDURE:

HIGH PASS RC CKT:

- 1. Select the values of R & C in such away that the condition $T \gg \tau$ is satisfied.
- 2. Connect the circuit as shown in Fig.1
- 3. Apply 10V p-p Square wave at 1KHz from the Function Generator.
- 4. Observe the o/p waveform on CRO.
- 5. Sketch the waveform on graph sheet.
- 6. Now, Select the values of R & C in such away that the condition $T \ll \tau$ is satisfied.
- 7. Repeat steps 2,3, & 4.
- 8. Calculate % tilt from the observed o/p.
- 9. Compare this with the theoretical value.
- 10. Sketch the waveform on graph sheet.

LOW PASS RC CKT:

- 1. Select the values of R & C in such away that the condition $T \gg \tau$ is satisfied.
- 2. Connect the circuit as shown in Fig.2
- 3. Apply 10V p-p Square wave at 1KHz from the Function Generator.
- 4. Observe the o/p waveform on CRO.
- 5. Find the Rise time ' t_r ' from the observed o/p.
- 6. Compare this with the theoretical value.
- 7. Sketch the waveform on graph sheet.
- 8. Now, Select the values of R & C in such away that the condition T << τ is Satisfied.
- 9. Repeat steps 2,3, & 4.
- 10. Sketch the waveform on graph sheet.

Low pass RC ckt acts as a perfect Integrator when $T \ll \tau$

<u>Rise time</u>: Rise time ' t_r ' is defined as the time it takes the voltage to rise from 10% to 90% of its final value.

The approximate expression for rise time is given by $t_r' = 2.2 \text{ RC}$

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

DESIGN:

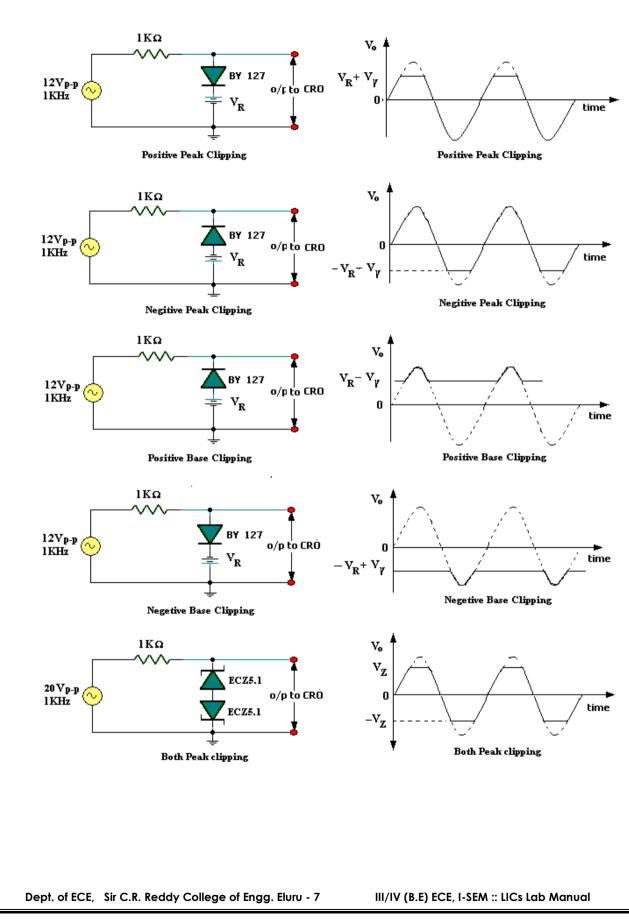
T ----- Time period of the input waveform τ ----- Time constant of the circuit $\tau = RC$ $T = 1m \sec$ (i) When $T >> \tau$ Take $T = 10 \tau$ Choose 'C' as 0.01μ f, then R = T/10CSo $R = 10 K\Omega$ (ii) When $T << \tau$ Take $T = \tau/10$ Choose 'C' as 0.01μ f, then R = 10T/CSo $R = 1M\Omega$

RESULT:

The responses of High pass & Low pass RC ckts are observed for a square wave input. Percentage tilt and rise time were calculated and compared with theoretical values.

VIVA QUESTIONS:

- 1. What is Linear Wave shaping?
- 2. What is the function of High pass RC ckt?
- 3. What is the function of Low pass RC ckt?
- 4. What is meant by Tilt?
- 5. What is meant by Rise time?
- 6. What is the condition for perfect differentiation in a High pass RC ckt?
- 7. What is the condition for perfect integration in a Low pass RC ckt?
- 8. What is the response of linear wave shaping when a sinusoidal input is applied?
- 9. How a high pass circuit acts as a Differentiator?


10. How a Low pass circuit acts as a Integrator?

NON-LINEAR WAVE SHAPING

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAMS:

NON-LINEAR WAVE SHAPING

AIM: To Study the operation of some basic clipping and clamping circuits.

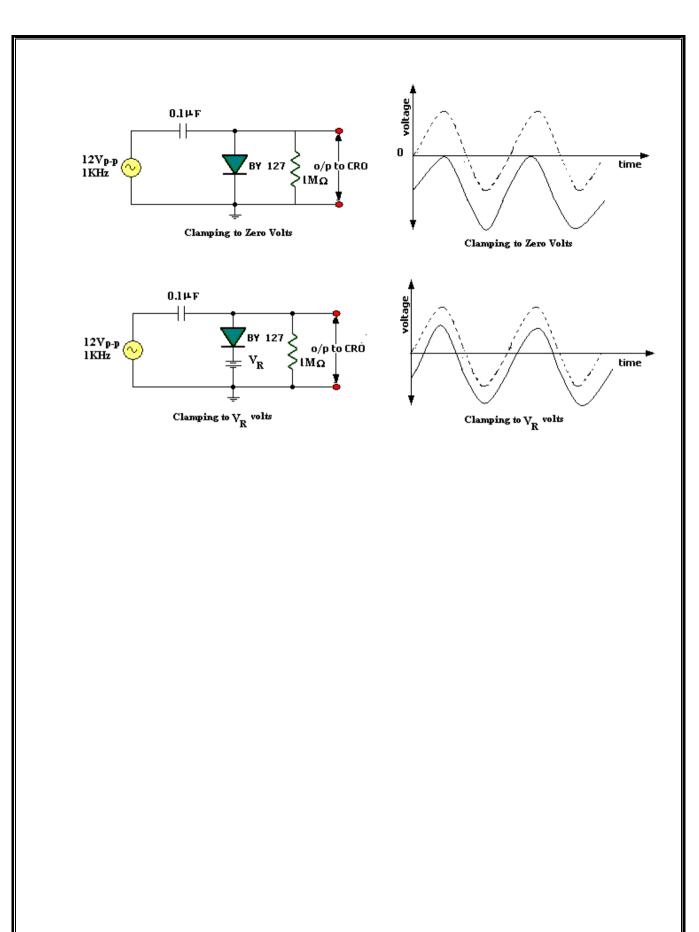
APPARATUS:

S.No	Items	Range	Quantity
1	Regulated D.C Power supply	0–30 Volts	1
2	Diode	BY127	1
3	Resistors	1ΚΩ, 1ΜΩ	1
4	Capacitors	0.1µf	1
5	Zener Diode	ECZ 5.1	2
6	Signal Generator	(0 – 1MHz)	1
7	CRO	-	1
8	Bread Board & Connecting wires	-	1 Set

PROCEDURE:

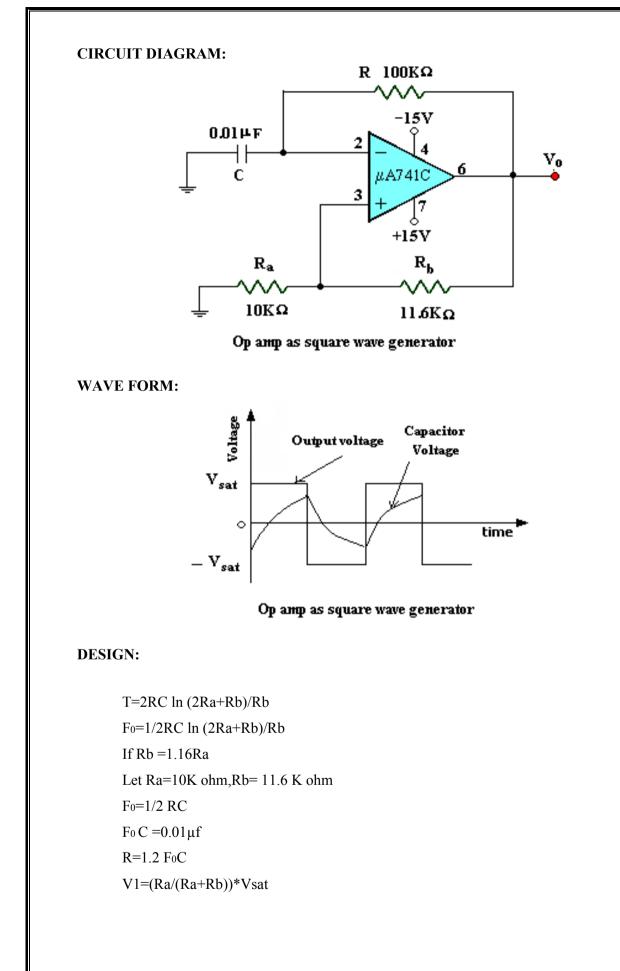
- 1. Connect the circuit as shown in Fig.1
- 2. Switch on the D.C power supply and set the reference voltage V_R to 2V.
- 3. Apply I/P Voltage of 12V p-p Sine wave at 1KHz from the Signal Generator and observe the o/p on CRO.
- 4. Measure the clipping levels in the O/P waveform and compare them with the theoretical values.
- 5. Sketch the waveforms on graph sheets to the scale.
- 6. Repeat the above steps for the rest of the circuits.

RESULT:


Various Clipping and Clamping circuits are constructed and their outputs are observed.

VIVA QUESTIONS:

- 1. What is Non-linear wave shaping?
- 2. What is the purpose of a Clipping circuit?
- 3. What are the other names of a Clipper ckt?
- 4. What are the applications of Clipper ckts?
- 5. What is a Clamping ckt?
- 6. What are the applications of Clamper ckts?
- 7. What is the difference between clipping and clamping circuits?
- 8. What is the need for a resistor across a diode in clamping circuits?
- 9. What is meant by comparator?
- 10. Draw the circuit diagram of a diode comparator?



Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

OP AMP AS SQUARE WAVE GENERATOR

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

OP-AMP AS SQUARE WAVE GENERATOR

AIM: To design the square wave generator to operate at frequency F0=500Hz

APPARATUS:

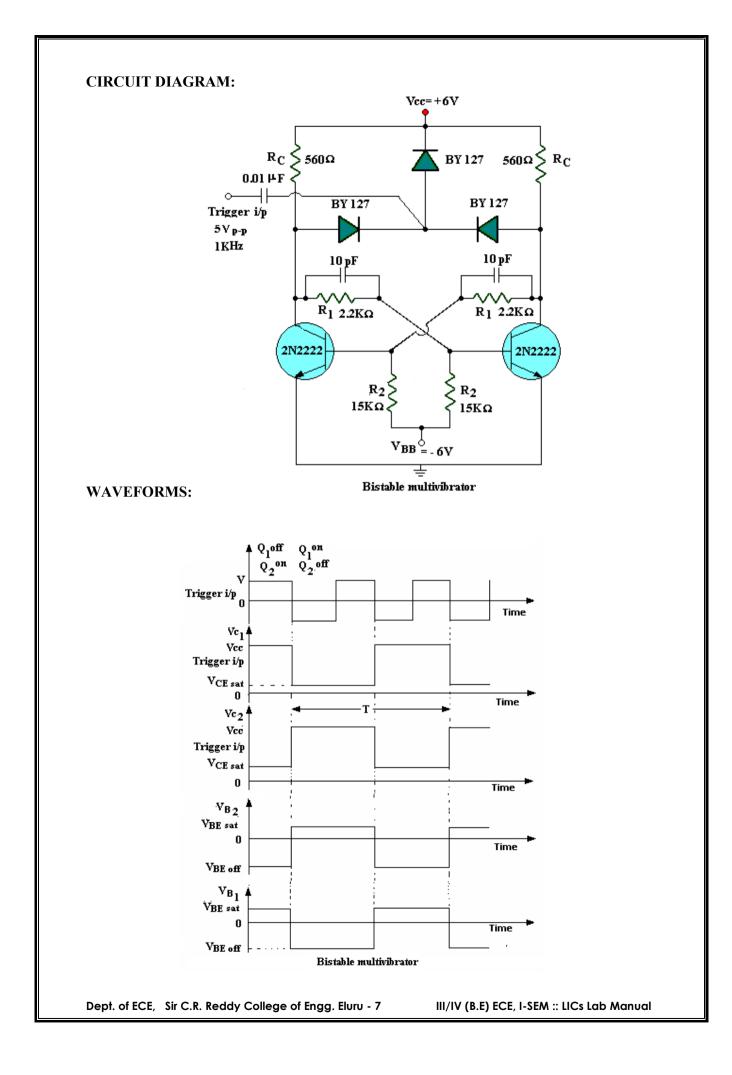
S.No	Items	Range	Quantity
1	D.C power supply	15-0-15 volts	1
2	IC	μA74IC	1
3	Resistors	$11.6K\Omega, 10k\Omega, 100k\Omega$	Each 1
4	Capacitors	0.01µf	1
5	Function generator		1
6	CRO		1
7	Bread Board & Connecting wires		1 Set

PROCEDURE:

- 1. Connect the circuit as shown in fig 1
- 2. Switch on the 15-0-15 v DC power supply
- 3. Observed the o/p wave forms and capacitor voltage on CRO
- 4. Compare the wave on graph sheet to the scale

RESULT: Wave forms are observed and measured values are compared with theoretical values and plotted on the graph sheets to the scale .

VIVA QUESTIONS:


- 1. Draw the characteristics of ideal comparator and that of a commercially available comparator
- 2. What are the other application op amp
- 3. List the different types of comparator
- 4. What is meaning of voltage limiting ?Show how it is obtained ?
- 5. Draw the circuit for converting a square wave in to a series of positive pulses?
- 6. What is hysteresis and What parameters determine the hystereis
- 7. Explain operation of a square wave generator by drawing capacitor and output voltage wave forms
- 8. Explain how non symmetrical square wave can be obtained?
- 9. How would recognize that positive feedback is being used in an op amp circuit
- 10. How two power supply +15v and -15v are required in an op amp circuit?
- 11. What are the internal blocks of an op amp?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

BISTABLE MULTIVIBRATOR

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

BISTABLE MULTIVIBRATOR

AIM: To verify the stable states of Bistable Multivibrator and observe the base & Collector waveforms.

APPARATUS:

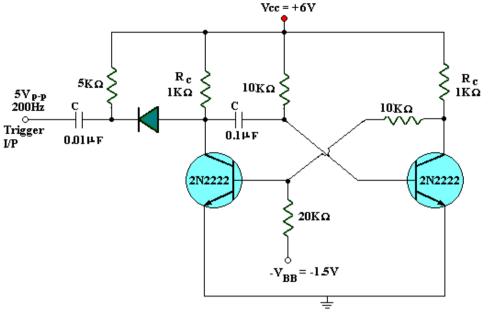
S.No	Items	Range	Quantity
1	Dual Regulated D.C Power supply	0–30 Volts	1
2	Diode	BY127	3
3	Resistors	15ΚΩ, 2.2 ΚΩ, 560Ω	Each 2
4	Capacitors	0.01µf	1
5	Capacitors	10pf	2
6	Transistors	2N2222	2
7	Signal Generator	-	1
8	CRO	-	1
9	Bread Board & Connecting wires	-	1 Set

PROCEDURE:

- 1. Connections are made as shown in Fig.
- 2. Switch on the D.C power supply and set the voltages to +6 V & -6V.
- 3. In the absence of steering diodes & Commutating capacitors, Verify the stable state of Multivibrator
- 4. After getting the stable state, connect the steering diodes and commutating capacitors
- 5. Apply trigger input of 5V p-p square wave at 1KHz from the function Generator.
- 6. Observe the waveforms at the collector and base of both the transistors.
- 7. Plot the waveforms on graph sheet to the scale.

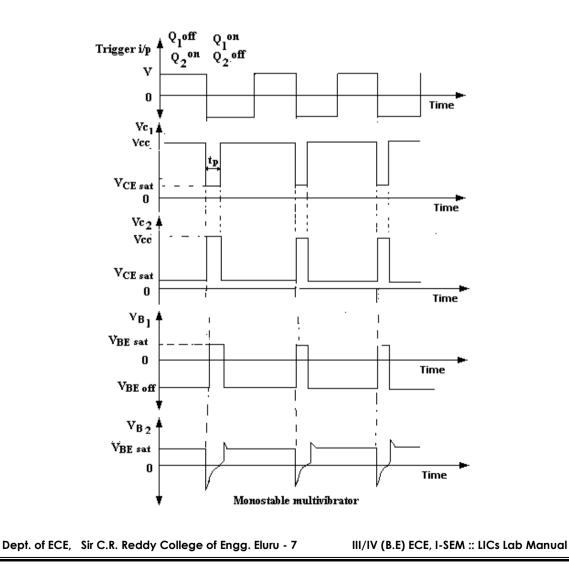
RESULT:

Stable states of Bistable Multivibrator are verified and waveforms at the base & collector of the transistors are observed.


VIVA QUESTIONS:

- 1. Describe the principle of fixed-bias Binary?
- 2. What is a stable state?
- 3. What is the role of commutating capacitors in the Binary?
- 4. Explain the working of steering diode arrangement in the binary?
- 5. What are the different types of triggering?
- 6. What is the difference between symmetrical triggering and asymmetrical triggering?
- 7. What are the applications of Bistable Multivibrator?

MONOSTABLE MULTIVIBRATOR


Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM:

Monostable Multivibrator

MONOSTABLE MULTIVIBRATOR

AIM: To design a Monostable Multivibrator to produce a pulse of required width.

APPARATUS:

S.No	Items	Range	Quantity
1	Regulated D.C Power supply	0–30 Volts	1
2	Resistors	1ΚΩ, 10ΚΩ	Each 2
3	Resistors	5ΚΩ, 20ΚΩ	Each 1
4	Capacitors	0.01µf, 0.1µf	Each 1
5	Transistors	2N2222	2
6	Signal Generator	-	1
7	Diode	BY127	1
8	CRO	-	1
9	Bread Board & Connecting wires	-	1 Set

DESIGN:

T Time period of the Quasi-stable state OR Pulse width of o/p waveform				
T = 0.69 RC,	Take $T = 1m$ sec,	Choose 'C' as $0.1\mu f$, then		
R = T/0.69C,	So $R = 10 \text{ K}\Omega$			

PROCEDURE:

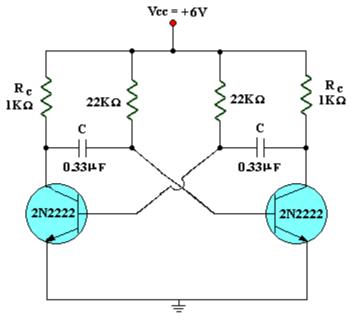
- 1. Connections are made as shown in Fig.
- 2. Switch on the D.C power supply and set the voltages to +6 V and -1.5V.
- 3. Verify the stable state of a Monostable Multivibrator, i.e. according to the ckt configuration Q_1 must be OFF & Q_2 should be ON.
- 4. After getting the stable state, Apply trigger input of 5V p-p square wave at 200 Hz from the function Generator.
- 5. Observe the waveforms at the collector and base of both the transistors.
- 6. Measure the o/p pulse width and compare it with the required value.
- 7. Plot the waveforms on graph sheet to the scale.

RESULT:

Collector and Base waveforms of Monostable Multivibrator are observed and o/p pulse width is compared with the required value.

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

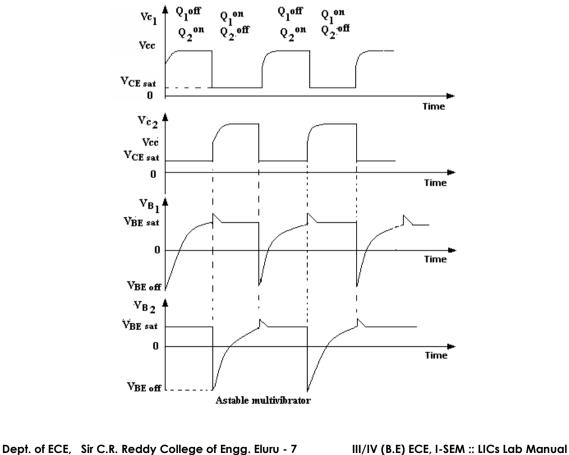
VIVA QUESTIONS:


- 1. What are the other names of Monostable Multivibrator?
- 2. Explain the working of Monostable Multivibrator?
- 3. Monostable Multivibrator has how many stable states?
- 4. What is a quasi-stable state?
- 5. What are the applications of Monostable Multivibrator?
- 6. What are the initial states of a Monostable Multivibrator?
- 7. Which type of Triggering is used in Monostable Multivibrator?
- 8. What is the effect of temperature on Monostable Multivibrator?
- 9. Which type of feedback is present in Monostable Multivibrator?
- 10. Derive the expression for pulse width?
- 11. What is the difference between Monostable Blocking oscillator and Monostable Multivibrator?
- 12. Define "Overshoot"?

ASTABLE MULTIVIBRATOR

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM:



Astable multivibrator

DESIGN:

T ---- Time period of the o/p waveform, T = 1.38RC, Given F = 100 Hz, Choose 'C' as 0.33μ f, then, So R = 22K Ω , F ---- Frequency of oscillations T = 1 / F R = T / 1.38 C Choose R_C such that $h_{fe} . R_C > R$

WAVEFORMS:

ASTABLE MULTIVIBRATOR

AIM: To design an Astable Multivibrator to produce a square wave of 100 Hz.

APPARATUS:

S.No	Items	Range	Quantity
1	Regulated D.C Power supply	0–30 Volts	1
2	Resistors	1ΚΩ, 22ΚΩ	Each 2
3	Capacitors	0.33µf	2
4	Transistors	2N2222	2
5	Signal Generator	-	1
6	CRO	-	1
7	Bread Board & Connecting wires	-	1 Set

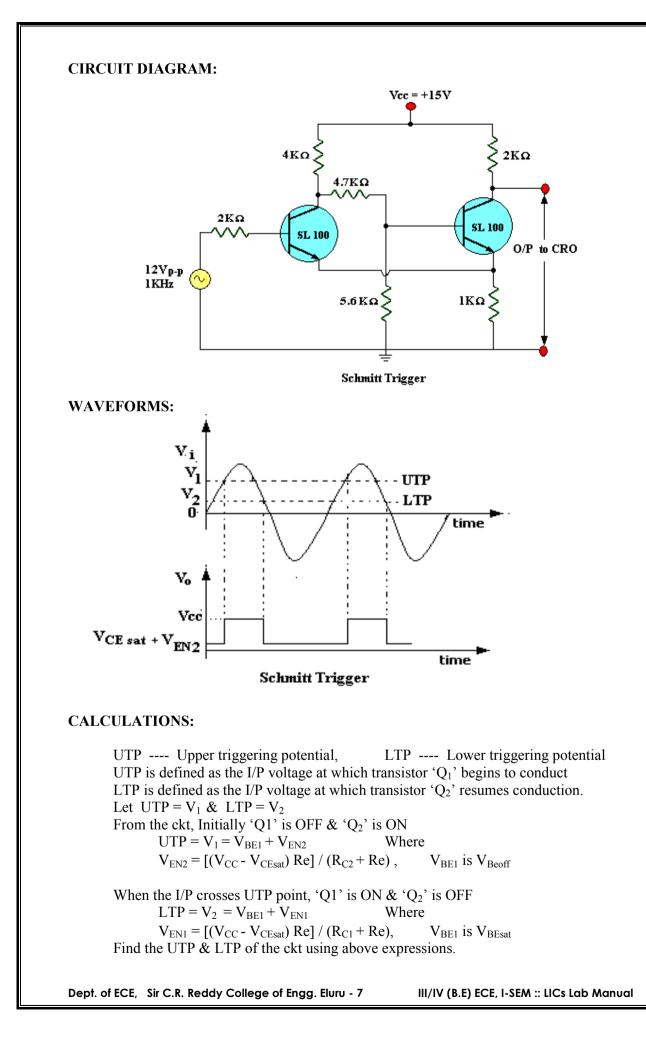
PROCEDURE:

- 1. Connections are made as shown in Fig.
- 2. Switch on the D.C power supply and set the voltage to +6 V.
- 3. Observe the waveforms at the collector and base of both the transistors.
- 4. Measure the frequency of oscillations from the observed waveform and compare it with the required value.
- 5. Plot the waveforms on graph sheet to the scale.

RESULT:

Astable Multivibrator is designed and its o/p waveforms are observed.

VIVA QUESTIONS:


- 1. What is the other name of Astable Multivibrator?
- 2. Explain the working of Astable Multivibrator?
- 3. What is a quasi-stable state?
- 4. What are the applications of Astable Multivibrator?
- 5. Explain Hoe Astable Multivibrator can be used as a voltage to frequency converter?
- 6. For a symmetrical circuit how can you say that one transistor is on and one transistor if off?
- 7. Derive the equation for a time of an Astable Multivibrator?
- 8. Which type of biasing present in Astable Multivibrator?
- 9. How Astable acts as a free running oscillator?
- 10. Define time constant?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

SCHMITT TRIGGER

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

SCHMITT TRIGGER

AIM: To study the operation of Schmitt Trigger ckt and calculate it's lower & upper triggering points.

APPARATUS:

S.No	Items	Range	Quantity
1	Regulated D.C Power supply	(0–30) Volts	1
2	Resistors	2ΚΩ	2
3	Resistors	1ΚΩ, 5.6ΚΩ, 4ΚΩ, 4.7ΚΩ	Each 1
4	Transistors	SL100	2
5	Signal Generator	-	1
6	CRO	-	1
7	Bread Board & Connecting wires	-	1 Set

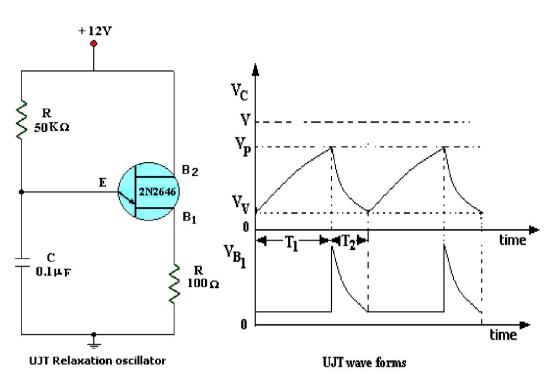
PROCEDURE:

- 1. Connections are made as shown in Fig.
- 2. Switch on the D.C power supply and set the voltage to +12 V.
- 3. Apply 12V p-p Sine wave at 1K Hz from the function Generator.
- 4. Observe the o/p square waveform on CRO.
- 5. Identify the amplitude of the I/p when the o/p rises suddenly, Which is called UTP
- 6. Identify the amplitude of the I/p when the o/p falls suddenly, Which is called LTP
- 7. Compare the identified UTP & LTP's with the theoretical values.
- 8. Plot the waveforms on graph sheet to the scale.

RESULT:

Square wave o/p of a Schmitt Trigger ckt is observed for a Sinusoidal input. UTP & LTP's are compared with the theoretical values.

VIVA QUESTIONS:


- 1. Define UTP & LTP?
- 2. What is the other name of a Schmitt Trigger ckt?
- 3. Explain the working of Schmitt Trigger ckt?
- 4. Explain Hysterisis with Schmitt Trigger?
- 5. What are the applications of Schmitt Trigger?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

UJT RELAXATION OSCILLATOR

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAM & WAVEFORMS:

DESIGN:

T1----charging time period T2 ----discharging time period F -----frequency of oscillations F=1/T F=1/[RC ln [(1/(1- $\dot{\eta}$))] $\dot{\eta}$ =R_{B1}/(R_{B1}+R_{B2})

 $R_{B1}{=}3k~\Omega$, $R_{B2}{=}2k~\Omega$ Vp=0.7+[(RB1+R1)V]/[RB1+RB2+R1] There fore Vp=8v

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

UJT RELAXATION OSCILLATOR

AIM: To determine the frequency of oscillations of UJT relaxation oscillator . Given RBB =5K Ω , η =.6Vv =1v and RB1=100 Ω

APPARATUS:

S.No	Items	Range	Quantity
1	Regulated D.C Power supply	0–30 Volts	1
2	Diode	BY127	1
3	Resistors	50Κ Ω 100 Ω	Each 1
4	Capacitors	0.1µf	1
5	Un-junction transistor		1
6	CRO	-	1
7	Bread Board & Connecting wires	-	1 Set

PROCEDURE:

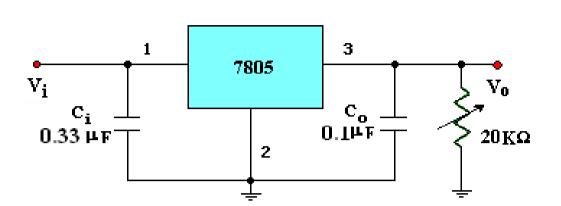
- 1. Connections are made as shown in fig.
- 2. Switch on the DC power supply and set the voltage to +12v
- 3. Observe the wave forms across capacitor and at base B1.
- 4. Measure the frequency of oscillations from the observed wave forms and compare it with the theoretical valve.
- 5. Plot the wave forms on graphs sheets to the scale.

RESULT:

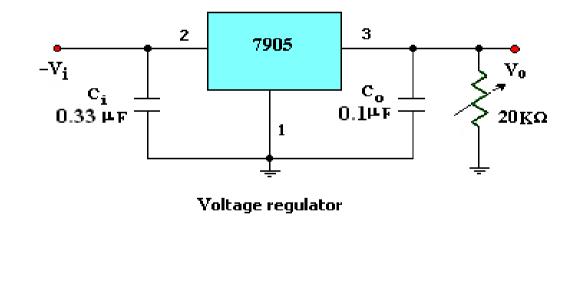
Capacitor and base wave forms are UJT relaxation oscillator are observed and the frequency of oscillation is compared with theoretical value.

VIVA QUESTIONS:

- 1. What is an UJT?
- 2. What is difference between UJT and FET?
- 3. Explain the working of UJT relaxation oscillator?
- 4. what are the applications of UJT relaxation oscillator?
- 5. Can we use UJT as an amplifier?
- 6. Draw the inner circuit diagram of UJT?
- 7. Define peak voltage?
- 8. What are the methods or what is the correction for the circuit to improve linearity in the output wave forms?
- 9. Derive the equation for the time period of the output wave form.
- 10. Define intrinsic stand off ratio.



Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7


VOLTAGE REGULATOR

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

VOLTAGE REGULATOR

AIM: To Study and Verify 3- terminal positive & negative voltage regulators

APPARATUS:

S.No	Items	Range	Quantity
1	Regulated D.C Power supply	0–30 Volts	1
2	Voltage Regulator	7806, 7906	Each 1
3	Potentiometer	20ΚΩ	1
4	Capacitors	0.33µf, 0.1µf	Each 1
5	Multivibrator		
6	Bread Board & Connecting wires	-	1 Set

PROCEDURE:

- 1. Connections are made as shown in Fig.
- 2. Keeping load resistance R_L constant, vary the I/P voltage in steps (From 5 to 30V) and observe the o/p voltage.
- 2. Tabulate the readings in the form shown in table1.
- 3. Keeping I/P voltage Vin constant, vary the load resistance in steps and observe the o/p voltage.
- 4. Tabulate the readings in the form shown in table2.
- 5. Perform the above procedure for various regulators.

TABULAR FORMS:

TABLE1:

		$R_L = 20K\Omega$
S.No	Vin (Volts)	Vo (Volts)
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
10	10	

TABLE2:

Vin = 5V

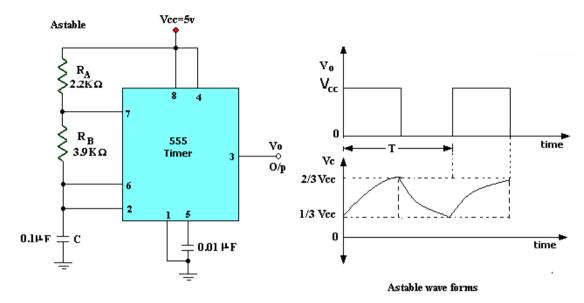
S.No.	$R_L(K\Omega)$	Vo (Volts)
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
10	10	

RESULT: Voltage Regulators are verified both by changing I/P voltage and load resistance

VIVA QUESTIONS:

- 1. What is a Voltage Regulator?
- 2. What are the advantages of adjustable voltage regulators over the fixed voltage regulators?
- 3. What is voltage reference? Why it is needed?
- 4. What is the function of a series pass transistor?
- 5. What voltage options are variables in 78XX and 79XX voltage regulators?
- 6. Show the standard representation of IC voltage regulator?
- 7. List and explain the characteristics of three terminal IC voltage regulators?
- 8. Explain the important parameters of 78XX regulator?
- 9. Explain the protections used in 78XX?
- 10. What are the Limitations of three terminal voltage regulators?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

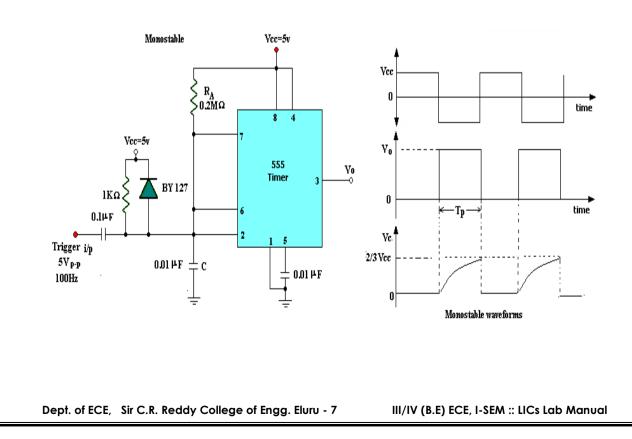

555 TIMER AS ASTABLE &

MONOSTABLE MULTIVIBRATOR

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

CIRCUIT DIAGRAMS:

ASTABLE MULTIVIBRATOR:



T --- Time period of the o/p waveform,

F --- Frequency of Oscillations

 $T = 0.69(R_{A} + 2R_{B})C,$ F = 1.45 / (R_A + 2R_B)C, t_p -- o/p pulse width,
$$\begin{split} F &= 1/T \\ \% \ Duty \ Cycle = \ [(R_A + R_B)/(R_A + 2R_B)]*100 \\ t_p &= \ 1.1 \ R_A C \end{split}$$

MONOSTABLE MULTIVIBRATOR:

555 TIMER AS ASTABLE & MONOSTABLE MULTIVIBRATOR

AIM: To Verify the operations of Astable & Monostable Multivibrators using 555 timer

APPARATUS:

S.No	Items	Range	Quantity
1	555 Timer IC	-	1
2	Resistors	2.2KΩ, 3.9KΩ, 1KΩ, 0.2MΩ	Each 1
3	Capacitors	0.01µf	2
4	Capacitors	0.1µf	1
5	Diode	BY127	1
6	CRO	-	1
7	Function Generator	-	1
8	Bread Board & Connecting wires	-	1 Set

PROCEDURE:

ASTABLE MULTIVIBRATOR:

- 1. Connect the circuit as shown in Fig.1
- 2. Switch on the D.C power supply and set the voltage to 5V.
- 3. Observe the o/p waveform at pin 3 using CRO & also observe the waveform across Capacitor (at pin 6).
- 2. Measure the frequency of oscillations from the observed o/p and compare it with theoretical value.
- 3. Measure the Duty Cycle (Ton/ (Ton + Toff)) from the observed o/p and compare it with theoretical value.
- 4. Sketch the waveforms on graph sheet.

MONOSTABLE MULTIVIBRATOR:

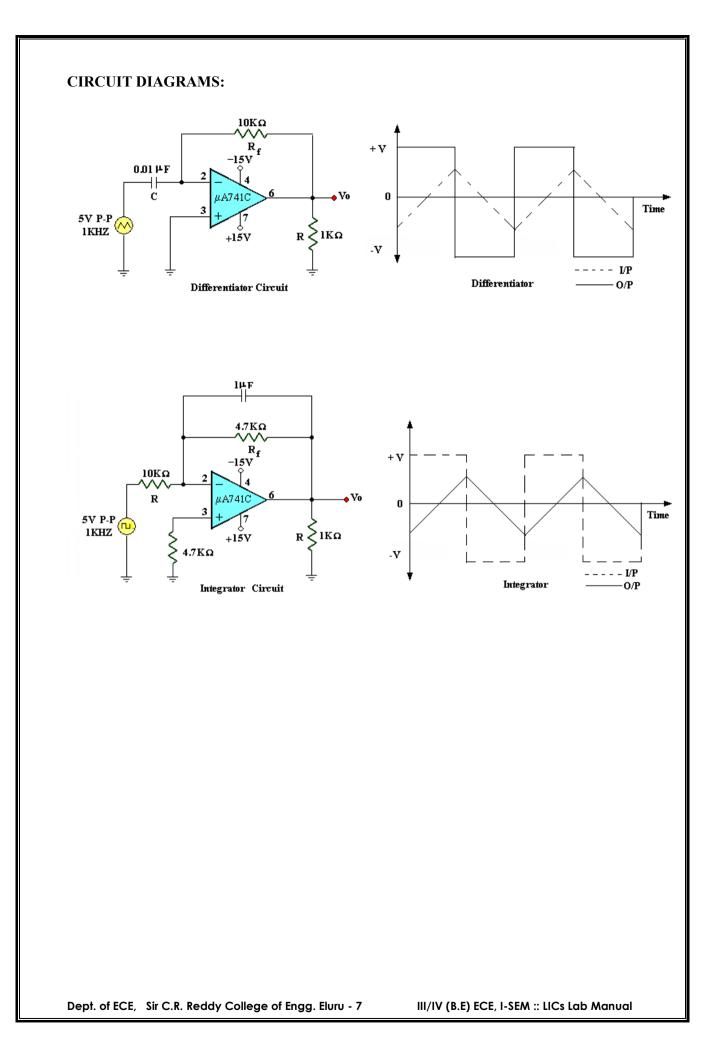
- 1. Connect the circuit as shown in Fig.2
- 2. Switch on the D.C power supply and set the voltage to 5V.
- 3. Apply trigger signal of 5V p-p Square wave at 100 Hz from the Function Generator.
- 4. Observe the o/p waveform at pin 3 using CRO & also observe the waveform across Capacitor (at pin 6).
- 5. Measure the o/p pulse width ' t_p ' and compare this with the theoretical value.
- 6. Sketch the waveforms on graph sheet.

RESULT:

Monostable and Astable operations using 555 timer are verified.

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

VIVA QUESTIONS:


- 1. Define Duty Cycle?
- 2. What are the other applications of 555 timer?
- 3. Draw the internal circuit diagram of 555 timer?
- 4. Explain the operation of 555 timer?
- 5. Explain the function of reset?
- 6. Derive the expression for time delay of monostable multivibrator?
- 7. Discuss the applications of timer in monostable multivibrator?
- 8. Give methods for obtaining symmetrical square wave?
- 9. what are the modes of operation of a 555 timer?
- 10. Discuss the operation of a FSK generator using timer?
- 11. Draw the circuit of Schmitt trigger using timer and explain its operation?

OP-AMP AS ACTIVE INTEGRATOR &

DIFFERENTIATOR

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

OP-AMP AS ACTIVE INTEGRATOR & DIFFERENTIATOR

AIM: To Observe the Op-Amp as a Differentiator and Integrator.

APPARATUS:

S.No	Items	Range	Quantity
1	IC	μA741C	1
2	D.C Power supply	15-0-15 Volts	1
3	Resistors	4.7ΚΩ	2
4	Resistors	1ΚΩ, 10ΚΩ,	Each 1
5	Capacitors	1μF, 0.01μF	Each 1
6	CRO	-	1
7	Function Generator	-	1
8	Bread Board & Connecting wires	-	1 Set

PROCEDURE:

INTEGRATOR:

- 5. Connect the circuit as shown in Fig.1
- 6. Switch on the 15-0-15 V D.C power supply.
- 7. Apply 5V p-p Square wave at 1KHz from the Function Generator.
- 8. Observe the o/p waveform on CRO.
- 9. Sketch the waveforms on graph sheet to the scale.

DIFFERENTIATOR:

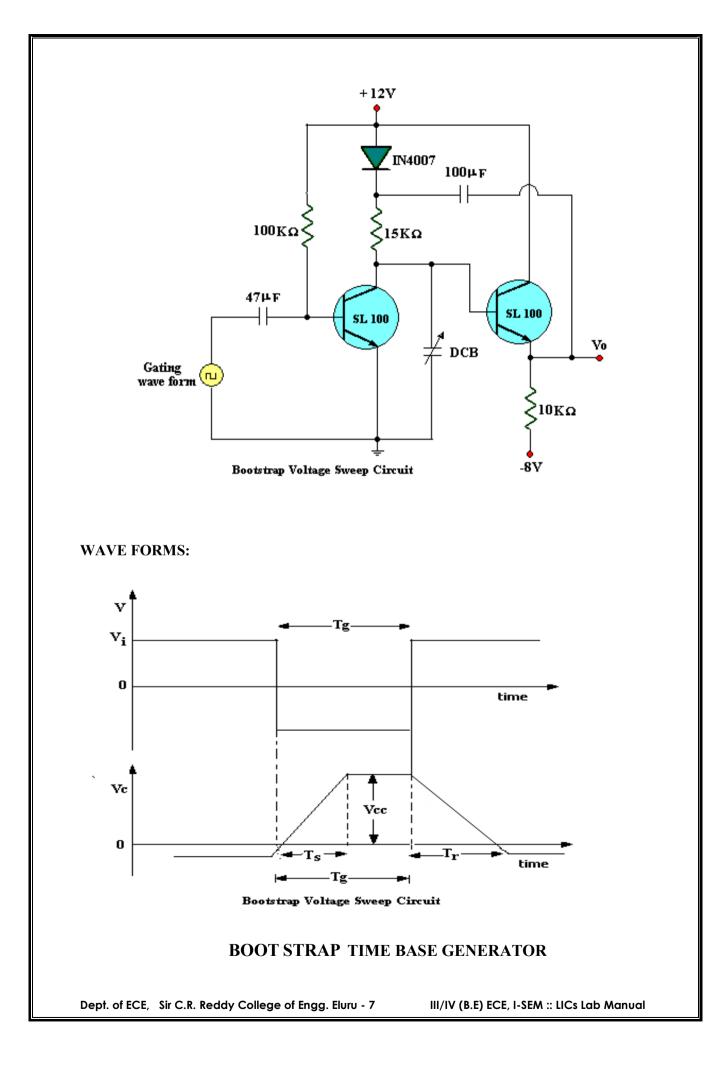
- 1. Connect the circuit as shown in Fig. 2
- 2. Switch on the 15-0-15 V D.C power supply.
- 3. Apply 5V p-p Triangular wave at 1 KHz from the Function Generator.
- 4. Observe the o/p waveform on CRO.
- 5. Sketch the waveforms on graph sheet to the scale.

RESULT:

The waveforms of Differentiator and Integrator are observed and plotted on the graph sheets to the scale.

VIVA QUESTIONS:

- 1. What is an Op-Amp?
- 2. What are the other applications of Op-Amp?
- 3. What are the ideal characteristics of an Op-Amp?
- 4. Why two power supplies +15 V and -15 V are required in an Op-Amp?
- 5. What are the internal blocks of an Op-Amp?
- 6. What is the origin for slew rate?
- 7. What is meant by virtual around?
- 8. Define CMRR?
- 9. Define offset voltage and offset currents for an OP-Amp?
- 10. What are the limitations of an ordinary OP-Amp Differentiator?
- 11. Explain why integrators are preferred over differentiator in analog computers?



Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

BOOT STRAP TIME BASE GENERATOR

CIRCUIT DIAGRAM:

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7 III/IV (B.E) ECE, I-SEM :: LICs Lab Manual

AIM: To observe the output waveform of bootstrap time base generator and determine the sweep time Ts and the restoration time Tr.

APPARATUS:

S.No	Items	Range	Quantity
1	D.C power supply	(0-30V)	1
2	Diode	IN 4001	1
	Transistors	2N2222 / SL100	2
3	Resistors	15kΩ, 100kΩ,10KΩ	Each 1
4	Capacitors	47µf, 100µf	Each 1
5	Function generator		1
6	CRO		1
7	Bread Board & Connecting wires		1 Set

PROCEDURE:

- 1. Connections are made as shown in fig
- 2. Switch on the DC power supply and set the voltages to +20v and -10v
- 3. Apply gating input of 1v p-p square wave at 1.4KHz from the function generator
- 4. Observe the output wave forms
- 5. Measure the sweep time Ts and restoration time Tr and compare it with theoretical values
- 6. Plot the waveforms on graph sheet to the scale .

DESIGN:

$$Vs = \frac{VccTg}{RC}$$

Where vs =sweep speed Tg=half time period of gating waveform Ts=RC(sweep time)

$$Tr = \frac{(CVs)/Vcc}{(hfe/Rb)-(1/Ra)}$$

Where Tr =Resoration time

RESULT: Output waveform observed and measured values are compared with

Theoretical values

VIVA QUESTIONS:

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7

- 1. What are the different types of methods to generate linear sweep waveforms?
- 2. What is the condition to get an output which varies linearly with the time?
- 3. In a boot strap technique justly whether the charging current is maintained constant?
- 4. Explain the operation of boot strapping?
- 5. Define voltage and current time base generators?
- 6. What are the applications of time base generators?
- 7. Define recovery time in bootstrap technique?

Dept. of ECE, Sir C.R. Reddy College of Engg. Eluru - 7