

DEPARTMENT OF CIVIL ENGINEERING

COURSE STRUCTURE AND SYLLABUS

For UG – R20

B. TECH - CIVIL ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

COURSE STRUCTURE

S. No	Course Code	Subjects	L	Т	Р	Credits
1	BSC1101	Mathematics – I (Calculus & Differential Equations)	3	0	0	3
2	HSMC1101	Communicative English	3	0	0	3
3	BSC1102	Engineering Physics	3	0	0	3
4	ESC1101	Engineering Drawing	1	0	4	3
5	ESC1102	Engineering Geology (Integrated) (Theory & Lab)	2	0	2	3
6	HSMC1102	English Communication Skills Laboratory	0	0	3	1.5
7	BSC1103	Engineering Physics Lab	0	0	3	1.5
8	ESC1103	Basics of Civil Engg. Work Shop (Lab)	0	0	3	1.5
Total Credits			1	9.5		

I Year – I SEMESTER

I Year – II SEMESTER

S. No	Course Code	Subjects	L	Т	Р	Credits
1	BSC1201	Mathematics – II (Linear Algebra & Numerical Methods)	3	0	0	3
2	BSC1202	Engineering Chemistry	3	0	0	3
3	ESC1201	Engineering Mechanics	3	0	0	3
4	ESC1202	Programming for Problem Solving Using C	3	0	0	3
5	ESC1203	Building Materials and Concrete Technology	3	0	0	3
6	BSC1203	Engineering Chemistry Lab	0	0	3	1.5
7	ESC1204	Programming for problem Solving Using C Lab	0	0	3	1.5
8	ESC1205	Building Planning and Computer Aided Building Drawing	0	0	3	1.5
9	MC1201	Environmental Science (M. C)	2	0	0	0
Total Credits				1	9.5	

*Breakup of credits for Engineering Graphics/Engineering Workshop shall be 1-0-4 (as per AICTE model curriculum)

Universities/Institutions may swap a few courses between 1^{st} and 2^{nd} semesters to balance the work load of teaching and laboratory schedule.

DEPARTMENT OF CIVIL ENGINEERING

S. No	Course Code	Course Title	L	Т	Р	Credits
1	BSC301	Mathematics -III (Vector Calculus, Transforms and PDE)	3	0	0	3
2	PCC301	Strength of Materials - I	3	0	0	3
3	PCC302	Fluid Mechanics	3	0	0	3
4	PCC302	Surveying and Geometrics	3	0	0	3
5	PCC303	Highway Engineering	3	0	0	3
6	PCC304	Concrete Technology Lab	0	0	3	1.5
7	PCC305	Highway Engineering Lab	0	0	3	1.5
8	PCC306	Surveying Field Work – I (Lab)	0	0	3	1.5
9	SC301	Skill oriented course*	1	0	2	2
10	MC301	Constitution of India	2	0	0	0
		Total Credits				21.5

II Year – I SEMESTER

II YEAR – II SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	PC401	Complex Variables and Statistical Methods	3	0	0	3
2	PC402	Strength of Materials -II	3	0	0	3
3	ES401	Hydraulics and Hydraulic Machinery	3	0	0	3
4	PC403	Environmental Engineering	3	0	0	3
5	PC404	Managerial Economics & Financial Analysis	3	0	0	3
6	PC405	Environmental Engineering Lab	0	0	3	1.5
7	PC406	Strength of Material Lab	0	0	3	1.5
8	PC407	Fluid Mechanics & Hydraulics Machinery Lab	0	0	3	1.5
9	SC401	Skill oriented course*	1	0	2	2
		Total Credits				21.5
(The		Honors/ Minor courses tribution can be 3-0-2 or 3-1-0 also)	3	1	0	4

ALAN AND A STREET

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester L T P C MATHEMATICS - I (CALCULUS & DIFFERENTIAL EQUATIONS) (BSC1101) (Common to ALL branches of First Year B.Tech)

Course Objectives:

- To familiarize a variety of well-known sequences and series, with a developing intuition about the behaviour of new ones.
- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- utilize mean value theorems to real life problems (L3)
- solve the differential equations related to various engineering fields (L3)
- familiarize with functions of several variables which is useful in optimization (L3)
- apply double integration techniques in evaluating areas bounded by region (L3)
- students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems (L5)

UNIT – I: Sequences, Series and Mean value theorems:

Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral test – Cauchy's root test – Alternate series – Leibnitz's rule.

Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders, Problems and applications on the above theorem.

UNIT – II: Differential equations of first order and first degree:

Linear differential equations – Bernoulli's equations – Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

UNIT – III: Linear differential equations of higher order:

Homogeneous and Non-homogeneous differential equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ – Method of Variation of parameters, Cauchy and Legendre's linear equations. Applications: LCR circuit, Simple Harmonic motion.

UNIT – IV: Partial differentiation:

Introduction – Homogeneous function – Euler's theorem – Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and MacLaurin's series expansion of functions of two variables. Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method.

(10 hrs)

(10 hrs)

(10 hrs)

(10 hrs)

ALUEHRUTZCER AUNTALINADA Safig Stores

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

UNIT – V: Multiple integrals:

(8 hrs)

Double and Triple integrals – Change of order of integration in double integrals – Change of variables to polar, cylindrical and spherical coordinates. Applications: Finding Areas and Volumes.

Text Books:

- 1. **B. S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. **B. V. Ramana,**Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14th Edition, Pearson.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

DEPARTMENT OF CIVIL ENGINEERING

I Voor I Somoston		L	Τ	Р	С
I Year - I Semester		3	0	0	3
	COMMUNICATIVE ENGLISH (HSMC1101)				

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- ➤ Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- ➤ Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- ➤ Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Learning Outcomes

At the end of the module, the learners will be able to

- understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- > ask and answer general questions on familiar topics and introduce oneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- ➢ form sentences using proper grammatical structures and correct word forms

DEPARTMENT OF CIVIL ENGINEERING

<u>Unit 1:</u>

Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications

Lesson-2: Deliverance by Premchand from "**The Individual Society**", Pearson Publications. (Non-detailed)

Listening: Listening to short audio texts and identifying the topic. Listening to prose, prose and conversation.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests. Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information.

Reading for Writing: Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign posts and transition signals; mechanics of writing - punctuation, capital letters.

Vocabulary: Technical vocabulary from across technical branches (20) GRE Vocabulary (20) (Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing of words.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural basic sentence structures; simple question form - wh-questions; word order in sentences.

Pronunciation: Vowels, Consonants, Plural markers and their realizations

<u>Unit 2:</u>

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "Infotech English", Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansode from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings.**Reading**: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications)

DEPARTMENT OF CIVIL ENGINEERING

Grammar: Use of articles and zero article; prepositions.

Pronunciation: Past tense markers, word stress-di-syllabic words

<u>Unit 3:</u>

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from "Infotech English", Maruthi Publications

Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications.(Non-detailed)

Listening:Listening for global comprehension and summarizing what is listened to, both in speaking and writing.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed.Functional English:Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension.Critical reading.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing.E-mail etiquette, Writing CV's.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, sequencing of words

Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Pronunciation: word stress-poly-syllabic words.

<u>Unit 4:</u>

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications

Lesson-2: Telephone Conversation-Wole Soyinka from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (only audio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions.Functional English: Permissions, Requesting, Inviting.

DEPARTMENT OF CIVIL ENGINEERING

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicative process or display complicated data.

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables.Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

<u>Unit 5:</u>

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking and writing.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides.Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP StrategyIntensive reading and Extensive reading techniques.

Reading for Writing: Writing academic proposals- writing research articles: format and style.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, matching emotions.

Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Pronunciation: Stress in compound words

Prescribed text books for theory for Semester-I:

1. "Infotech English", Maruthi Publications. (Detailed)

2."The Individual Society", Pearson Publications.(Non-detailed)

Prescribed text book for Laboratory for Semesters-I & II:

1. "Infotech English", Maruthi Publications. (with Compact Disc)

DEPARTMENT OF CIVIL ENGINEERING

Reference Books:

- Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking*. Heinley ELT; 2nd Edition, 2018.
- Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester		L	Т	Р	С	
1 Tear - I Semester		3	0	0	3	
Image: Second state						
(For A	l Non-Circuital Branches like ME, CE, Cher	nical eto	c.)			

COURSE OBJECTIVES

- 1. Bridging the gap between the physics in school at 10+2 level and UG level engineering courses.
- 2. To identify the importance of the optical phenomenon i.e. interference, diffraction and polarization related to its Engineering applications
- 3. Understand the mechanism for emission of light, utility of lasers as coherent light sources for low and high energy applications, study of propagation of light through optical fibers and their implications in optical communications.
- 4. Open new avenues of utility for dielectric and magnetic materials as potential sources for micro devices.
- 5. Familiarize the concepts of theoretical acoustics for their practical utility in engineering acoustics. Explanation for the significance of ultrasound and its application in NDT application.
- 6. Enlighten the periodic arrangement of atoms in Crystalline solids by Bragg's law Learning the structural analysis through X-ray diffraction.

COURSE OUTCOMES

- Explain the need of coherent sources and the conditions for sustained interference (L2). Identify applications of interference in engineering (L3). Analyze the differences between interference and diffraction with applications (L4). Illustrate the concept of polarization of light and its applications (L2). Classify ordinary polarized light and extraordinary polarized light (L2) The different realms of physics and their applications in both scientific and technological systems are achieved through the study of wave optics.
- 2. Explain various types of emission of radiation (L2). Identify lasers as tools in engineering applications (L3). Describe the construction and working principles of various types of lasers (L1). Explain the working principle of optical fibers (L2). Classify the optical fibers based on refractive index profiles and modes of propagation (L2). Identify the applications of optical fibers in medical, communication and other fields (L2). Apply the fiber optic concepts in various fields (L3).
- 3. Explain the concept of dielectric constant and polarization in dielectric materials (L2). Summarize various types of polarization of dielectrics (L2). Interpret Lorentz field and Claussius- Mosotti relation in dielectrics (L2). Classify the magnetic materials based on susceptibility and their temperature dependence (L2). Explain the applications of dielectric and magnetic materials (L2). Apply the concept of magnetism to magnetic devices (L3).
- 4. Explain sound waves and its propagation/absorption of construction material used in design of buildings (L2). Analyze acoustic parameters of typical materials used in buildings (L4). Recognize sound level disruptors and their application in architectural acoustics (L2). Identify the use of ultrasonics in diversified fields of engineering (L3)
- 5. **Interpret** various crystal systems (L2) and **Analyze** the characterization of materials by XRD (L4). **Identify** the important properties of crystals like the presence of long-range order and periodicity, structure determination using X-ray diffraction technique (L3). **Analysis** of structure of the crystals by Laue and Powder techniques (L2)

DEPARTMENT OF CIVIL ENGINEERING

Unit-I: Wave Optics

12hrs

Interference: Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications -Colors in thin films- Newton's Rings- Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits(Qualitative) – Grating - Dispersive power and resolving power of Grating(Qualitative).

Polarization: Introduction-Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

Unit Outcomes:

The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference (L2)
- Identify engineering applications of interference (L3)
- > Analyze the differences between interference and diffraction with applications (L4)
- Illustrate the concept of polarization of light and its applications (L2)
- > Classify ordinary polarized light and extraordinary polarized light (L2)

Unit-II: Lasers and Fiber optics

Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated emissions of radiation – Einstein's coefficients – Population inversion –Lasing action- Pumping mechanisms – Ruby laser – He-Ne laser - Applications of lasers.

Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle-Numerical Aperture-Classification of optical fibers based on refractive index profile and modes –Propagation of electromagnetic wave through optical fibers - Applications.

Unit Outcomes:

The students will be able to

- > Understand the basic concepts of LASER light Sources (L2)
- > Apply the concepts to learn the types of lasers (L3)
- > Identifies the Engineering applications of lasers (L2)
- **Explain** the working principle of optical fibers (L2)
- > Classify optical fibers based on refractive index profile and mode of propagation (L2)
- > Identify the applications of optical fibers in various fields (L2)

UNIT III: Engineering Materials

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility and Dielectric constant - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field- Clausius-Mossotti equation-Piezoelectricity.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Origin of permanent magnetic moment - Classification of magnetic materials: Dia, para, Ferro, antiferro & Ferrimagnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials- Eddy currents- Engineering applications.

10hrs

8hrs

DEPARTMENT OF CIVIL ENGINEERING

Unit Outcomes:

The students will be able to

- **Explain** the concept of dielectric constant and polarization in dielectric materials (L2)
- Summarize various types of polarization of dielectrics (L2)
- > Interpret Lorentz field and Claussius- Mosotti relation in dielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **Explain** the applications of dielectric and magnetic materials (L2)
- > Apply the concept of magnetism to magnetic devices (L3)

Unit-IV: Acoustics and Ultrasonics

Acoustics: Introduction – requirements of acoustically good hall– Reverberation – Reverberation time– Sabine's formula (Derivation using growth and decay method) - Absorption coefficient and its determination – Factors affecting acoustics of buildings and their remedial measures.

Ultrasonics: Introduction - Properties - Production by magnetostriction and piezoelectric methods – Detection - Acoustic grating - Non Destructive Testing – pulse echo system through transmission and reflection modes - Applications.

Unit Outcomes:

The students will be able to

- **Explain** how sound is propagated in buildings (L2)
- > Analyze acoustic properties of typically used materials in buildings (L4)
- **Recognize** sound level disruptors and their use in architectural acoustics (L2)
- > Identify the use of ultrasonics in different fields (L3)

Unit-V: Crystallography and X-ray diffraction

Crystallography: Space lattice, Basis, Unit Cell and lattice parameters – Bravais Lattice – crystal systems (3D) – coordination number - packing fraction of SC, BCC & FCC - Miller indices – separation between successive (hkl) planes.

X-ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination by Laue's and powder methods.

Unit Outcomes:

The students will be able to

- Classify various crystal systems (L2)
- > **Identify** different planes in the crystal structure (L3)
- > Analyze the crystalline structure by Bragg's X-ray diffractometer (L4)
- > Apply powder method to measure the crystallinity of a solid (L4)

Text books:

- 1. Engineering Physics Dr. M.N. Avadhanulu & Dr. P.G. Kshirsagar, S. Chand and Company
- 2. Engineering physics D.K. Battacharya and Poonam Tandon, Oxford University press.
- 3. Engineering Physics by P.K.Palanisamy SciTech publications.

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley & Sons
- 2. Engineering Physics M.R.Srinivasan, New Age Publications
- 3. Engineering Physics D K Pandey, S. Chaturvedi, Cengage Learning
- 4. Engineering Physics Sanjay D. Jain, D. Sahasrambudhe and Girish, University Press

8hrs

10hrs

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester		L	Т	Р	С
1 Tear - I Semester		1	0	4	3
	ENGINEERING DRAWING (ESC1101)				

Course Objective: Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents &normals for the curves.

Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined toboth the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

DEPARTMENT OF CIVIL ENGINEERING

Note: In the End Examination there will be no question from CAD.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana& P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

Course Outcome: The student will learn how to visualize 2D & 3D objects.

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester		L	Т	Р	С
i i cui i scinester		2	0	2	3
	ENGINEERING GEOLOGY				
	ntegrated (Theory & Lab) (ESC1102)				

Course Learning Objectives:

The objective of this course is:

- To introduce the course: Engineering Geology to the Civil Engineering graduates.
- To enable the students, understand what minerals and rocks are and their formation and identification.
- To highlight significance/ importance/ role of Engineering Geology in construction of Civil Engineering structures.
- To enable the student, realise its importance and applications of Engineering Geology in Civil Engineering constructions.

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- Identify and classify the geological minerals
- Measure the rock strengths of various rocks
- Classify and measure the earthquake prone areas to practice the hazard zonation
- Classify, monitor and measure the Landslides and subsidence
- Prepares, analyses and interpret the Engineering Geologic maps
- Analyses the ground conditions through geophysical surveys.
- Test the geological material and ground to check the suitability of civil engineering project construction.
- Investigate the project site for mega/mini civil engineering projects. Site selection for mega engineering projects like Dams, Tunnels, disposal sites etc.

UNIT-I:

Introduction: Branches of Geology, Importance of Geology in Civil Engineering with case studies. **Weathering:** Weathering of rocks, Geological agents, weathering process of Rock, Rivers and geological work of rivers.

UNIT-II

Mineralogy and Petrology: Definitions of mineral and rock-Different methods of study of mineral and rock. Physical properties of minerals and rocks for megascopic study for the following minerals and rocks. Common rock forming minerals: Feldspar, Quartz Group, Olivine, Augite, Hornblende, Mica Group, Asbestos, Talc, Chlorite, Kyanite, Garnet, Calcite and ore forming minerals are Pyrite, Hematite, Magnetite, Chlorite, Galena, Pyrolusite, Graphite, Chromite, Magnetite and Bauxite. Classification, structures, textures and forms of Igneous rocks, Sedimentary rocks, Metamorphic rocks, and their megascopic study of granite varieties, (pink, gray, green). Pegmatite, Dolerite, Basalt etc., Shale, Sand Stone, Lime Stone, Laterite, Quartzite, Gneiss, Schist, Marble, Khondalite and Slate.

UNIT-III

Structural Geology: Strike, Dip and Outcrop study of common geological structures associating with the rocks such as Folds, Faults, Joints and Unconformities- parts, types, mechanism and their importance in Civil Engineering.

DEPARTMENT OF CIVIL ENGINEERING

UNIT-IV

Ground Water: Water table, Cone of depression, Geological controls of Ground Water Movement, Ground Water Exploration Techniques.

Earthquakes and Land Slides: Terminology, Classification, causes and effects, Shield areas and Seismic bells, Richter scale intensity, Precautions of building constructions in seismic areas. Classification of Landslides, Causes and Effects, measures to be taken prevent their occurrence at Landslides.

Geophysics: Importance of Geophysical methods, Classification, Principles of Geophysical study by Gravity method, Magnetic method, Electrical methods, Seismic methods, Radiometric method and Electrical resistivity, Seismic refraction methods and Engineering properties of rocks.

UNIT-V

Geology of Dams, Reservoirs and Tunnels: Types and purpose of Dams, Geological considerations in the selection of a Dam site. Geology consideration for successful constructions of reservoirs, Life of Reservoirs. Purpose of Tunnelling, effects, Lining of Tunnels. Influence of Geology for successful Tunnelling.

TEXT BOOKS:

- 1. 'Engineering Geology' by Subinoy Gangopadhay, Oxford University press.
- 2. 'Engineering Geology' by D. Venkat Reddy, Vikas Publishing House pvt. Ltd, 2013.
- 3. 'Engineering Geology' by N. Chennkesavulu, Trinity Press (Laxmi Publications), 2nd Edition, 2014.
- 4. 'Engineering Geology' by Vasudev Kanithi, University Press.

REFERENCES:

- 1. 'Engineering Geology for Civil Engineers' by P.C. Varghese, PHI learning pvt. Ltd.
- 'Geology for Engineers and Environmental Society' by Alan E Kehew, person publications, 3rd edition
- 3. 'Fundamentals of Engineering Geology' by P.G.Bell, B.S.P. Publications, 2012.
- 4. 'Engineering Geology' by V.Parthesarathi et al., Wiley Publications
- 5. 'Environmental Geology' by K.S.Valdiya, McGraw Hill Publications, 2nded.

* * *

DEPARTMENT OF CIVIL ENGINEERING

ENGINEERING GEOLOGY LAB

Syllabus

Course Learning Objectives:

The objective of this course is:

- To identify the Megascopic types of Ore minerals & Rock forming minerals.
- To identify the Megascopic types of Igneous, Sedimentary, Metamorphic rocks.
- To identify the topography of the site & material selection.

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- Identify Megascopic minerals & their properties.
- Identify Megascopic rocks & their properties.
- Identify the site parameters such as contour, slope & aspect for topography.
- Know the occurrence of materials using the strike & dip problems.

SYLLABUS:

LIST OF EXPERIMENTS

- 1. Physical properties of minerals: Mega-scopic identification of
 - a. Rock forming minerals Quartz group, Feldspar group, Garnet group, Mica group & Talc, Chlorite, Olivine, Kyanite, Asbestos, Tourmelene, Calcite, Gypsum, etc...
 - b. Ore forming minerals Magnetite, Hematite, Pyrite, Pyralusite, Graphite, Chromite, etc...
- 2. Megascopic description and identification of rocks.
 - a) Igneous rocks Types of Granite, Pegmatite, Gabbro, Dolerite, Syenite, Granite Poryphery, Basalt, etc.
 - b) Sedimentary rocks Sand stone, Ferrugineous sand stone, Lime stone, Shale, Laterite, Conglamorate, etc.
 - c) Metamorphic rocks Biotite Granite Gneiss, Slate, Muscovite &Biotiteschist, Marble, Khondalite, etc.
- 3. Interpretation and drawing of sections for geological maps showing tilted beds, faults, unconformities etc.
- 4. Simple Structural Geology problems.
- 5. Bore hole data.
- 6. Strength of the rock using laboratory tests.
- 7. Field work To identify Minerals, Rocks, Geomorphology & Structural Geology.

DEPARTMENT OF CIVIL ENGINEERING

LAB EXAMINATION PATTERN:

- 1. Description and identification of FOUR minerals
- 2. Description and identification of FOUR (including igneous, sedimentary and metamorphic rocks)
- 3. ONE Question on Interpretation of a Geological map along with a geological section.
- 4. TWO Questions on Simple strike and Dip problems.
- 5. Bore hole problems.
- 6. Project report on geology.

REFERENCES:

- 1. 'Applied Engineering Geology Practicals' by M T Mauthesha Reddy, New Age International Publishers, 2nd Edition.
- 2. 'Foundations of Engineering Geology' by Tony Waltham, Spon Press, 3rd edition, 2009.

* * *

DEPARTMENT OF CIVIL ENGINEERING

IVoor I Comostor		L	Т	Р	С
I Year - I Semester		0	0	3	1.5
ENGL	ISH COMMUNCATION SKILLS LAB (HS	SMC11	02)		

TOPICS

UNIT I:

Vowels, Consonants, Pronunciation, Phonetic Transcription, Common Errors in Pronunciation,

UNIT II:

Word stress-di-syllabic words, poly-syllabic words, weak and strong forms, contrastive stress (Homographs)

UNIT III:

Stress in compound words, rhythm, intonation, accent neutralisation.

UNIT IV:

Listening to short audio texts and identifying the context and specific pieces of information toanswer a series of questions in speaking.

UNIT V:

Newspapers reading;Understanding and identifying key terms and structures useful for writing reports.

Prescribed text book: "Infotech English", Maruthi Publications.

References:

- 1. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 2. English Pronunciation in use- Mark Hancock, Cambridge University Press.
- 3. English Phonetics and Phonology-Peter Roach, Cambridge University Press.
- 4. English Pronunciation in use- Mark Hewings, Cambridge University Press.
- 5. English Pronunciation Dictionary- Daniel Jones, Cambridge University Press.
- 6. English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.

DEPARTMENT OF CIVIL ENGINEERING

I Voon I Somoston	I Year - I Semester - ENGINEERING PHYSICS LAB (BSC1103)	L	Т	Р	С		
1 Tear - I Semester		0	0	3	1.5		
	ENGINEERING PHYSICS LAB (BSC1103)						
(For All Non-Circuital Branches like ME, CE, Chemical etc)							

(Any 10 of the following listed experiments)

List of Engineering Physics Experiments

- 1. Laser: Determination of wavelength using diffraction grating.
- 1. Young's modulus of given material by Strain gauge method.
- 2. Study of variation of magnetic field along the axis of a current carrying circular coil by Stewart & Gee's method.
- 3. Determination of ultrasonic velocity in given liquid (Acoustic grating).
- 4. Determination of dielectric constant using charging and discharging method.
- 5. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 6. Estimation of Planck's constant using photoelectric effect.
- 7. Rigidity modulus of material of a wire-dynamic method (Torsional pendulum).
- 8. Determination of numerical aperture and acceptance angle of an optical fiber.
- 9. Determination of thickness of thin object by wedge method.
- 10. Determination of radius of curvature of given plano convex lens by Newton's rings.
- 11. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 12. Determination of dispersive power of the prism.
- 13. Sonometer: Verification of laws of string.
- 14. Measurement of magnetic susceptibility by Kundt's tube method.

References:

1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester		L	Т	Р	С				
1 Tear - I Semester		0	0	3	1.5				
D A G									

BASICS OF CIVIL ENGG. (WORK SHOP) LAB (ESC1103)

COURSE OBJECTIVES:

- a. To outline the process of identification of various building components and their estimation
- b. To provide knowledge on operation of the various survey instruments used for linear and angular measurements.
- c.To explain the concept of measurement of discharge and velocity in a pipe and density of water
- d. To demonstrate automatic weather station

COURSE OUTCOMES:

Learners at the end of this Laboratory course will be able to

- ✤ Identify various components of a building and give lump-sum estimate.
- Determine distances and irregular areas using conventional survey instruments like chain, tape, cross-staff and compass
- Identify different soils
- * Know various traffic signs & signals
- Determine centre of gravity and moment of inertia of channel and I-sections.
- Set out a signal room building as per given plan
- Install simple sanitary filling and find discharge/velocity in a water pipe line as density of water
- * Know to the process of making cement mortar / concrete for nominal mix

LIST OF EXPERIMENTS

- 1. Demonstration on usage of chain
- 2. Ranging offsets chain-age
- 3. To find the area of an irregular polygon using chain by using horizontal measurements
- 4. Determination of bearings and included angles with prismatic compass.
- 5. Demonstration on various Building materials used in construction
- 6. Estimation of quantity of bricks, concrete, wood, paint for the given single room building
- 7. Masonry work hands on practice work deferent types of bonds in brick masonry
- 8. Identification of quality of brick through physical tests
- 9. Identification of soil based on their physical properties
- 10. Setting out of building: The student is required to set out a building (Single room only) as per the given building plan using tape and cross staff.
- 11. Demonstration on Installation of simple sanitary fittings and fixtures like Tap, T-joint, Elbow, bend, threading etc.
- 12. Finding the discharge velocity in a water pipe line also find density of water
- 13. Computation of Centre of gravity and moment of inertial of (i) I-section and (ii) Channel section.
- 14. Welding (arc welding and gas welding)

DEPARTMENT OF CIVIL ENGINEERING

- 15. Carpentry (Demonstration)
- 16. Identify deferent types of roads in the campus and write the physical characteristics of layers
- 17. Demonstration on making of cement mortar/concrete for the given nominal mix
- 18. Study of given Topo-sheet

REFERENCE BOOKS

1. Laboratory Manual for Basic Civil Engineering workshops

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L	Т	Р	C
1 Tear - 11 Semester		3	0	0	3
MATHEMATIC	S –II (LINER ALGEBRA & NUMERICAI	MET	ЮН	DS)	

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3)
- evaluate the approximate roots of polynomial and transcendental equations by different algorithms (L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- apply numerical integral techniques to different Engineering problems (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

UNIT – I: Solving systems of linear equations, Eigen values and Eigen vectors: (10 hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and nonhomogeneous linear equations – Gauss Elimination method – Eigenvalues and Eigen vectors and properties (article-2.14 in text book-1).

Unit – II: Cayley–Hamilton theorem and Quadratic forms:

Cayley-Hamilton theorem (without proof) – Applications – Finding the inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to Diagonal form – Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation. Singular values of a matrix, singular value decomposition (text book-3).

UNIT – III: Iterative methods:

Introduction – Bisection method – Secant method – Method of false position – Iteration method – Newton-Raphson method (One variable and simultaneous Equations) – Jacobi and Gauss-Seidel methods for solving system of equations numerically.

UNIT – IV: Interpolation:

Introduction – Errors in polynomial interpolation – Finite differences – Forward differences – Backward differences – Central differences – Relations between operators – Newton's forward and

(8 hrs)

(10 hrs)

(10 hrs)

DEPARTMENT OF CIVIL ENGINEERING

backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula – Newton's divide difference formula.

UNIT – V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions: (10 hrs)

Numerical differentiation using interpolating polynomial – Trapezoidal rule – Simpson's $1/3^{rd}$ and $3/8^{th}$ rule– Solution of initial value problems by Taylor's series – Picard's method of successive approximations – Euler's method –Runge-Kutta method (second and fourth order).

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- **2. B. V. Ramana,**Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 3. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.

Reference Books:

- **1. Steven C. Chapra,** Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education.
- 2. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L	Τ	Р	С		
		3	0	0	3		
ENGINEERING CHEMISTRY (BS1202) ((Non-circuit branches)							

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

COURSE OBJECTIVES

- Importance of usage of plastics in household appliances and composites (FRP) in aerospace and automotive industries.
- Outline the basics for the construction of electrochemical cells, batteries and fuel cells. Understand the mechanism of corrosion and how it can be prevented.
- *Express* the increases in demand as wide variety of advanced materials are introduced; which have excellent engineering properties.

Classify and discuss the materials used in major industries like steel industry, metallurgical industries and construction industries and electrical equipment manufacturing industries. Lubrication is also *summarized*.

- *Relate* the need of fuels as a source of energy to any industry, particularly industries like thermal power stations, steel industry, fertilizer industry etc., and hence introduced.
- *Explain* the importance and usage of water as basic material in almost all the industries; interpret drawbacks of steam boilers and also how portable water is supplied for drinking purposes.

UNIT I: POLYMER TECHNOLOGY

Polymerisation:- Introduction, methods of polymerization (emulsion and suspension), mechanical properties.

Plastics: Compounding, fabrication (compression, injection, blown film and extrusion), preparation, properties and applications (PVC, polycarbonates and Bakelite), mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste (waste to wealth).

Elastomers:- Introduction, preparation, properties and applications (Buna S, thiokol and polyurethanes).

Composite materials: Fiber reinforced plastics, conducting polymers, biodegradable polymers, biopolymers, biomedical polymers.

Course Outcomes: At the end of this unit, the students will be able to

Analyze the different types of composite plastic materials and interpret the mechanism of conduction in conducting polymers.

UNIT II: ELECTROCHEMICAL CELLS AND CORROSION

Single electrode potential, electrochemical series and uses of series, standard hydrogen electrode, calomel electrode, construction of glass electrode, batteries (Dry cell, Li ion battery and zinc air cells), fuel cells (H₂-O₂, CH₃OH-O₂, phosphoric acid and molten carbonate).

Corrosion:-Definition, theories of corrosion (chemical and electrochemical), galvanic corrosion, differential aeration corrosion, stress corrosion, galvanic series, factors influencing rate of corrosion, corrosion control (proper designing and cathodic protection), Protective coatings (surface preparation, cathodic coatings, anodic coatings, electroplating and electroless plating [nickel]), Paints (constituents, functions and special paints).

8 hrs

10 hrs

DEPARTMENT OF CIVIL ENGINEERING

Course Outcomes: At the end of this unit, the students will be able to

Utilize the theory of construction of electrodes, batteries and fuel cells in redesigning new engineering products and categorize the reasons for corrosion and study methods to control corrosion.

UNIT III: CHEMISTRY OF MATERIALS

10 hrs

Part- A:

Nano materials:- Introduction, sol-gel method, characterization by (Brunauer Emmet Teller [BET]), (scanning electron microscopy [SEM]) and (transmission electron microscopy [TEM]) with example (TiO₂), applications of graphene and fullerenes, carbon nanotubes (types, preparation and applications)

Thermal analysis techniques: Instrumentation and applications of thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC).

Part-B:

Refractories: - Definition, classification, properties (refractoriness, refractoriness under load, porosity and thermal spalling), failure of refractories.

Lubricants: - Definition, mechanism of lubricants, properties (definition and importance).

Cement: - Constituents, manufacturing, parameters to characterize the clinker formation: lime saturation factor (LSF), silica ratio (SR) and alumina ratio (AR), chemistry of setting and hardening, deterioration of cement.

Course Outcomes: At the end of this unit, the students will be able to

- *Synthesize* nanomaterials for modern advances of engineering technology.
- Summarize the techniques that detect and measure changes of state of reaction.
- *Illustrate* the commonly used industrial materials.

UNIT IV: FUELS

Introduction, calorific value, higher calorific value, lower calorific values, problems using Dulong's formula, proximate and ultimate analysis of coal sample and their significance, numerical problems, petroleum (refining-cracking), synthetic petrol (Fischer Tropsch and Bergius), petrol knocking, diesel knocking, octane and cetane ratings, anti-knocking agents, Introduction to alternative fuels (Biodiesel, ethanol, methanol, natural gas, liquefied petroleum gas, compressed natural gas), Flue gas analysis by Orsat apparatus, rocket fuels.

Course Outcomes: At the end of this unit, the students will be able to

- *Differentiate* petroleum, petrol, synthetic petrol and have knowledge how they are produced.
- *Study* alternate fuels and a*nalyse* flue gases.

UNIT V: WATER TECHNOLOGY

Hardness of water, determination of hardness by complexometric method, boiler troubles (priming and foaming, scale formation, boiler corrosion, caustic embrittlement), internal treatments, softening of hard water (zeolite process and related sums, ion exchange process), treatment of industrial waste water, potable water and its specifications, steps involved in purification of water, chlorination, break point chlorination-desalination (reverse osmosis and electro dialysis).

Course Outcomes: At the end of this unit, the students will be able to

• *Analyze* the suitable methods for purification and treatment of hard water and brackish water.

10 hrs

8 hrs

DEPARTMENT OF CIVIL ENGINEERING

Standard Books:

- 1. P.C. Jain and M. Jain "Engineering Chemistry", 15/e, Dhanpat Rai & Sons, Delhi, (Latest edition).
- 2. Shikha Agarwal, "Engineering Chemistry", Cambridge University Press, New Delhi, (2019).
- 3. S.S. Dara, "A Textbook of Engineering Chemistry", S.Chand & Co, (2010).
- 4. Shashi Chawla, "Engineering Chemistry", Dhanpat Rai Publicating Co. (Latest edition).

Reference:

- 1. K. Sesha Maheshwaramma and Mridula Chugh, "Engineering Chemistry", Pearson India Edn.
- 2. O.G. Palana, "Engineering Chemistry", Tata McGraw Hill Education Private Limited, (2009).
- 3. CNR Rao and JM Honig (Eds) "**Preparation and characterization of materials**" Academic press, New York (latest edition)
- 4. B. S. Murthy, P. Shankar and others, "**Textbook of Nanoscience and Nanotechnology**", University press (latest edition)

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L T	Т	Р	C
		3	0	0	3
ENIGINEERING MECHANICS (ESC1201)					

Objectives: The students completing this course are expected to understand the concepts of forces and its resolution in different planes ,resultant of force system, Forces acting on a body, their free body diagrams using graphical methods. They are required to understand the concepts of centre of gravity and moments of inertia and their application, Analysis of frames and trusses, different types of motion, friction and application of work - energy method.

- The students are to be exposed to the concepts of force and friction, direction and its application.
- The students are to be exposed to application of free body diagrams. Solution to problems using graphical methods and law of triangle of forces.
- The students are to be exposed to concepts of centre of gravity
- The students are to be exposed to concepts of moment of inertia and polar moment of inertia including transfer methods and their applications.
- The students are to be exposed to motion in straight line and in curvilinear paths, its velocity and acceleration computation and methods of representing plane motion.
- The students are to be exposed to concepts of work, energy and particle motion

UNIT – I Introduction to Engg. Mechanics – Basic Concepts.

Systems of Forces: Coplanar Concurrent Forces – Components in Space – Resultant – Moment of Force and its Application – Couples and Resultant of Force Systems. Introduction, limiting friction and impending motion, coulomb's laws of dry friction, coefficient of friction, cone of friction

UNIT – II Equilibrium of Systems of Forces : Free Body Diagrams, Equations of Equilibrium of Coplanar Systems,

Spatial Systems for concurrent forces. LamisTheorm, Graphical method for the equilibrium of coplanar forces, Converse of the law of Triangle of forces, converse of the law of polygon of forces condition of equilibrium.

UNIT – III Centroid :Centroids of simple figures (from basic principles) – Centroids of Composite Figures

Centre of Gravity :Centre of gravity of simple body (from basis principles), centre of gravity of composite bodies, pappus theorem.

FRICTION

Types of friction – Limiting friction – Laws of Friction – static and Dynamic Frictions – Angle of Friction –Cone of limiting friction–Friction of wedge, block and Ladder

UNIT – IV

Area moments of Inertia :Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia.

Mass Moment of Inertia :Moment of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, mass moment of inertia of composite bodies.

DEPARTMENT OF CIVIL ENGINEERING

UNIT – V

Kinematics: Rectilinear and Curvelinear motions – Velocity and Acceleration – Motion of Rigid Body – Types and their Analysis in Planar Motion.

Introduction – Rectilinear motion – Motion with uniform and variable acceleration–Curvilinear motion–Componentsofmotion– Circular motion – Projectiles- Instantaneous centre

Kinetics:Kinetics of a particle – D'Alembert's principle – Motion in a curved path – work, energy and power. Principle of conservation of energy – Kinetics of a rigid body in translation, rotation – work done – Principle of work-energy – Impulse-momentum

TEXT BOOKS:

- 1. Engineering Mechanics S.Timoshenko&D.H.Young., 4thEdn, Mc Graw Hill publications.
- 2. Engineering Mechanics statics and dynamics R.C.Hibbeler, 11thEdn Pearson Publ.

REFERENCES:

- 1. Engineering Mechanics, statics and Dynamics, J.L.Meriam, 6thEdn Wiley India Pvt Ltd.
- 2. Engineering Mechanics: Statics and Dynamics 3rd edition, Andrew Pytel and JaanKiusalaas, Cengage Learning publishers.
- 3. Engineering Mechanics, dynamics, Bhavikatti S.S NewAge International Publishers.
- 4. Engineering Mechanics, statics and dynamics I.H. Shames, PearsonPublications
- 5. Mechanics For Engineers, statics -F.P.Beer&E.R.Johnston 5thEdn Mc Graw Hill Publ.
- 6. Mechanics For Engineers, dynamics F.P.Beer&E.R.Johnston 5thEdn McGraw Hill Publ.
- Theory & Problems of engineering mechanics, statics & dynamics E.W.Nelson, C.L.Best& W.G. McLean, 5thEdn – Schaum's outline series - Mc Graw Hill Publ.
- 8. Engineering Mechanics, Fedinand . L. Singer, Harper Collins.
- 9. Engineering Mechanics statics and dynamics, A Nelson, Mc Graw Hill publications
- 10. Engineering Mechanics, Tayal. Umesh Publications.

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L T	Р	С				
		3	0	0	3			
PROGRAMMING FOR PROBLEM SOLVING USING C (ES1202)								

COURSE OBJECTIVES:

The objectives of Programming for Problem Solving Using C are

- 1) To learn about the computer systems, computing environments, developing of a computer program and Structure of a C Program
- 2) To gain knowledge of the operators, selection, control statements and repetition in C
- To learn about the design concepts of arrays, strings, enumerated structure and union types. To learn about their usage.
- 4) To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.
- 5) To assimilate about File I/O and significance of functions

UNIT I

Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers.

Structure of a C Program: Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

UNIT II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators.

Selection & Making Decisions: Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples

UNIT III

Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – Calculate Averages

Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code

Enumerated, Structure, and Union: The Type Definition (Type def), Enumerated Types, Structure, Unions, and Programming Application

UNIT IV

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value **Pointer Applications:** Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application **Processor Commands**: Processor Commands

DEPARTMENT OF CIVIL ENGINEERING

UNIT V

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers toFunctions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

TEXT BOOKS:

- 1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE
- 2. The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson

REFERENCES:

- 1. Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill
- 2. Programming in C, Ashok N. Kamthane, AmitKamthane, Pearson
- 3. Computer Fundamentals and Programming in C, PradipDey, Manas Ghosh, OXFORD

COURSE OUTCOMES:

Upon the completion of the course the student will learn

- 1) To write algorithms and to draw flowcharts for solving problems
- 2) To convert flowcharts/algorithms to C Programs, compile and debug programs
- 3) To use different operators, data types and write programs that use two-way/ multi-way selection
- 4) To select the best loop construct for a given problem
- 5) To design and implement programs to analyze the different pointer applications
- 6) To decompose a problem into functions and to develop modular reusable code
- 7) To apply File I/O operations

DEPARTMENT OF CIVIL ENGINEERING

I Year - I Semester		L	L T	Р	С		
		3	0	0	3		
BUILDING MATERIALS AND CONCRETE TECHNOLOGY (ESC1203)							

Aim and Objective of this course

- 1. To introduce various building construction materials
- 2. To describe various properties of ingredients of concrete
- 3. To explain various properties and tests of fresh and Hardened Concrete

Course Outcomes (COs)

- 1. Know various engineering properties of building construction materials and suggest their suitability
- 2. Identify the functional role of ingredients of concrete and apply this knowledge to concrete mix design
- 3. Acquire and apply fundamental knowledge in the fresh and hardened properties of concrete

Syllabus

Unit - I (Stones, Bricks, Tiles, Wood and Paints)

Stones: Classification of Stones – Properties of stones in structural requirements

Bricks: Composition of good brick earth, Various methods of manufacturing of bricks

Tiles: Characteristics of good tile – Manufacturing methods, Types of tiles

Wood: Structure – Properties – Seasoning of timber – Classification of various types of woods used in buildings – Defects in timber

Paints: White washing and distempering, Constituents of paint – Types of paints – Painting of new and old wood – Varnish

Unit – II (Aggregates, Cement and Admixtures)

Aggregates: Classification of aggregate, Bond, Strength and other mechanical properties of aggregate, Physical properties of aggregate, bulking of sand, Deleterious substance in aggregate, Soundness of aggregate, Alkali-Aggregate reaction – Thermal properties, Sieve analysis – Fineness modulus – Grading curves – Grading of fine and coarse aggregates as per relevant IS code, Maximum aggregate size

Portland Cement: Chemical composition, Hydration, Structure of hydrated cement – Setting of cement, Fineness of cement, Tests for physical properties – Different grades of cements

Supplementary cementitious materials: Fly ash, GGBS, Silica fume, Rice husk ash, Calcinated ash (Basic properties and their contribution to concrete strength)

Admixtures: Mineral and Chemical admixtures

Unit - III (Fresh Concrete)

Manufacture of concrete – Mixing and vibration of concrete, Workability – Segregation and bleeding – Factors affecting workability, Measurement of workability by different tests, Effect of time and temperature on workability – Quality of mixing water, Ready mix concrete, Shotcrete

DEPARTMENT OF CIVIL ENGINEERING

Unit - IV (Hardened Concrete)

Water / Cement ratio – Abram's law, Gel space ratio, Nature of strength of concrete – Maturity concept, Strength in tension and compression – Properties of Hardened Concrete (Elasticity, Creep, Shrinkage, Poisson's ratio, Water absorption, Permeability, etc.), Relating between compression and tensile strength, Curing

Unit - V (Testing of Hardened Concrete)

Factors affecting properties of Hardened concrete, Compression tests, Tension tests, Flexure tests, Non-destructive testing methods – Codal provisions for NDT – Rebound hammer and UPV method

TEXT BOOKS

- 1. "Concrete Technology" by M. S. Shetty S. Chand & Co., 2004
- 2. "Engineering Materials" by Rangwala S C, (36th edition), Anand Charotar Publishing House
- 3. "Concrete Technology" by Shantha Kumar Oxford Publications

REFERENCE BOOKS

- 1. "Building Materials" by S. K. Duggal, New Age International Publications
- 2. "Building Materials" by P. C. Verghese, PHI learning (P) Ltd., 2009
- 3. "Properties of Concrete" by A. M. Neville Pearson 4th edition

ALTINADA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

I Voon II Somoston		L	Т	P	С	
I Year - II Semester		0	0	3	1.5	
ENGINEERING CHEMISTRY LAB (BSC1203)						

Introduction to Chemistry laboratory – Molarity, normality, primary, secondary standard solutions, volumetric titrations, quantitative analysis

- 1. Determination of HCl using standard Na₂CO₃ solution.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn^{+2} using standard oxalic acid solution.
- 4. Determination of ferrous iron using standard $K_2Cr_2O_7$ solution.
- 5. Determination of Cu^{+2} using standard hypo solution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of Fe^{+3} by a colorimetric method.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metry method).
- 9. Determination of iso-electric point of amino acids using pH-metry method/conductometric method.
- 10. Determination of the concentration of strong acid vs strong base (by conductometric method).
- 11. Determination of strong acid vs strong base (by potentiometric method).
- 12. Determination of Mg^{+2} present in an antacid.
- 13. Determination of CaCO₃ present in an egg shell.
- 14. Estimation of Vitamin C.
- 15. Determination of phosphoric content in soft drinks.
- 16. Adsorption of acetic acid by charcoal.
- 17. Preparation of nylon-6, 6 and Bakelite (demonstration only).

Of the above experiments at-least 10 assessment experiments should be completed in a semester.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books

1. A Textbook of Quantitative Analysis, Arthur J. Vogel.

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L	Т	P	С			
		0	0	3	1.5			
PROGRAMMING FOR PROBLEM SOLVING USING C LAB (ESC1204)								

Course Objectives:

- 1) Apply the principles of C language in problem solving.
- 2) To design flowcharts, algorithms and knowing how to debug programs.
- 3) To design & develop of C programs using arrays, strings pointers & functions.
- 4) To review the file operations, preprocessor commands.

Exercise 1:

- 1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters.
- 2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.
- 3. Write a C program to display multiple variables.

Exercise 2:

- 1. Write a C program to calculate the distance between the two points.
- 2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values".

Exercise 3:

- 1. Write a C program to convert a string to a long integer.
- 2. Write a program in C which is a Menu-Driven Program to compute the area of the various geometrical shape.
- 3. Write a C program to calculate the factorial of a given number.

Exercise 4:

- 1. Write a program in C to display the n terms of even natural number and their sum.
- 2. Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.
- 3. Write a C program to check whether a given number is an Armstrong number or not.

Exercise 5:

- 1. Write a program in C to print all unique elements in an array.
- 2. Write a program in C to separate odd and even integers in separate arrays.
- 3. Write a program in C to sort elements of array in ascending order.

Exercise 6:

- 1. Write a program in C for multiplication of two square Matrices.
- 2. Write a program in C to find transpose of a given matrix.

Exercise 7:

- 1. Write a program in C to search an element in a row wise and column wise sorted matrix.
- 2. Write a program in C to print individual characters of string in reverse order.

Exercise 8:

- 1. Write a program in C to compare two strings without using string library functions.
- 2. Write a program in C to copy one string to another string.

DEPARTMENT OF CIVIL ENGINEERING

Exercise 9:

- 1. Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- 2. Write a program in C to demonstrate how to handle the pointers in the program.

Exercise 10:

- 1. Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.
- 2. Write a program in C to add two numbers using pointers.

Exercise 11:

- 1. Write a program in C to add numbers using call by reference.
- 2. Write a program in C to find the largest element using Dynamic Memory Allocation.

Exercise 12:

- 1. Write a program in C to swap elements using call by reference.
- 2. Write a program in C to count the number of vowels and consonants in a string using a pointer.

Exercise 13:

- 1. Write a program in C to show how a function returning pointer.
- 2. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.

Exercise 14:

- 1. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the above two programs
- 2. Write a program in C to convert decimal number to binary number using the function.

Exercise 15:

- 1. Write a program in C to check whether a number is a prime number or not using the function.
- 2. Write a program in C to get the largest element of an array using the function.

Exercise 16:

- 1. Write a program in C to append multiple lines at the end of a text file.
- 2. Write a program in C to copy a file in another name.
- 3. Write a program in C to remove a file from the disk.

Course Outcomes:

By the end of the Lab, the student

- 1) Gains Knowledge on various concepts of a C language.
- 2) Able to draw flowcharts and write algorithms.
- 3) Able design and development of C problem solving skills.
- 4) Able to design and develop modular programming skills.
- 5) Able to trace and debug a program

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L	Т	Р	С
		0	0	3	1.5
BUILDING PLANNI	NG AND COMPUTER AIDED BUILDING DI	RAWI	ING (ESC12	205)

Aim and Objective of this course

To help the student to attain competency in preparation of engineering drawings as per principles of planning using a suitable CAD software through various teaching learning experiences:

Course Outcomes (COs)

- 1. Perform basic commands of any suitable CAD software to draw 2D drawings
- 2. Interpret the conventions, signs and symbols from a given drawing.
- 3. Prepare line plans of residential and public buildings using principles of planning.
- 4. Prepare submission and working drawing from the given requirement for Load Bearing and Framed structures

Major Equipment/ Instruments / System required

- 1. Computer with specification suitable for relevant CAD software with any suitable CAD Software
- 2. Laser Printer preferably for the output of A3 size.

Week 1, 2 and 3

Concepts to be studied

Introduction to CAD software: Basic commands of CAD to draw, modify 2D drawings

Building Byelaws: Introduction – Terminology – Objectives of building byelaws – Principles under laying building bye laws – Types of Buildings.

Regulations: Introduction – Development Control Rules of buildings – General Building Requirements as per NBC – Open space, Lighting and ventilation requirements – Floor area ratio & Floor space index.

Conventions, signs and symbols: Conventions as per IS 962-1989, signs and symbols for earthwork, brickwork, stonework, concrete, woodwork and glass used in civil engineering.

Construction, Graphical symbols for door and window, Abbreviations, symbols for sanitary and electrical installations.

Types of lines and scales: Types of lines- visible lines, centre line, hidden line, section line, dimension line, extension line, pointers, arrow head or dots. Appropriate size of lettering and numerals for Titles, sub titles, notes and dimensions.

Types of scale- Monumental, Intimate, criteria for Proper Selection of scale for various types of drawing.

Sizes of various standard papers/sheets.

Exercise 0

Prepare a given line drawing in minimum three layers using CAD software.

Exercise 1

Reading and interpreting readymade Architectural building drawing (To be procured from Architect, Planning Consultants, Planning Engineer)

DEPARTMENT OF CIVIL ENGINEERING

Week 4, 5 and 6

Concepts to be studied

Principles of building planning: Introduction to buildings, Classification of Buildings, Building Components, Orientation of building, Principles of architecture composition

Principles of planning of Residential and Public building, Orientation of building and Principles of architecture composition: Aspect, Prospect Orientation, Grouping, Privacy, Elegance, Flexibility. Roominess, Circulation, Furniture requirements, Sanitation, Ventilation, Illumination and Economy.

Space requirements and bye-laws: Space requirement and norms for minimum dimension of different units in the residential and public buildings as per IS 962-1989. Rules and bye-laws of sanctioning authorities for construction work. Plot area, built up area, super built-up area, plinth area, carpet area, floor area and FAR (Floor Area Ratio) / FSI.

Exercise 2

Line plans for residential building of minimum three rooms including w/c, bath and staircase as per principles of planning.

Exercise 3

Line plans for public building-school building, primary health centre, restaurant, bank, post office, hostel, Function Hail and Library.

Week 7, 8, 9 and 10

Concepts to be studied

Drawing of Load Bearing Structure: Developed plan, elevation, section, site plan, schedule of openings construction notes with specifications, area statement. Planning and design of staircase Rise and Tread for residential and public building (2 BHK Load bearing structure). Component parts of the given load bearing structure

Exercise 4

Draw developed plan, elevation, section, site plan from the given line plan for a load bearing residential building (2BHK) with stair case.

Exercise 5

Prepare submission drawing (including foundation plan) of the given load bearing residential building with stair case.

Week 11, 12, 13 and 14

Concepts to be studied

Drawing of Framed Structure: Developed plan, elevation, section, site plan, schedule of openings construction notes with specifications, area statement. Planning and design of staircase Rise and Tread for residential and public building (G+1, 2 BHK framed structure). Component parts of the given framed structure

Exercise 7

Draw developed plan, elevation, section, site plan from the given line plan for framed structure residential building including stair case (2BHK, G+1).

Exercise 8

Prepare submission drawing (including foundation plan) of the given framed structure residential building with stair case.

AND DESCRIPTION OF A

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

Note: It is mandatory that student performs all 9 Exercises (from 0 to 8).

SUGGESTED STUDENT ACTIVITIES

- 1. Prepare report on Provisions given in National Building Code 2005.
- 2. Collect and study building Bye laws, rules and regulation for planning as per local competent authority.
- 3. Prepare list of the documents required for obtaining permission for construction of residential building/apartment from competent authority and write report.
- 4. Prepare list of the documents required for obtaining permission for construction of commercial building from competent authority and write report.
- 5. Prepare a model of a simple building using card board showing different components with suitable colour.

DEPARTMENT OF CIVIL ENGINEERING

I Year - II Semester		L	Т	P	С
1 1 ear - 11 Semester		2	0	0	0
	ENVIRONMENTAL SCIENCE (MC1201)				

Learning Objectives:

The objectives of the course are to impart:

- Overall understanding of the natural resources.
- Basic understanding of the ecosystem and its diversity.
- Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities.
- An understanding of the environmental impact of developmental activities.
- Awareness on the social issues, environmental legislation and global treaties.

UNIT-I:

Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance – Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, acid rains, ozone layer depletion, population growth and explosion, effects;. Role of information technology in environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem; Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids; Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT-II:

Natural Resources: Natural resources and associated problems.

Forest resources: Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people.

Water resources: Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification; Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

UNIT-III:

Biodiversity and its conservation: Definition: genetic, species and ecosystem diversityclassification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts. - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

DEPARTMENT OF CIVIL ENGINEERING

UNIT-IV:

Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies, Sustainable Life Studies. Impact of Fire Crackers on Men and his well being.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management.

UNIT-V:

Social Issues and the Environment: Urban problems related to energy -Water conservation, rain water harvesting - Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act -Wildlife Protection Act -Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Public awareness.

Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism, Green Campus – Green business and Green politics.

The student should Visit an Industry / Ecosystem and submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:

- 1. Environmental Studies, K. V. S. G. Murali Krishna, VGS Publishers, Vijayawada
- 2. Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.
- 3. Environmental Studies, P. N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai

Reference:

- 1. Text Book of Environmental Studies, Deeshita Dave & P. UdayaBhaskar, Cengage Learning.
- 2. A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi
- 3. Environmental Studies, Benny Joseph, Tata McGraw Hill Co, New Delhi
- 4. Perspectives in Environment Studies, Anubha Kaushik, C P Kaushik, New Age International Publishers, 2014

DEPARTMENT OF CIVIL ENGINEERING

II Year - I Semester		L	Т	Р	С				
n rear - i Semester		3	0	0	3				
MATHEM	MATHEMATICS-III (Vector Calculus, Transforms and PDE) (BSC301)								
(Common to ALL branches of Second Year B.Tech.)							

Course Objectives:

- To familiarize the techniques in partial differential equations
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real world applications.

Course Outcomes: At the end of the course, the student will be able to

- interpret the physical meaning of different operators such as gradient, curl and divergence • (L5)
- estimate the work done against a field, circulation and flux using vector calculus (L5)
- apply the Laplace transform for solving differential equations (L3)
- find or compute the Fourier series of periodic signals (L3)
- know and be able to apply integral expressions for the forwards and inverse Fourier transform to a range of non-periodic waveforms (L3)
- identify solution methods for partial differential equations that model physical processes (L3) •

UNIT –I: Vector calculus:

Vector Differentiation: Gradient–Directional derivative – Divergence–Curl–Scalar Potential. Vector Integration: Line integral - Work done - Area- Surface and volume integrals - Vector integral theorems: Greens, Stokes and Gauss Divergence theorems (without proof) and problems on above theorems.

UNIT –II: Laplace Transforms:

Laplace transforms – Definition and Laplace transforms of some certain functions– Shifting theorems - Transforms of derivatives and integrals - Unit step function -Dirac's delta function Periodic function – Inverse Laplace transforms– Convolution theorem (without proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

UNIT –III: Fourier series and Fourier Transforms:

Fourier Series: Introduction- Periodic functions - Fourier series of periodic function -Dirichlet's conditions - Even and odd functions - Change of interval- Half-range sine and cosine series.

(10 hrs)

(10 hrs)

(10 hrs)

DEPARTMENT OF CIVIL ENGINEERING

Fourier Transforms: Fourier integral theorem (without proof) – Fourier sine and cosine integrals – Sine and cosine transforms – Properties (article-22.5 in text book-1) – inverse transforms – Convolution theorem (without proof) – Finite Fourier transforms.

UNIT –IV: PDE of first order:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

UNIT – V: Second order PDE and Applications:

Second order PDE: Solutions of linear partial differential equations with constant coefficients –Nonhomogeneous term of the type e^{ax+by} , sin(ax+by), cos(ax+by), $x^m y^n$.

Applications of PDE: Method of separation of Variables– Solution of One dimensional Wave, Heat and two-dimensional Laplace equation.

Text Books:

- 1. **B. S. Grewal,** Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. **B. V. Ramana,**Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. **Dean. G. Duffy,**Advanced Engineering Mathematics with MATLAB, 3rd Edition, CRC Press.
- 3. Peter O' Neil, Advanced Engineering Mathematics, Cengage.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

(10 hrs)

(8hrs)

DEPARTMENT OF CIVIL ENGINEERING

II Year - I Semester		L	Т	Р	C
		3	0	0	3
	STRENGTH OF MATERIALS - I				

Course Learning Objectives:

- To impart preliminary concepts of Strength of Material and Principles of Elasticity and Plasticity Stress conditions and to develop diagrams of variation of various stresses across the length.
- To give concepts of stresses developed in the cross section and bending equations calculation of section modulus of sections with different cross sections
- The concepts above will be utilized in measuring deflections in beams under various loading and support conditions
- To classify cylinders based on their thickness and to derive equations for measurement of stresses across the cross section when subjected to external pressure.

Course Outcomes:

- The student will be able to understand the basic materials behavior under the influence of different external loading conditions and the support conditions
- The student will be able to draw the diagrams indicating the variation of the key performance features like bending moment and shear forces
- The student will have knowledge of bending concepts and calculation of section modulus and for determination of stresses developed in the beams and deflections due to various loading conditions
- The student will be able to assess stresses across section of the thin and thick cylinders to arrive at optimum sections to withstand the internal pressure using Lame's equation.

SYLLABUS:

UNIT – I: Simple Stresses And Strains : Elasticity and plasticity – Types of stresses and strains – Hooke's law – stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them – Bars of varying section – stresses in composite bars – Temperature stresses.

Strain Energy – Resilience – Gradual, sudden, impact and shock loadings – simple applications.

UNIT – II: Shear Force and Bending Moment: Definition of beam – Types of beams – Concept of shear force and bending moment – Point of contra flexure – Relation between S.F., B.M and rate of loading at a section of a beam; S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, uniformly distributed loads, uniformly varying loads, partial uniformly distributed loads, couple and combination of these loads.

UNIT – III: Flexural and shear Stresses in beams

Flexural Stresses: Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R, Neutral axis – Determination bending stresses – section modulus of rectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections – Design of simple beam sections.

ALUEHRU TECHNOLOGICA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

Shear Stresses: Derivation of formula – Shear stress distribution across various beam sections like rectangular, circular, I, T Angle sections.

UNIT – IV: Deflection of Beams: Bending into a circular arc – slope, deflection and radius of curvature – Differential equation for the elastic curve of a beam – Double integration and Macaulay's methods – Determination of slope and deflection for cantilever, simply supported and overhanging beams subjected to point loads, uniformly distributed loads, uniformly varying loads, partial uniformly distributed loads, couple and combination of these loads. Mohr's theorems – Moment area method – application to simple cases of cantilever.

UNIT – V: Thin and Thick Cylinders:

Thin cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – hoop, longitudinal and volumetric strains – changes in diameter, and volume of thin cylinders. **Thick cylinders:** Introduction: Lames theory for thick cylinders, Derivation of Lames formulae, distribution of hoop and radial stresses across the thickness, compound cylinders-distribution of stresses.

TEXT BOOKS:

- 1. A Textbook of Strength of Materials, by R. K. Rajput, 7e (Mechanics of Solids) SI Units S. Chand & Co, NewDelhi
- 2. Strength of materials by R. K. Bansal, Lakshmi Publications.

REFERENCES:

- 1. Mechanics of Materials- by R. C.Hibbler, Pearson publishers
- 2. Mechanics of Solids E P Popov, Prentice Hall.

3. Strength of Materials by B.S.Basavarajaiah and P. Mahadevappa, 3rd Edition,Universities Press

4. Mechanics of Structures Vol – I by H.J.Shah and S.B.Junnarkar, Charotar Publishing House Pvt. Ltd.

DEPARTMENT OF CIVIL ENGINEERING

II Year - I Semester		L	Т	Р	С
II I cal - I Schiestel		3	0	0	3
	FLUID MECHANICS				

Course Learning Objectives:

- To understand the properties of fluids and fluid statics
- To derive the equation of conservation of mass and its application
- To solve kinematic problems such as finding particle paths and streamlines
- To use important concepts of continuity equation, Bernoulli's equation and turbulence, and apply the same to problems
- To analyze laminar and turbulent flows
- To understand the various flow measuring devices
- To study in detail about boundary layers theory

Course Outcomes:

Upon successful completion of this course the students will be able to:

- Understand the various properties of fluids and their influence on fluid motion and analyse a variety of problems in fluid statics and dynamics.
- Calculate the forces that act on submerged planes and curves.
- Ability to analyse various types of fluid flows.
- Apply the integral forms of the three fundamental laws of fluid mechanics to turbulent and laminar flow through pipes and ducts in order to predict relevant pressures, velocities and forces.
- Able Measure the quantities of fluid flowing in pipes, tanks and channels.

Syllabus:

UNIT I

Introduction: Dimensions and units – Physical properties of fluids - specific gravity, viscosity, surface tension, vapour pressure and their influences on fluid motion, pressure at a point, Pascal's law, Hydrostatic law -atmospheric, gauge and vacuum pressures- measurement of pressure. Pressure gauges, Manometers: Differential and Micro Manometers.

Hydrostatics: Hydrostatic forces on submerged plane, Horizontal, Vertical, inclined and curved surfaces – Center of pressure.

$\mathbf{UNIT}-\mathbf{II}$

Fluid Kinematics: Description of fluid flow, Stream line, path line and streak line and stream tube. Classification of flows: Steady, unsteady, uniform, non-uniform, laminar, turbulent, rotational and irrotational flows – Equation of continuity for one, two, three dimensional flows – stream and velocity potential functions, flow net analysis.

Fluid Dynamics: Surface and body forces – Euler's and Bernoulli's equations for flow along a stream line - Momentum equation and its application – forces on pipe bend.

DEPARTMENT OF CIVIL ENGINEERING

UNIT – III

Laminar Flow and Turbulent Flows: Reynold's experiment – Characteristics of Laminar & Turbulent flows, Shear and velocity distributions, Laws of Fluid friction, Hagen-Poiseulle Formula, Flow between parallel plates, Flow through long tubes, hydro-dynamically smooth and rough flows. Closed Conduit Flow: Darcy-Weisbach equation, Minor losses – pipes in series – pipes in parallel – Total energy line and hydraulic gradient line, variation of friction factor with Reynold's number – Moody's Chart, Pipe network problems, Hazen-Williams formula, Hard-Cross Method,

$\mathbf{UNIT} - \mathbf{IV}$

Measurement of Flow: Pitot tube, Venturi meter and Orifice meter – classification of orifices, small orifice and large orifice, flow over rectangular, triangular, trapezoidal and Stepped notches, Broad crested weirs and Ogee weirs.

UNIT – V

Boundary Layer Theory: Boundary layer (BL) – concepts, Prandtl contribution, Characteristics of boundary layer along a thin flat plate, Vonkarman momentum integral equation, laminar and turbulent Boundary layers (no deviations)- BL in transition, separation of BL, Control of BL, flow around submerged objects-Drag and Lift-Magnus effect.

Text Books:

- 1. Modi P.N and Seth S.M.(2018), "Fluid mechanics", Standard book house, New Delhi
- 2. AtextofFluidmechanicsandhydraulicmachines, R.K.Bansal-LaxmiPublications (P) ltd., New Delhi

References:

- 1. K.Subramanyam, Fluid mechanics and hydraulic machines Mc graw hill education, IInd edition
- 2. Fluid Mechanics and Machinery, C.S.P. Ojha, R. Berndtsson and P.N. Chandramouli, Oxford Higher Education.
- 3. Principle of fluid mechanics and fluid machines III edition, university press

DEPARTMENT OF CIVIL ENGINEERING

II Year - I Semester		L	Т	Р	С
II I cai - I Semester		3	0	0	3
	SURVEYING AND GEOMETRICS				

Course Objectives:

The object of the course student should have the capability to:

- Know the principle and methods of surveying.
- Measure horizontal and vertical- distances and angles
- Recording of observation accurately
- Perform calculations based on the observation
- Identification of source of errors and rectification methods
- Apply surveying principles to determine areas and volumes and setting out curves
- Use modern surveying equipment's for accurate results

Course Outcomes:

Course will enable the student to:

- Apply the knowledge to calculate angles, distances and levels
- Identify data collection methods and prepare field notes
- Understand the working principles of survey instruments, measurement errors and corrective measures
- Interpret survey data and compute areas and volumes, levels by different type of equipment and relate the knowledge to the modern equipment and methodologies

SYLLABUS

UNIT - I

Introduction and Basic Concepts: Introduction, Objectives, classification and principles of surveying, surveying accessories. Introduction to Compass, levelling and Plane table surveying.

Measurement of Distances and Directions

Linear distances- Approximate methods, Direct Methods- Chains- Tapes, ranging, Tape corrections.

Prismatic Compass- Bearings, included angles, Local Attraction, Magnetic Declination, and dip – W.C.B systems and Q.B. system of locating bearings.

UNIT - II

Leveling- Types of levels, temporary and permanent adjustments, methods of levelling, booking and Determination of levels, Effect of Curvature of Earth and Refraction.

Contouring- Characteristics and uses of Contours, methods of contour surveying.

Areas - Determination of areas consisting of irregular boundary and regular boundary.

Volumes -Determination of volume of earth work in cutting and embankments for level section, volume of borrow pits, capacity of reservoirs.

UNIT - III

Theodolite Surveying: Types of Theodolites, temporary adjustments, measurement of horizontal angle by repetition method and reiteration method, measurement of vertical Angle, Trigonometric leveling when base is accessible and inaccessible.

DEPARTMENT OF CIVIL ENGINEERING

Traversing: Methods of traversing, traverse computations and adjustments, Introduction to Omitted measurements.

UNIT - IV

Curves: Types of curves and their necessity, elements of simple, compound, reverse curves. **Tachometric Surveying:** Principles of Tachometry, stadia and tangential methods of Tachometry, **Modern Surveying Methods:** Principle and types of E.D.M. Instruments, Total station- advantages and Applications. Introduction to Global Positioning System.

UNIT - V

Photogrammetry Surveying:

Introduction, Basic concepts, perspective geometry of aerial photograph, relief and tilt displacements, terrestrial photogrammetry, flight planning; Stereoscopy, ground control extension for photographic mapping- aerial triangulation, radial triangulation, methods; photographic mapping- mapping using paper prints, mapping using stereoplotting instruments, mosaics, map substitutes.

TEXT BOOKS:

- 1. Surveying (Vol 1, 2 & 3), by B. C. Punmia, Ashok Kumar Jain and Arun Kumar Jain Laxmi Publications (P) ltd., New Delhi.
- 2. Chandra A M, "Plane Surveying and highersurveying", New Age International Pvt. Ltd., Publishers, New Delhi.
- 3. Duggal S K, "Surveying (Vol 1 & 2), Tata McGraw Hill Publishing Co. Ltd. New Delhi.

REFERENCES:

- 1. Arthur R Benton and Philip J Taety, Elements of Plane Surveying, McGraw Hill.
- 2. Surveying and levelling by R. Subramanian, Oxford university press, New Delhi
- 3. Arora K R "Surveying Vol 1, 2 & 3), Standard Book House, Delhi.

DEPARTMENT OF CIVIL ENGINEERING

II Year - I Semester		L	Т	Р	С
		3	0	0	3
	HIGHWAY ENGINEERING				

Course Learning Objectives:

The objectives of this course are:

- > To impart different concepts in the field of Highway Engineering.
- > To acquire design principles of Highway Geometrics and Pavements
- > To acquire design principles of Intersections

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- Plan highway network for a given area.
- > Determine Highway alignment and design highway geometrics.
- Design Intersections and prepare traffic management plans
- > Judge suitability of pavement materials and design flexible and rigid pavements

SYLLABUS:

UNIT I Highway Planning and Alignment: Highway development in India; Classification of Roads; Road Network Patterns; Necessity for Highway Planning; Different Road Development Plans– First, second, third road development plans, road development vision 2021, Rural Road Development Plan – Vision 2025; Planning Surveys; Highway Alignment- Factors affecting Alignment- Engineering Surveys – Drawings and Reports.

UNIT – II Highway Geometric Design: Importance of Geometric Design- Design controls and Criteria- Highway Cross Section Elements- Sight Distance Elements-Stopping sight Distance, Overtaking Sight Distance and Intermediate Sight Distance- Design of Horizontal Alignment-Design of Super elevation and Extra widening- Design of Transition Curves- Design of Vertical alignment-Gradients- Vertical curves.

UNIT – III Traffic Engineering: Basic Parameters of Traffic-Volume, Speed and Density- Traffic Volume Studies; Speed studies –spot speed and speed & delay studies; Parking Studies; Road Accidents-Causes and Preventive measures - Condition Diagram and Collision Diagrams; PCU Factors, Capacity of Highways – Factors Affecting; LOS Concepts; Road Traffic Signs; Road markings; Types of Intersections; At-Grade Intersections – Design of Plain, Flared, Rotary and Channelized Intersections; Design of Traffic Signals –Webster Method –IRC Method.

UNIT – IV Highway Materials: Subgrade soil: classification –Group Index – Subgrade soil strength – California Bearing Ratio – Modulus of Subgrade Reaction. Stone aggregates: Desirable properties – Tests for Road Aggregates – Bituminous Materials: Types – Desirable properties – Tests on Bitumen – Bituminous paving mixes: Requirements – Marshall Method of Mix Design.

AND DECEMBER OF THE PROPERTY O

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

UNIT – V Design Of Pavements: Types of pavements; Functions and requirements of different components of pavements; Design Factors

Flexible Pavements: Design factors – Flexible Pavement Design Methods – CBR method – IRC method – Burmister method – Mechanistic method – IRC Method for Low volume Flexible pavements.

Rigid Pavements: Design Considerations – wheel load stresses – Temperature stresses – Frictional stresses – Combination of stresses – Design of slabs – Design of Joints – IRC method – Rigid pavements for low volume roads – Continuously Reinforced Cement Concrete Pavements – Roller Compacted Concrete Pavements.

TEXT BOOKS:

- 1. Highway Engineering, Khanna S. K., Justo C. E. G and Veeraragavan A, Nem Chand Bros., Roorkee.
- 2. Traffic Engineering and Transportation Planning, Kadiyali L. R, Khanna Publishers, New Delhi.

REFERENCES:

- 1. Principles of Highway Engineering, Kadiyali L. R, Khanna Publishers, New Delhi
- 2. Principles of Transportation Engineering, Partha Chakroborthy and Animesh Das, PHI Learning Private Limited, Delhi

DEPARTMENT OF CIVIL ENGINEERING

II Year – I Semester		L	Т	Р	С
		0	0	3	1.5
	CONCRETE TECHNOLOGY LAB				

Course Learning Objectives:

• To study basic properties ingredients of concrete, fresh and hardened concrete properties

Course Outcomes:

Upon successful completion of this course, student will be able to

- Determine consistency and fineness of cement.
- Determine setting times of cement.
- Determine specific gravity and soundness ofcement.
- Determine compressive strength ofcement.
- Determine workability of cement concrete by compaction factor, slump and Vee Beetests
- Determine specific gravity of coarse aggregate and fine aggregate by Sieve analysis.
- Determine flakiness and elongation index of aggregates.
- Determine bulking of sand.
- Understand non-destructive testing procedures on concrete.

List of Experiments: At least 10 experiments must be conducted (at least one for each property)

- 1. Determination of normal Consistency and fineness of cement.
- 2. Determination of initial setting time and final setting time of cement.
- 3. Determination of specific gravity and soundness of cement.
- 4. Determination of compressive strength of cement.
- 5. Determination of grading and fineness modulus of Coarse aggregate by sieve analysis.
- 6. Determination of specific gravity of coarse aggregate
- 7. Determination of grading and fineness modulus of fine aggregate (sand) by sieve analysis.
- 8. Determination of bulking of sand.
- 9. Determination of workability of concrete by compaction factor method.
- 10. Determination of workability of concrete by slump test
- 11. Determination of workability of concrete by Vee-beetest.
- 12. Determination of compressive strength of cement concrete and its young's modulus
- 13. Determination of split tensile strength of concrete.
- 14. Non-Destructive testing on concrete (for demonstration)

DEPARTMENT OF CIVIL ENGINEERING

List of Equipment:

- 1. Standard set of sieves for coarse aggregate and fine aggregate
- 2. Vicat's apparatus
- 3. Specific gravity bottle.
- 4. Lechatlier's apparatus.
- 5. Slump Test Apparatus.
- 6. Compaction Factor Test Apparatus.
- 7. Vee- Bee test apparatus
- 8. Longitudinal compresso-meter
- 9. Universal testing Machine (UTM)/Compression Testing Machine(CTM).
- 10. Rebound hammer, Ultrasonic pulse velocity machine, micro cover meteretc.

Reference:

1) Concrete Manual by M.L.Gambhir

DEPARTMENT OF CIVIL ENGINEERING

II Year – I Semester		L	Т	Р	С
		0	0	3	1.5
	HIGHWAY ENGINEERING LAB				

Course Learning Objectives:

The objectives of this course are:

- 1. To test crushing value, impact resistance, specific gravity and water absorption, attrition value, abrasion value, flakiness index and elongation index for the given road aggregates.
- 2. To know penetration value, ductility value, softening point, flash and fire point, viscosity and stripping for the given bitumen grade.
- 3. To test the stability for the given bituminous mix
- 4. To carry out surveys for traffic volume, speed and parking.

Course outcomes:

At the end of the course, the student will be able to

- a. Test aggregates and judge the suitability of materials for the road construction
- b. Test the given bitumen samples and judge their suitability for the road construction
- c. Obtain the optimum bitumen content for Bituminous Concrete
- d. Determine the traffic volume, speed and parking characteristics.
- e. Draw highway cross sections and intersections.

SYLLABUS:

I. ROAD AGGREGATES:

- 1. Aggregate Crushing value Test
- 2. Aggregate Impact Test.
- 3. Specific Gravity and Water Absorption Test
- 4. Attrition Test
- 5. Abrasion Test.
- 6. Shape tests

II. BITUMINOUS MATERIALS:

- 1. Penetration Test.
- 2. Ductility Test.
- 3. Softening Point Test.
- 4. Flash and fire point tests.
- 5. Stripping Test
- 6. Viscosity Test.

III. BITUMINOUS MIX:

1. Marshall Stability test.

IV. TRAFFIC SURVEYS:

- 1. Traffic volume study at mid blocks.
- 2. Traffic Volume Studies (Turning Movements) at intersection.
- 3. Spot speed studies.
- 4. Parking study.

DEPARTMENT OF CIVIL ENGINEERING

V. DESIGN & DRAWING

- 1. Earthwork calculations for road works
- 2. Drawing of road cross sections
- 3. Rotary intersection design

LIST OF EQUIPMENT:

- 1. Apparatus for aggregate crushing test.
- 2. Aggregate Impact testing machine
- 3. Pycnometers
- 4. Los angles Abrasion test machine
- 5. Deval's Attrition test machine
- 6. Elongation and thickness gauges
- 7. Bitumen penetration test setup.
- 8. Bitumen Ductility test setup.
- 9. Ring and ball apparatus
- 10. Viscometer.
- 11. Marshal Mix design apparatus.
- 12. Enoscope for spot speed measurement.
- 13. Stop Watches

TEXT BOOKS:

- 1. 'Highway Material Testing Manual' by S.K. Khanna, C.E.G Justo and A.Veeraraghavan, Neam Chan Brothers New Chand Publications, New Delhi.
- 2. Highway Material Testing & Quality Control by Rao Wiley India pvt. Ltd., Noida, New Delhi

REFERENCE BOOKS:

- 1. IRC Codes of Practice
- 2. Asphalt Institute of America Manuals
- 3. Code of Practice of B.I.S.

DEPARTMENT OF CIVIL ENGINEERING

II Year - I Semester		L	Т	Р	С
		0	0	3	1.5
S	URVEYING FILED WORK – I (Lab)				

List of Field Works:

- 1. Survey by chain survey of road profile with offsets in case of road widening.
- 2. Survey in an area by chain survey (Closed circuit)
- 3. Determination of distance between two inaccessible points by using compass.
- 4. Finding the area of the given boundary using compass (Closed Traverse)
- 5. Plane table survey; finding the area of a given boundary by the method of Radiation
- 6. Plane table survey; finding the area of a given boundary by the method of intersection.
- 7. Two Point Problem by the plane table survey.
- 8. Fly levelling : Height of the instrument method (differential levelling)
- 9. Fly levelling: rise and fall method.
- 10. Fly levelling: closed circuit/ open circuit.
- 11. Fly levelling; Longitudinal Section and Cross sections of a given road profile.
- 12. Fly levelling and Fly chaining (complete field work).

Note: Any 10 field work assignments must be completed.

DEPARTMENT OF CIVIL ENGINEERING

II Year - I Semester		L	Т	Р	C
n Year - I Semester		1	0	2	2
	SKILL ORIENTED COURSE*				

Topographic Survey with contour map (Total station/ DGPS) or

Masonry 3' height with different bonds and different thickness

DEPARTMENT OF CIVIL ENGINEERING

II Year - I Semester		L	L T		С
		2	0	0	0
	CONSTITUTION OF INDIA (MC)				

Course Objectives:

- > To Enable the student to understand the importance of constitution
- > To understand the structure of executive, legislature and judiciary
- > To understand philosophy of fundamental rights and duties
- To understand the autonomous nature of constitutional bodies like Supreme Court and high court controller and auditor general of India and election commission of India.
- > To understand the central and state relation financial and administrative.

UNIT-I

Introduction to Indian Constitution: Constitution meaning of the term, Indian Constitution - Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.

Learning outcomes:

After completion of this unit student will

- Understand the concept of Indian constitution
- Apply the knowledge on directive principle of state policy
- Analyze the History, features of Indian constitution
- Evaluate Preamble Fundamental Rights and Duties

UNIT-II

Union Government and its Administration Structure of the Indian Union: Federalism, Centre- State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, LokSabha, RajyaSabha, The Supreme Court and High Court: Powers and Functions;

- Learning outcomes:-After completion of this unit student will
 - Understand the structure of Indian government
 - Differentiate between the state and central government
 - Explain the role of President and Prime Minister
 - Know the Structure of supreme court and High court

UNIT-III

State Government and its Administration Governor - Role and Position - CM and Council of ministers, State Secretariat: Organisation, Structure and Functions

Learning outcomes:-After completion of this unit student will

- Understand the structure of state government
- Analyze the role Governor and Chief Minister
- Explain the role of state Secretariat
- Differentiate between structure and functions of state secretariat

UNIT-IV

A.Local Administration - District's Administration Head - Role and Importance, Municipalities - Mayor and role of Elected Representative - CEO of Municipal Corporation PachayatiRaj: Functions

DEPARTMENT OF CIVIL ENGINEERING

PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Block level Organizational Hierarchy - (Different departments), Village level - Role of Elected and Appointed officials - Importance of grass root democracy

Learning outcomes:-After completion of this unit student will

- Understand the local Administration
- Compare and contrast district administration role and importance
- Analyze the role of Myer and elected representatives of Municipalities
- Evaluate Zillapanchayat block level organisation

UNIT-V

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission:, Functions of Commissions for the welfare of SC/ST/OBC and women

Learning outcomes:-After completion of this unit student will

- Know the role of Election Commission apply knowledge
- Contrast and compare the role of Chief Election commissioner and Commissiononerate
- Analyze role of state election commission
- Evaluate various commissions of viz SC/ST/OBC and women

References:

- 1. Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt. Ltd.. New Delhi
- 2. SubashKashyap, Indian Constitution, National Book Trust
- 3. J.A. Siwach, Dynamics of Indian Government & Politics
- 4. D.C. Gupta, Indian Government and Politics
- 5. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- 6. J.C. Johari, Indian Government and Politics Hans
- 7. J. Raj IndianGovernment and Politics
- 8. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice Hall of India Pvt. Ltd.. New Delhi
- 9. Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012

Resources:

- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- 5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

DEPARTMENT OF CIVIL ENGINEERING

Course Outcomes:

At the end of the semester/course, the student will be able to have a clear knowledge on the following:

- Understand historical background of the constitution making and its importance for building a democratic India.
- Understand the functioning of three wings of the government ie., executive, legislative and judiciary.
- > Understand the value of the fundamental rights and duties for becoming good citizen of India.
- Analyze the decentralization of power between central, state and local self-government.
- Apply the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustaining democracy.
 - 1. Know the sources, features and principles of Indian Constitution.
 - 2. Learn about Union Government, State government and its administration.
 - 3. Get acquainted with Local administration and Pachayati Raj.
 - 4. Be aware of basic concepts and developments of Human Rights.
 - 5. Gain knowledge on roles and functioning of Election Commission

DEPARTMENT OF CIVIL ENGINEERING

II Year - II Semester		L	Т	Р	С	
		3	0	0	3	
COMPLEX VARIABLES AND STATISTICAL METHODS						
(Common to all branches of Second Year except CSE ant IT)						

Course Objectives:

- To familiarize the complex variables.
- To make the student capable of evaluating the integrals in complex domains
- To make the student capable of expanding a given function as a series and finding the poles and residues
- To make the student capable of evaluating the integrals in complex domains using residue theorem
- To familiarize the students with the foundations of probability and statistical methods.
- To equip the students to solve application problems in their disciplines.

Course Outcomes: At the end of the course students will be able to

- apply Cauchy-Riemann equations to complex functions in order to determine whether a given continuous function is analytic (L3)
- find the differentiation and integration of complex functions used in engineering problems (L5)
- make use of the Cauchy residue theorem to evaluate certain integrals (L3)
- apply discrete and continuous probability distributions (L3)
- design the components of a classical hypothesis test (L6)
- infer the statistical inferential methods based on small and large sampling tests (L4)

UNIT – I: Functions of a complex variable and Complex integration:

Introduction – Continuity – Differentiability – Analyticity –Cauchy-Riemann equations in Cartesian and polar coordinates – Harmonicand conjugate harmonic functions – Milne – Thompson method. Complex integration: Line integral – Cauchy's integral theorem – Cauchy's integral formula – Generalized integral formula (all without proofs) and problems on above theorems.

UNIT – II:Series expansions and Residue Theorem:

Radius of convergence – Expansion in Taylor's series, Maclaurin's series and Laurent series. Types of Singularities: Isolated – Essential –Pole of order m– Residues – Residue theorem

(without proof) – Evaluation of real integral of the types $\int_{-\infty}^{\infty} f(x) dx$ and $\int_{c}^{c+2\pi} f(\cos\theta, \sin\theta) d\theta$.

(10 hrs)

(10 hrs)

DEPARTMENT OF CIVIL ENGINEERING

UNIT – III: Probability and Distributions:

Review of probability and Baye's theorem – Random variables – Discrete and Continuous random variables – Distribution functions – Probability mass function, Probability density function and Cumulative distribution functions – Mathematical Expectation and Variance – Binomial, Poisson, Uniform and Normal distributions.

UNIT – IV: Sampling Theory:

Introduction – Population and Samples – Sampling distribution of Means and Variance (definition only) – Central limit theorem (without proof) – Representation of the normal theory distributions – Introduction to t, χ^2 and F-distributions – Point and Interval estimations – Maximum error of estimate.

UNIT – V: Tests of Hypothesis:

Introduction – Hypothesis – Null and Alternative Hypothesis – Type I and Type II errors – Level of significance – One tail and two-tail tests – Tests concerning one mean and two means (Large and Small samples) – Tests on proportions.

Text Books:

- 1. **B. S. Grewal**, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. Miller and Freund's, Probability and Statistics for Engineers, 7/e, Pearson, 2008.

Reference Books:

- 1. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 9th edition, Mc-Graw Hill, 2013.
- 2. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, 11/e, Sultan Chand & Sons Publications, 2012.
- 3. **Jay l. Devore,** Probability and Statistics for Engineering and the Sciences, 8th Edition,Cengage.
- 4. Shron L.Myers, Keying Ye, Ronald E Walpole, Probability and Statistics Engineers and the Scientists,8th Edition, Pearson 2007.
- 5. **Sheldon, M. Ross**, Introduction to probability and statistics Engineers and the Scientists, 4thEdition, Academic Foundation,2011

(10 hrs)

(10 hrs)

(8 hrs)

DEPARTMENT OF CIVIL ENGINEERING

II Year – II Semester		L	Т	Р	С
		3	0	0	3
	STRENGTH OF MATERIALS - II				

Course Learning Objectives:

• To give concepts of Principal stresses and strains developed in cross section of the beams on the cross section and stresses on any inclined plane. To impart concepts of failures in the material considering different theories

• To give concepts of torsion and governing torsion equation, and there by calculate the power transmitted by shafts and springs and design the cross section when subjected to loading using different theories of failures.

• To classify columns and calculation of load carrying capacity and to assess stresses due to axial and lateral loads for different edge conditions and to calculate combined effect of direct and bending stresses on different engineering structures.

• Introduce the concept of unsymmetrical bending in beams Location of neutral axis Deflection of beams under unsymmetrical bending.

Course Outcomes:

Upon successful completion of this course,

• The student will be able to understand the basic concepts of Principal stresses developed in a member when it is subjected to stresses along different axes and design the sections.

• The student can assess stresses in different engineering applications like shafts, springs, columns and struts subjected to different loading conditions

SYLLABUS:

UNIT- I Principal Stresses and Strains And Theories of Failures: Introduction – Stresses on an inclined section of a bar under axial loading – compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses accompanied by a state of simple shear – Mohr's circle of stresses – Principal stresses and strains – Analytical and graphical solutions.

Theories of Failures: Introduction – Various Theories of failures like Maximum Principal stress theory – Maximum Principal strain theory – Maximum shear stress theory – Maximum strain energy theory – Maximum shear strain energy theory.

UNIT – II Torsion of Circular Shafts and Springs: Theory of pure torsion – Derivation of Torsion equations: $T/J = q/r = N\phi/L$ – Assumptions made in the theory of pure torsion – Torsional moment of resistance – Polar section modulus – Power transmitted by shafts – Combined bending and torsion and end thrust – Design of shafts according to theories of failure.

Springs: Introduction – Types of springs – deflection of close and open coiled helical springs under axial pull and axial couple – springs in series and parallel.

DEPARTMENT OF CIVIL ENGINEERING

UNIT – III Columns and Struts: Introduction – Types of columns – Short, medium and long columns – Axially loaded compression members – Crushing load – Euler's theorem for long columns- assumptions- derivation of Euler's critical load formulae for various end conditions – Equivalent length of a column – slenderness ratio – Euler's critical stress – Limitations of Euler's theory – Rankine – Gordon formula – Long columns subjected to eccentric loading – Secant formula – Empirical formulae – Straight line formula – Prof. Perry's formula.

UNIT – IV Direct and Bending Stresses: Stresses under the combined action of direct loading and B.M. Core of a section – determination of stresses in the case of chimneys, retaining walls and dams – conditions for stability – stresses due to direct loading and B.M. about both axis.

UNIT - V Unsymmetrical Bending and Shear Centre

Un-symmetrical Bending: Introduction – Centroidal principal axes of section – Graphical method for locating principal axes – Moments of inertia referred to any set of rectangular axes – Stresses in beams subjected to unsymmetrical bending – Principal axes

– Resolution of bending moment into two rectangular axes through the centroid – Location of neutral axis Deflection of beams under unsymmetrical bending.

Shear Centre: Introduction Shear center for symmetrical and unsymmetrical sections (channel, I, T and L sections).

TEXT BOOKS:

1. A Textbook of Strength of Materials, by R. K. Rajput, 7e (Mechanics of Solids) SI Units S. Chand & Co, NewDelhi

2. Strength of materials by R. K. Bansal, Lakshmi Publications.

REFERENCES:

1. Mechanics of Materials- by R. C.Hibbler, Pearson publishers

2. Mechanics of Solids – E P Popov, Prentice Hall.

3. Strength of Materials by B.S.Basavarajaiah and P. Mahadevappa, 3rd Edition, Universities Press,

4. Mechanics of Structures Vol – I by H.J.Shah and S.B.Junnarkar, Charotar Publishing House Pvt. Ltd.

DEPARTMENT OF CIVIL ENGINEERING

II Year - II Semester		L	Т	Р	С
		3	0	0	3
HYDRAULICS AND HYDRAULIC MACHINERY					

Course Learning Objectives:

• To study about uniform and non-uniform flows in open channel and also to learn about the characteristics of hydraulic jump

• To introduce dimensional analysis for fluid flow problems

• To understand the working principles of various types of hydraulic machines and Pumps.

Course Outcomes:

Upon successful completion of this course the students will be able to:

- Solve uniform and non-uniform open channel flow problems.
- Apply the principals of dimensional analysis and similitude in hydraulic model testing.
- Understand the working principles of various hydraulic machineries and pumps.

UNIT – I: UNIFORM FLOW IN OPEN CHANNEL:

Types of channels –Types of flows - Velocity distribution – Energy and momentum correction factors – Chezy's, and Manning's formulae for uniform flow – Most Economical sections, Critical flow: Specific energy-critical depth – computation of critical depth

UNIT II: NON-UNIFORM FLOW IN OPEN CHANNELS: Steady Gradually Varied flow-Dynamic equation, Mild, Critical, Steep, horizontal and adverse slopes-surface profiles-direct step method- Rapidly varied flow, hydraulic jump, energy dissipation.

UNIT – III: HYDRAULIC SIMILITUDE: Dimensional analysis-Rayleigh's method and Buckingham's pi theorem-study of Hydraulic models – Geometric, kinematic and dynamic similarities-dimensionless numbers – model and prototype relations.

UNIT – IV: BASICS OF TURBO MACHINERY: Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes, jet striking centrally and at tip, velocity triangles at inlet and outlet, expressions for work done and efficiency-Angular momentum principle.

UNIT – V:

HYDRAULIC TURBINES – I: Layout of a typical Hydropower installation – Heads and efficiencies - classification of turbines. Pelton wheel - Francis turbine - Kaplan turbine - working, working proportions, velocity diagram, work done and efficiency, hydraulic design, draft tube – theory and efficiency. Governing of turbines-surge tanks-unit and specific quantities, selection of turbines, performance characteristics-geometric similarity-cavitation.

DEPARTMENT OF CIVIL ENGINEERING

PUMPS:

CENTRAIFUGAL-PUMPS: Pump installation details-classification-work done- Manometric head-minimum starting speed-losses and efficiencies-specific speed, multistage pumps-pumps in parallel and series - performance of pumps-characteristic curves- NPSH- Cavitation. **RECIPROCATING PUMPS:** Introduction, classification, components, working, discharge, indicator diagram, work done and slip.

Text Books:

- 1. Open Channel flow, K. Subramanya, Tata McGraw Hill Publishers
- 2. Fluid mechanics and hydraulic machines, Rajput, A.K(2018), S chand ,New Delhi
- 3. Fluid Mechanics, Modi and Seth, Standard book house.

References:

- 1. Fluid Flow in Pipes and Channels, G.L. Asawa, CBS
- 2. Fluid Mechanics and Machinery, C.S.P. OJHA, R. BERNDTSSON and P.N. Chandramouli, Oxford Higher Education.
- 3. Fluid Mechanics and Machinery, Md. Kaleem Khan, Oxford Higherducation.
- 4. Fluid mechanics and Hydraulic machines, R.K. Bansal, Laxmi publications ,New Delhi.

DEPARTMENT OF CIVIL ENGINEERING

II Year – II Semester		L	Т	Р	С
		3	0	0	3
]	NVIRONMENTAL ENGINEERING				

Course Learning Objectives:

The course will address the following:

- Outline planning and the design of water supply systems for a community/town/city and selection of source based on quality and quantity
- Design of water treatment plant for a village/city
- Impart knowledge on design of water distribution network
- Design of sewers and plumbing system for buildings
- Design of Sewage Treatment Plant

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

- Select a source based on quality and quantity and Estimate design population and water demand
- Design a water treatment plant for a village/city
- Design a sewer by estimating DWF and Strom water flow and plumbing system for buildings
- Design a Sewage Treatment Plant for a town/city.

UNIT-I

Introduction: Importance and Necessity of Protected Water Supply systems, Water borne diseases, Flow chart of public water supply system, Role of Environmental Engineer.

Water Demand and Quantity Estimation: Estimation of water demand for a town or city, Per capita Demand and factors influencing it - factors affecting water demand, Design Period, Population forecasting.

Sources of Water: Lakes, Rivers, Comparison of sources with reference to quality, quantity and other considerations- Ground water sources: springs, Wells and Infiltration galleries, Characteristics of water– Physical, Chemical and Biological characteristics and WHO guidelines for drinking water - IS 10500 2012 - Water quality standards for Agriculture, Industries and Construction.

UNIT-II

Treatment of Water: Treatment methods: Theory and Design of Sedimentation, Coagulation, Filtration. **Disinfection**: Theory of disinfection-Chlorination and other Disinfection methods. Removal of color and odors- Removal of Iron and Manganese - Adsorption- Fluoridation and deflouridation–Reverse Osmosis- Solar stills- Freezing

UNIT-III

Collection and Conveyance of Water: Factors governing the selection of the intake structure, Conveyance of Water: Gravity and Pressure conduits, Types of Pipes, Pipe Materials, Pipe joints, Design aspects of pipe lines, Design of economical diameter of pumping main, HP of pump and monthly expenditure for an apartment and a village. Laying and testing of pipe lines- Capacity of storage reservoirs, Mass curve analysis.

ALL REPORT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

Distribution of Water: Methods of Distribution system, Layouts of Distribution networks, Water main appurtenances - Sluice valves, Pressure relief valves, air valves, check valves, hydrants, and water meters–Ideal water supply system. Case studies.

$\mathbf{UNIT} - \mathbf{IV}$

Sewerage: Estimation of sewage flow and storm water drainage – fluctuations – types of sewers - design of sewers.

Sewer appurtenances – cleaning and ventilation of sewers. Sewage pumps.

House Plumbing: Systems of plumbing-sanitary fittings and other accessories– one pipe and two pipe systems – Design of drainage in Gated communities, Apartments and Hotels. Septic Tank - working Principles and Design

UNIT – V

Sewage characteristics – Characteristics of sewage - BOD equations. ThOD, COD and BOD.

Treatment of Sewage: Primary treatment. **Secondary treatment**: Activated Sludge Process, principles, designs, and operational problems. Oxidation ponds, Trickling Filters – classification – design, operation and maintenance problems. RBCs. Fluidized bed reactors –Anaerobic digestion of sludge, Sludge Drying Beds.

Ultimate Disposal of sewage: Methods of disposal – disposal into water bodies-Oxygen Sag Curve-Disposal into sea, disposal on land, Crown corrosion, Sewage sickness. Effluent standards.

Text Books

- 1. Environmental Engineering Howard S. Peavy, Donald R. Rowe, Teorge George Tchobanoglus Mc-Graw-Hill Book Company, New Delhi, 1985.
- 2. Rural Municipal and Industrial water management, KVSG Murali Karishna, Environmental Protection Society, Kakinada, 2021.
- 3. Industrial Water and Wastewater Management, K.V.S.G. Murali Krishna, Paramount Publications, Visakhapatnam, 2018.

4. Elements of Environmental Engineering – K. N. Duggal, S. Chand & Company Ltd., New Delhi, 2012.

References

- 1. Water Supply Engineering P. N. Modi.
- 2. Water Supply Engineering B. C. Punmia
- 3. Water Supply and Sanitary Engineering G. S. Birdie and J. S. Birdie
- 4. Environmental Engineering, D. Srinivasan, PHI Learning Private Limited, New Delhi, 2011.
- 5. Environmental Engineering, Ruth F. Weiner and Robin Matthews 4th Edition Elsevier, 2003
- 6. Environmental Engineering, D. Srinivasan, PHI Learning Private Limited, New Delhi, 2011.

DEPARTMENT OF CIVIL ENGINEERING

II Year - II Semester		L	Т	Р	С	
n rear - n Semester		3	0	0	3	
MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS						
(Common to all Branches)						

Course Learning Objectives:

- The Learning objectives of this paper are to understand the concept and nature of Managerial Economics and its relationship with other disciplines and also to understand the Concept of Demand and Demand forecasting.
- To familiarize about the Production function, Input Output relationship, Cost-Output relationship and Cost-Volume-Profit Analysis.
- To understand the nature of markets, Methods of Pricing in the different market structures and to know the different forms of Business organization and the concept of Business Cycles.
- To learn different Accounting Systems, preparation of Financial Statement and uses of different tools for performance evaluation.
- Finally, it is also to understand the concept of Capital, Capital Budgeting and the techniques used to evaluate Capital Budgeting proposals.

Course Outcomes:

- The Learner is equipped with the knowledge of estimating the Demand and demand elasticities for a product.
- The knowledge of understanding of the Input-Output-Cost relationships and estimation of the least cost combination of inputs.
- The pupil is also ready to understand the nature of different markets and Price Output determination under various market conditions and also to have the knowledge of different Business Units.
- The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis.
- The Learner can able to evaluate various investment project proposals with the help of capital budgeting techniques for decision making.

Unit-I

Introduction to Managerial Economics and demand Analysis:

Definition of Managerial Economics –Scope of Managerial Economics and its relationship with other subjects –Concept of Demand, Types of Demand, Determinants of Demand- Demand schedule, Demand curve, Law of Demand and its limitations- Elasticity of Demand, Types of Elasticity of Demand and Measurement- Demand forecasting and Methods of forecasting, Concept of Supply and Law of Supply.

DEPARTMENT OF CIVIL ENGINEERING

Unit – II:

Theories of Production and Cost Analyses:

Theories of Production function- Law of Variable proportions-Isoquants and Isocosts and choice of least cost factor combination-Concepts of Returns to scale and Economies of scale-Different cost concepts: opportunity costs, explicit and implicit costs-Fixed costs, Variable Costs and Total costs –Cost –Volume-Profit analysis-Determination of Breakeven point(problems)-Managerial significance and limitations of Breakeven point.

Unit – III:

Introduction to Markets, Theories of the Firm & Pricing Policies:

Market Structures: Perfect Competition, Monopoly, Monopolistic competition and Oligopoly – Features – Price and Output Determination – Managerial Theories of firm: Marris and Williamson's models – other Methods of Pricing: Average cost pricing, Limit Pricing, Market Skimming Pricing, Internet Pricing: (Flat Rate Pricing, Usage sensitive pricing) and Priority Pricing, Business Cycles : Meaning and Features – Phases of a Business Cycle. Features and Evaluation of Sole Trader, Partnership, Joint Stock Company – State/Public Enterprises and their forms.

Unit – IV:

Introduction to Accounting & Financing Analysis:

Introduction to Double Entry System, Journal, Ledger, Trail Balance and Preparation of Final Accounts with adjustments – Preparation of Financial Statements-Analysis and Interpretation of Financial Statements-Ratio Analysis – Preparation of Funds flow and cash flow analysis (Problems)

Unit – V:

Capital and Capital Budgeting: Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Time value of money- Methods of appraising Project profitability: Traditional Methods(payback period, accounting rate of return) and modern methods(Discounted cash flow method, Net Present Value method, Internal Rate of Return Method and Profitability Index)

TEXT BOOKS:

1. R Aryasri, Managerial Economics and Financial Analysis, The McGraw – Hill companies.

REFERENCES:

- 1. Varshney R.L, K.L Maheswari, Managerial Economics, S. Chand & Company Ltd,
- 2. JL Pappas and EF Brigham, Managerial Economics, Holt, R & W; New edition edition
- 3. N.P Srinivasn and M. SakthivelMurugan, Accounting for Management, S. Chand & Company Ltd,
- 4. MaheswariS.N, AnIntroduction to Accountancy, Vikas Publishing House Pvt Ltd
- 5. I.M Pandey, Financial Management, Vikas Publishing House Pvt Ltd
- 6. V. Maheswari, Managerial Economics, S. Chand & Company Ltd,

DEPARTMENT OF CIVIL ENGINEERING

II Year – II Semester		L	Т	Р	С
in rour in Semester		0	0	3	1.5
EV	IRONMENTAL ENGINEERING LAB				

Course Learning Objectives:

The course will address the following:

- Estimation of important characteristics of water and wastewater in the laboratory
- Inference with reference to the significance of the characteristics of the water and wastewater

Course Outcomes:

Upon the successful completion of this course, the students will be able to:

• Estimate some important characteristics of water, wastewater and soil in the laboratory

• Draw some conclusion and decide whether the water is suitable for Drinking/Construction / Agriculture/ Industry.

- Estimate Chloride, EC and Salinity of Soil and suggest their suitability for
- Construction/Agriculture

• Estimation of the strength of the sewage in terms of BOD and COD and Decide whether the water body is polluted or not with reference to the stated parameters in the list of experiments

• Demonstration of various instruments used in testing of water and soil and study of Drinking water standards, WHO guidelines, Effluent standards and standards for Construction/ Agriculture/ Industry.

List of Experiments

- 1. Determination of pH and Electrical Conductivity (Salinity) of Water and Soil.
- 2. Determination and estimation of Total Hardness–Calcium & Magnesium in water.
- 3. Determination of P&M Alkalinity/Acidity
- 4. Determination of Chloride in water and soil

5. Determination and Estimation of total solids, organic solids and inorganic solids and Settleable Solids by Imhoff Cone.

- 6. Determination of Dissolved Oxygen with D.O. Meter & Wrinklers Method and BOD.
- 7. Physical parameters Temperature, Color, Odor, Turbidity and Taste.
- 8. Determination of C.O.D.
- 9. Determination of Optimum coagulant dose- with and without coagulant aids
- 10. Determination of Chlorine residue and demand
- 11. Presumptive Coliform test.

DEPARTMENT OF CIVIL ENGINEERING

- 12. Desalination by Freezing and Boiling.
- 13. EC, TDs and Chloride in RO System- Raw water, Product water and Reject.
- 14. Suitability of water for construction
- 15. Evaporation, Rainfall, Humidity, Wind speed, Wind Direction

NOTE: At-least 10 of the experiments enlisted are to be conducted. Values for different water and wastewater samples like Surface water, Ground water, Sea water, Municipal water, Bottled water, RO- Raw water, Product and Reject samples, Municipal sewage, Industrial waters etc

List of Equipment's

- 1) pH meter
- 2) Turbidity meter
- 3) Conductivity meter
- 4) Hot air oven
- 5) Muffle furnace
- 6) Dissolved Oxygen meter
- 7) U–V visible spectrophotometer
- 8) COD Reflux Apparatus
- 9) Jar Test Apparatus
- 10) BOD Incubator
- 11) Autoclave
- 12) Laminar flow chamber
- 13) Hazen's Apparatus
- 14) Chlorocsope
- 15) Weather Station

Text Books

1. Standard Methods for Analysis of Water and Waste Water - APHA

2. Chemical Analysis of Water and Soil by KVSG Murali Krishna, Environmental Protection Society, 4th Edition, 2021.

Reference

- 1. Relevant IS Codes.
- 2. Chemistry for Environmental Engineering by Sawyer and Mc.Carty.

DEPARTMENT OF CIVIL ENGINEERING

II Year – II Semester		L	Т	Р	C
		0	0	3	1.5
	STRENGTH OF MATERIALS LAB				

Experiments

- 1. Tension test on Mild steel bar
- 2. Bending test on (Steel / Wood) Cantilever beam.
- 3. Bending test on simply supported beam.
- 4. Torsion test
- 5. Hardness test
- 6. Spring test
- 7. Compression test on wood or concrete
- 8. Impact test (Charpy and Izod impact test)
- 9. Sheartest (on UTM)
- 10. Verification of Maxwell's Reciprocal theorem on beams.
- 11. Use of Electrical resistance strain gauges
- 12. Continuous beam deflection test.

List of Major Equipment:

- 1. Universal Testing Machine
- 2. Torsion testing machine
- 3. Brinnell's / Rock well's hardness testing machine
- 4. Setup for spring tests
- 5. Compression testing machine
- 6. Izod Impact machine
- 7. Shear testing machine
- 8. Beam setup for Maxwell's theorem verification.
- 9. Electrical Resistance gauges

DEPARTMENT OF CIVIL ENGINEERING

II Year – II Semester		L	Т	Р	С
		0	0	3	1.5

FLUID MECHANICS AND HYDRAULIC MACHINERY LAB

List of Experiments

- 1. Calibration of Venturi meter & Orifice meter
- 2. Determination of Coefficient of discharge for a small orifice and mouth piece by a constant head and variable head method.
- 3. Calibration of contracted Rectangular Notch and /or Triangular Notch
- 4. Determination of Coefficient of loss of head in a sudden contraction and friction factor.
- 5. Verification of Bernoulli's equation.
- 6. Impact of jet on vanes
- 7. Study of Hydraulic jump.
- 8. Performance test on Pelton wheel turbine
- 9. Performance test on Francis turbine.
- 10. Efficiency test on centrifugal pump.
- 11. Efficiency test on reciprocating pump.

List of Equipment:

- 1. Venturi meter setup.
- 2. Orifice meter setup.
- 3. Small orifice setup.
- 4. External mouth piece setup.
- 5. Rectangular and Triangular notch setups.
- 6. Friction factor test setup.
- 7. Bernoulli's theorem setup.
- 8. Impact of jets.
- 9. Hydraulic jump test setup.
- 10. Pelton wheel, Francis turbine and Kalpan turbines
- 11. Centrifugal and Reciprocating pumps.

DEPARTMENT OF CIVIL ENGINEERING

II Year - II Semester		L	Т	Р	С
		1	0	2	2
SKILL ORIENTED COURSE*					

Environmental Audit and	compliance report	or
-------------------------	-------------------	----

Road safety audit with 1 or 2 KM length or

Water related leakage field studies