

II B. Tech I Semester Supplementary Examinations, May - 2019 RANDOM VARIABLES & STOCHASTIC PROCESSES

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. Answer **ALL** the question in **Part-A**

3. Answer any FOUR Questions from Part-B

PART -A

1.	a)	A jar contains two white and three black balls. A sample of size 4 is made. What is the probability that the sample is in the order white, black, white, black?	(2M)
	b)	Define characteristic function of a random variable X.	(2M)
	c)	Define marginal density function.	(2M)
	d)	Define random process.	(3M)
	e)	Determine whether the power density spectrum shown below is valid or not? $\frac{\cos 3\omega}{2}$	(3M)
	f)	ω^{+1}	$(2\mathbf{M})$
	1)	Write the expression for average noise figure of cascaded networks.	(2111)
		PARI-B	
2.	a)	Discuss the significance of a Gaussian random variable using its probability density and distribution functions.	(5M)
	b)	Define conditional distribution function and write its properties.	(4M)
	c)	The life time of a system expressed in weeks is a Rayleigh random variable X	(5M)
		with its distribution function $F_X(x) = e^{-x^2/400}$. What is the probability that a	
		system lifetime will exceed one year.	
3.	a)	Find the variance of a random variable with uniform density function.	(7M)
	b)	A random variable X has pdf $f_X(x) = (1/b)e^{-(x-a)/b}$. Find its moment function and use it to generate first order moment about origin.	(7M)
4.	a)	X and Y are two independent random variables related to W as $W = X+Y$. Find $f_{W}(w)$ in terms of $f_{V}(x)$ and $f_{V}(y)$	(7M)
	b)	Two random variables X and Y have the joint density $T_{X}(x)$	(7M)
		$f_{XY}(x,y) = \begin{cases} \frac{xy}{9} & 0 < x < 2, 0 < y < 3\\ 0 & else where \\ \text{uncorrelated and also statistically independent.} \end{cases}$ Show that X and Y are	
5.	a)	Define autocorrelation function of a random process. Also write the properties	(7M)
	b)	of autocorrelation of a WSS process. A random process is defined as $X(t) = 4\cos(t + \Theta)$, where Θ is uniformly distributed random variable in $(0,2\pi)$. Check whether $X(t)$ is WSS or not?	(7M)

Code No: R1621045

R16

SET - 1

6.		State and prove Wiener-Khintchine relations.	(14M)
7.	a)	Derive the relation between input and output PSDs of an LTI system.	(8M)
	b)	Write short notes on thermal noise.	(6M)