

		II B. Tech I Semester Supplementary Examinations, May - 2019 SWITCHING THEORY AND LOGIC DESIGN (Com to ECE, EIE and ECC)				
Time: 3 hours Max. Marks: 7						
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. AnswerALL the question in Part-A 3. Answer any FOUR Questions from Part-B 				
	<u>PART –A</u>					
1.	a)	Convert the given gray code number to binary: 1001001011.	(2M)			
	b)	Prove that $Y=AB + BC + AC$ is a self-dual function.	(3M)			
	c)	Draw four bit adder circuit using full adders	(3M)			
	d)	Explain difference in the basic structure of PLA, PAL and PROM	(2M)			
	e)	Convert D Flip Flop to T Flip Flop	(2M)			
	f)	Explain about Mealy state machine	(2M)			
	<u>PART -B</u>					
2.	a)	Realize a 2 input EX-OR gate using minimum number of 2 input NAND gates.	(7M)			
	b)	Encode the decimal numbers using 6, 3, 1,-1 weighted code. Is it a self-complementing code?	(7M)			
3.	a)	Simplify the Boolean function F using the don't care conditions d, in (i) sum of products and (ii) product of sums. F= A'B'D' + A'CD+A'BC d=A'BC'D+ACD+AB'D'	(7M)			
	b)	F (A, B, C, D) = π max [5, 8, 14] + $d\pi$ [7, 11, 12, 13, 15]. Obtain minimal sop function.	(7M)			
4.	a)	Define Multiplexer and explain the procedure to implement 32X1 MUX by Using 4X1 Multiplexers.	(7M)			
	b)	Design 4-bit digital comparator and explain with neat sketch.	(7M)			
5.	a)	Write a brief note on Architecture of PLDs	(7M)			
	b)	Write a brief note on Capabilities and the limitations of threshold gates.	(7M)			
6.	a)	Draw the circuit diagram of MOD-10 Counter and explain the operation of it.	(7M)			
	b)	What is race around condition and how to avoid it along with circuit diagram.	(7M)			

Code No: R1621042

(R16)

(7M)

- 7. a) Distinguish between Mealy and Moore machines
 - b) Convert the following Mealy machine into a corresponding Moore machine: (7M)

\mathbf{PS}	NS,Z	
	X-0	X=1
А	$^{\rm B,0}$	$\mathbf{E}_{,0}$
В	$^{\rm E,0}$	D,0
С	D,1	A,0
D	C,1	E,0
Е	$^{\rm B,0}$	D,0