Code No: R1622043 (R16) (SET - 1

II B. Tech II Semester Supplementary Examinations, November - 2018 ELECTRO MAGNTIC WAVES AND TRANSMISSION LINES

(Com to ECE, EIE)

Time: 3 hours			ax. Marks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B	
		PART -A	
1.	a)	Define Continuity equation? Write in equation form?	(3M)
	b)	List out the boundary conditions between dielectric to dielectric and dielectric to conductor?	c (3M)
	c)	Define parallel and vertical polarizations?	(2M)
	d)	Define Poynting vector?	(2M)
	e)	Define loss less line and write the primary and secondary constants at this Condition?	(2M)
	f)	Define stub matching?	(2M)
		<u>PART –B</u>	
2.	a)	Prove that E=-▼ V	(7M)
	b)	The point Charges -1nc , 4nC, and 3nC are located at $(0,0,0)$, $(0,0,1)$ and $(1,0,0)$, respectively . Find the energy in the System.	(7M)
3.	a)	Derive the electric field boundary conditions between dielectric and conducto	or? (7M)
	b)	An electron with velocity $\mathbf{u} = (3\mathbf{a_x} + 12\ \mathbf{a_y} - 4\mathbf{a_z})\ 10^5\ \text{m/s}$ experiences no net Force at a point in a magnetic field $\mathbf{B} = 10\mathbf{a_x} + 20\mathbf{a_y} + 30\mathbf{a_z}$ mWb/m ² . Find E at that point.	(7M)
4.	a)	Define uniform Plane wave? What are the characteristics of plane Wav Explain	e? (7M)
	b)	A manufacturer produces a ferrite material with μ =750 μ _o , ϵ =5 ϵ _o ,and σ =10 ⁻⁶ S/at 10MHz. i) Would you classify the material as lossless, lossy, or conducting ii)Calculate β and λ .	
5.	a)	A uniform plane wave in air is normally incident on an infinite lossless Dielectric material having $\varepsilon=3\varepsilon_0$ and $\mu=\mu_0$. If the incident wave is $E_{i=}10\cos(\omega t-z)a_y$ V/m, find γ	(7M)
	b)	Explain the concept of critical angle and total internal reflections	(7M)