

III B. Tech I Semester Regular/Supplementary Examinations, March – 2021 ANTENNA AND WAVE PROPAGATION

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. Answer **ALL** the question in **Part-A**

3. Answer any FOUR Questions from Part-B

		$\underline{\mathbf{PART}} - \mathbf{A} \tag{14}$	Marks)
1.	a)	Define beam efficiency of an antenna.	[2M]
	D)	what are short Antennas and list out various types?	[2M]
	c)	Explain three different types of arrays with regard to beam pointing direction.	[2M]
	d)	Describe the advantages and limitations of patch antennas.	[3M]
	e)	What is the significance of zoning in lens antennas?	[3M]
	f)	Define f_c and f_{muf} . PART –B (56)	[2M] Marks)
2.	a)	Define Directivity and Power Gain of an Antenna. Estimate power gain (G_p) if $R_{loss}=10$ ohms, $R_{rad}=0$ ohms and $D=100$.	[7M]
	b)	What are principle planes? How the Antenna Beam Width is defined in such planes?	[7M]
3.	a)	Define the terms: i) Radial power flow, ii) Radiation resistance for a short dipole, and iii) Uniform current distribution.	[7M]
	b)	Obtain the relative amplitudes of radiation, induction and electro-static fields at a distance of 2λ from a short current element having a uniform current of 1 mA along its length.	[7M]
4.	a)	Find the radiation pattern of 4 isotropic elements fed in phase, spaced $\lambda/2$ apart by using pattern multiplication.	[7M]
	b)	What are the advantages and disadvantages of binominal array and design 3 element binomial arrays.	[7M]
5.	a)	Explain the designing of rectangular micro strip antenna.	[7M]
	b)	Define axial ratio and their significance in helical antenna.	[7M]
6.	a)	Explain the gain measurement of an antenna by comparison method.	[7M]
	b)	Write short notes on Cassegrain antennas with neat diagrams.	[7M]
7.	a) b)	Discuss the importance of ground wave propagation for communication purpose. What is wave tilt and how does it affect the field strength received at a distance from the transmitter?	[7M] [7M]

III B. Tech I Semester Regular/Supplementary Examinations, March – 2021 ANTENNA AND WAVE PROPAGATION

(Electronics and Communication Engineering)

		(Electronics and Communication Engineering)	
Т	ime	: 3 hours Max. Ma	arks: 70
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B 	
		PART _Δ (14	Marke)
1.	a)	Find beam area if half power beam widths are 60° and 30° on the two Principal planes	[2M]
	b)	Draw the polar and rectangular approximate radiation pattern for the given specifications. Number of major lobes -1, back lobe-1, sidelobes-4, FBR=10, SLR=13.5dB.	[3M]
	c) d) e) f)	Draw the structure of Yagi-Uda antenna and give the specifications of elements. Classify the modes of helical antenna based on size. Define Pyramidal Horn antenna. Define critical angle and LOS.	[2M] [2M] [3M] [2M]
		<u>PART – B</u> (56)	Marks)
2.	a)	Find directivity, efficiency and effective area of an antenna if it's $R_{rad}=80\Omega$, $R_{Loss}=20\Omega$. The power gain is 10dB and antenna operating frequency is 100 MHz.	[7M]
	b)	Explain the working principle of a two-wire antenna.	[7M]
3.	a)	Using necessary equations, estimate the directivity of a Quarter wave Monopole antenna.	[7M]
	b)	What is the effective area of a half-wave dipole operating at 200 MHz?	[7M]
4.	a)	Estimate the resultant radiation pattern of N=8 element linear uniform distributed array using pattern multiplication.	[7M]
	b)	A uniform linear array is required to produce an end-fire beam when it is operated at a frequency of 10 GHz. It contains 50 radiators and Spaced at 0.5λ . Find the progressive phase shift required to produce the end-fire beam.	[7M]
5.	a)	Design a microstrip antenna at operating frequency of 2 GHz and ε_r =2.2. Assume any other required data.	[7M]
	b)	Explain the principle of long wire antenna with their equations.	[7M]
6.	a)	Explain the need of Offset feed technique in parabolic antennas. Discuss the types of offset feed.	[7M]
	b)	What is the power gain of a paraboloid reflector whose mouth diameter is equal to 8λ ?	[7M]
7.	a)	A communication system is to be established at a frequency of 60 MHz with a transmitter power of 1 kW. The field strength of the Directive antenna is 3 times that of a half-wave antenna. h_t = 50m. Field strength of 80μ V/m is required to give satisfactory reception. Find the range of the system.	[7M]

b) Define MUF and skip distance.

[7M]

SET - 3

III B. Tech I Semester Regular/Supplementary Examinations, March – 2021 ANTENNA AND WAVE PROPAGATION

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B _____ (14 Marks) PART –A 1. a) Define effective length of an antenna. [2M] b) Obtain the directivity of a short dipole antenna. [2M] c) Explain the principle of multiplication of patterns. [3M] d) Explain the significance of terminating resistance and input resistance of travelling [2M] wave antenna. With reference to paraboloids, explain the Aperture efficiency. e) [2M] f) Write short notes on Optimum working frequency and LUHF. [3M] (56 Marks) PART –B 2. a) Explain the following : [7M] i) Normalized field pattern, ii) Beam solid Angle, iii) Beam Efficiency, iv) Directivity. b) Show that the aperture area for a Hertzian dipole is 0.12 λ^2 , for a half wave dipole is [7M] 0.13 λ^2 , and for an isotropic is 0.08 λ^2 . 3. a) State and explain the Reciprocity Theorem for antennas. [7M] b) Explain how loop aerial is used for direction Finding? Derive the relevant expression for [7M] electric field intensity for loop aerial. 4. a) Derive the conditions for the linear array of 'N' isotropic elements to radiate in end-fire [7M] and broad-side mode and find the first two side lobe levels. b) List the various differences between bi-nomial and linear arrays. [7M] 5. a) Explain the the configuration of a Folded Dipole Antenna. Sketch its radiation pattern. [7M] b) What are the various modes of working of helical antenna? Explain the working [7M] principle of helical antenna in normal mode. What is the principle of equality of path length? How it is applicable to horn antenna? 6. a) [7M] Obtain an expression for the directivity of pyramidal horn in terms of its aperture dimensions. b) How is the field pattern of the "Receiving Antenna" experimentally determined? [7M] Explain it with a neat block diagram. 7. a) In case of ionosphere, explain the significance of D, E and F layers. [7M]

b) Discuss the phenomenon of space wave propagation. [7M]

III B. Tech I Semester Regular/Supplementary Examinations, March – 2021 ANTENNA AND WAVE PROPAGATION

(Electronics and Communication Engineering)

Τ	ime	: 3 hours Max.	Marks: 70			
		Note: 1. Question Paper consists of two parts (Part-A and Part-B)				
		2. Answer ALL the question in Part-A				
		3. Answer any FOUR Questions from Part-B				
		PART –A (1	4 Marks)			
1.	a)	Define the term resolution of an antenna.	[2M]			
	b)	What is short magnetic dipole?	[2M]			
	c)	Describe the concept of scanning arrays.	[2M]			
	d)	Explain the significance of Yagi-Uda.	[3M]			
	e)	What do you mean by F/D ratio?	[2M]			
	f)	Write short notes on Ionospheric abnormalities.	[3M]			
		PART –B (56 Mark				
2.	a)	Define gain, power gain, directive gain and directivity of an antenna. Prove that the directivity of a $\lambda/2$ dipole is 2.15 dB.	e [7M]			
	b)	Calculate the electric filed(E_{rms}) due to an isotropic radiator radiating 1 kW power at a distance of 1 Km from it.	er [7M]			
3.	a)	Define the terms electrostatic field, induction field, and radiation field of a antenna and bring out their significance.	n [7M]			
	b)	Sketch and compare radiation patterns of horizontal half wave dipole with those of vertical half wave dipole.	of [7M]			
4.	a)	A linear broad side array consists of 4 equal elements in phase point sources wit $\lambda/2$ spacing. Calculate field pattern. Find the directivity and beam width	h [7M]			
	b)	Distinguish between ordinary End-fire array and Broad side array.	[7M]			
5.	a)	List out the types of patch shapes and feeding techniques of microstrip antenna Explain the importance of Dielectric in MSA.	a. [7M]			
	b)	Explain the reason why length of a travelling wave radiation is multiple of ha wavelength?	lf [7M]			
6.	a)	With a neat sketch explain the absolute method of measuring the gain of a antenna	n [7M]			
	b)	Explain the significance, merits and demerits of zoning lens antennas.	[7M]			
7.	a)	Discuss the importance of ground wave propagation for communication purpose. Why ground waves are not received beyond certain range?	s. [7M]			
	b)	Establish the effect of D-layer in sky wave propagation. Derive the expression for f_c in Sky wave propagation.	or [7M]			
