

III B. Tech I Semester Regular/Supplementary Examinations, March – 2021 LINEAR IC APPLICATIONS

(Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Electronics and Computer Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in Part-A is compulsory

3. Answer any FOUR Questions from Part-B

		$\underline{PART} - \underline{A} $ (14)	Marks)
1	a)	What is a level translator circuit? Why it is used with the cascaded differential amplifier?	[3M]
	b)	What is the major difference between among SSI, MSI, LSI and VLSI ICs?	[2M]
	c)	Draw the schematic diagram of an analog multiplier using logarithmic amplifier.	[2M]
	d)	How is an op-amp used as a sample and hold circuit?	[3M]
	e)	List important features of the 555 timer.	[2M]
	f)	Calculate the values of LSB, MSB and full scale output for an 8-bit DAC, if the applied input is in the range of 0-10V.	[2M]
		<u>PART -B</u> (56	Marks)
2	a)	Draw the circuit diagram of a basic differential amplifier and explain its transfer characteristics.	[7M]
	b)	Draw the circuit diagram of dual input unbalanced output differential amplifier and derive the expression for dc analysis.	[7M]
3	a)	Name the most important parameters of an operational amplifier. What are their ideal values and practical values?	[7M]
	b)	Explain dominant pole frequency compensation method.	[7M]
4	a)	What are the advantages of instrumentation amplifier? Derive an expression for the transfer function of an instrumentation amplifier.	[7M]
	b)	For the non-inverting a.c amplifier $R_{in}=50\Omega$, $C_i=0.1\mu f$, $R_I=100\Omega$, $R_F=1k\Omega$ and $R_0=10k\Omega$. Determine the gain and bandwidth of the amplifier.	[7M]
5	a)	With a suitable circuit diagram, explain the operation of Narrow band pass filter (NBPF) and give the necessary design expression.	[7M]
	b)	Design a wide band-pass filter with $f_L=200$ Hz. $F_H=1$ kHz and a pass band gain=4. Draw the frequency response and calculate 'Q' factor for the filter.	[7M]
6	a)	Draw the block diagram of generation of FSK using a PLL. Explain how tracking range affects error voltage in detection?	[7M]
	b)	Underline the principle of operation of a Varactor diode and draw the circuit of a VCO using such a diode.	[7M]
7	a)	Define the following terms: i) Accuracy ii) Resolution iii) Conversion time iv) Percentage resolution.	[7M]

b) Draw the circuit of a ladder type DAC for 4 bits and derive expression for output [7M] voltage.

III B. Tech I Semester Regular/Supplementary Examinations, March – 2021 LINEAR IC APPLICATIONS

(Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Electronics and Computer Engineering)

Time: 3 hours

2 a)

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A** is compulsory

3. Answer any FOUR Questions from Part-B

PART –A

(14 Marks)

[2M]

[2M]

- a) What are the four differential amplifier configurations? Which one is not commonly 1 [3M] used? b) What are the three operating temperature ranges of the IC? [2M]
 - c) Explain the need for emitter resistor R_E in an emitter coupled astable multivibrator. [3M]
 - d) Draw a circuit for multiplication of two analog signals.
 - e) What is the major difference between digital and analog PLLs.
 - f) Define the parameters resolution and settling time of DAC. Obtain the value of [2M] resolution for an 8-bit DAC.

PART -B

(56 Marks) Explain the single input unbalanced output differential amplifier and derive an [7M]

- expression for voltage gain of this differential amplifier. b) Write a short note on cascade differential amplifier stages with suitable circuit diagram. [7M]
- 3 a) Define the terms: CMRR, PSRR, SVRR, Input bias current, Input offset voltage and [7M] Gain bandwidth product.
 - b) If an op-amp has a slew rate of 3 V/ μ s, find the rise time for an output voltage of 12V [7M] amplitude resulting from a rectangular pulse input if the op-amp is slew rate limited.
- a) What are the different modes of operation of an active integrator? Explain them. 4 [7M]
 - b) Design a practical integrator circuit to process the sinusoidal input waveform up to [7M] 1KHz and the input amplitude is 10mV. Assume necessary standard values of resistance.
- 5 a) Draw the op-amp circuit configuration of a band-pass filter formed by cascading two [7M] pole high-pass filters and a two pole low-pass filter, and derive the expression for centre frequency f_0 .
 - b) Describe the working of sample and hold circuit with a suitable diagram. [7M]
- 6 a) Draw the pin diagram of 566 VCO IC and list important specifications of 566 VCO IC. [7M] b) Derive an expression for the lock-in range of a PLL? [7M]
- 7 a) Draw the block diagram of a ramp-type digital voltmeter and explain its working. [7M] b) Describe the principle of working of an R-2R DAC. What is the minimum and [7M] maximum value of gain for it? How can a DAC be used as current-to-voltage converter?

III B. Tech I Semester Regular/Supplementary Examinations, March – 2021 LINEAR IC APPLICATIONS

(Common to Electronics and Communication Engineering, Electronics and Instrumentation

Engineering, Electronics and Computer Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any FOUR Questions from Part-B

		$\underline{PART} - \underline{A} \tag{14 I}$	Marks)
1	 a) b) c) d) e) f) 	Why is a cascaded configuration used in an op-amp? What are the advantages of using a schematic symbol for an op-amp? Describe the operation of zero-crossing detector. What is an all-pass filter? Where and why it is needed? What is a capture range and lock range of PLL? Define important performance specifications of Digital to Analog converters listing their typical values.	[2M] [3M] [3M] [2M] [2M] [2M]
		$\underline{PART} - \underline{B} \tag{56 I}$	Marks)
2	a) b)	Mention the types of open loop configurations of an Op-Amp. Explain each configuration in detail. Draw the ac and dc equivalent circuits of single input balanced output differential amplifier and also derive an expression for voltage gain of this differential amplifier.	[7M] [7M]
3	a) b)	Derive CMRR of emitter coupled differential amplifier. What do you mean by difference mode gain? For an OP-AMP, PSRR is 70dB, CMRR is 10 ⁵ , and differential mode gain is 10 ⁵ . The output voltage changes by 20V in 4 µs. Calculate: i) Numerical value of PSRR, ii) Common mode gain, iii) Slew rate.	[7M] [7M]
4	a) b)	Explain the operation of a practical differentiator. Use relevant expressions, diagrams. In the below circuit, it can be shown that $V_0=\alpha_1V_1+\alpha_2V_2+\alpha_3V_3$. Find the values of α_1 , α_2 , α_3 . Find the value of V_0 if i) R_4 is Short circuited ii) R_4 is removed iii) R_1 is short circuited.	[7M] [7M]

- Describe the principle of operation of an inverting first order low-pass filter using 5 a) [7M] op-amp and draw its frequency response curve.
 - Design a second order Butter-worth low pass filter having a cut-off frequency of b) [7M] 1KHz. The damping factor is equal to 1.414.

Code No: R1631042 R16 SET - 3
6 a) Draw the dc voltage versus phase difference characteristics of balanced modulator [7M] phase detector of a PLL indicating all important regions.
b) With a neat functional diagram, explain the operation of VCO and also derive an [7M] expression for free running frequency, f₀.

- 7 a) Using a neat sketch, explain the working of a parallel comparator ADC. [7M]
 - b) Draw the circuit of a Weighted Resistor DAC and obtain expression for n-bits. [7M]

2 of 2

Code No: R1631042

III B. Tech I Semester Regular/Supplementary Examinations, March – 2021 LINEAR IC APPLICATIONS

(Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Electronics and Computer Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2 Answering the question in **Part-A** is compulsory

		3. Answer any FOUR Questions from Part-B	
		PART –A (14	Marks)
1	a)	Explain why open-loop op-amp configuration is not used for linear applications?	[2M]
-	b)	What is the difference between monolithic and hybrid ICs?	[2M]
	c)	Explain the working principle of a feedback limiter circuit.	[2M]
	d)	Define a filter. How are filters classified?	[3M]
	e)	For being used in a PLL, describe the characteristics that a VCO must possess.	[3M]
	f)	Compare Successive approximation A/D converter with Parallel comparator type A/D converter.	[2M]
		<u>PART – B</u> (56	Marks)
2	a)	With suitable circuit diagram, explain about Dual input balanced output differential amplifier. And derive necessary expressions for dc and ac analysis.	[7M]
	b)	What is a differential amplifier? Mention the classification of differential amplifier with neat diagrams.	[7M]
3	a)	What is an Op-Amp? Draw the functional block diagram of an Op-Amp and explain each block in detail	[7M]
	b)	An op-amp has a slew rate of $2V/\mu s$. What is the maximum frequency of an output sinusoid of peak value 5V at which the distortion sets in due to the slew rate limitation?	[7M]
4	a)	Using three op-amps draw the circuit diagram of an instrumentation amplifier and derive an expression for the output voltage	[7M]
	b)	Design a single op-amp logarithmic amplifier and derive the relation between the output and input voltage? Explain why it is called a logarithmic amplifier?	[7M]
5	a)	Draw a band pass filter circuit with its frequency response curve. Explain its working	[7M]
	b)	Using an op-amp, design a second order low-pass filter with a cutoff frequency of 1KHz.	[7M]
6	a)	Draw the circuit diagram of a 555 timer connected as an astable multivibrator and	[7M]
	b)	explain its operation. Using 555 timers, design a monostable multivibrator to produce pulses of width of 110 msec. Use a 1μ F capacitor.	[7M]
7	a)	Draw and explain the block diagram of a counter type ADC and list out its disadvantages	[7M]
	b)	Draw the simplified block diagram of a successive approximation ADC and explain its working.	[7M]
