||''|''|''|'||

1 of 1

lowest blind speeds. Assume necessary data. [7] 5. a) Explain the Mechanism of low-angle tracking Radar. [7] In a monopulse radar, two antennas are separated by $\lambda/2$ and angle θ between b) the line of sight and perpendicular bisector of the line joining the two antennas is 5° . Find the phase differences between the Echo signals in the Antennas. [7] Assume necessary data. a) The noise figure of a radar receiver is 12dB and if bandwidth is 2MHz. Find its 6. minimum receivable signal. Assume necessary data. [7] b) Prove that $R_f \leq 2E / N_0$ in matched filter receiver. [7] 7. Discuss in detail about

Define noise figure and noise temperature. Define series feed and draw the circuit.

<u>PART-B</u> (4x14 = 56 Marks)

Explain the need of isolation between transmitter and receiver. Suggest

If a MTI Radar operates at 10GHz with PRF of 0.8KHz, then find the three

Answer ALL sub quest	ons from Part-A
Answer any FOUR ques	tions from Part-B
*****	·
PART-A (1	4 Marks)

b) List out the advantages, disadvantages, and applications of CW Radar.

Define blind speed. Represent each term in equation.

Derive the modified radar range equation.

a) Explain the working principle of a MTI Radar.

Explain the pulse integration technique.

Justify the role of error signal in conical scan tracking radar.

IV B.Tech I Semester Supplementary Examinations, February - 2020 RADAR SYSTEMS

Question paper consists of Part-A and Part-B

(Electronics and Communication Engineering)

Max. Marks: 70

[2]

[3]

[2]

[3]

[2]

[2]

[7]

[7]

[7]

[7]

[7]

[14]

Code No: **R1641041**

Time: 3 hours

c)

d) e)

f)

b)

b)

b)

2. a)

3. a)

4.

1. a) List out system losses.

Prove that $f_d \approx v_t / \lambda$.

suitable components.

(i) Radomes (ii) Displays

Set No. 1

R16