# Set No. 1

# IV B.Tech I Semester Regular/Supplementary Examinations, March - 2021 OPTICAL COMMUNICATIONS

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B \*\*\*\*\*

## PART-A (14 Marks)

| 1. | a) | Define critical angle with the required diagram. | [2] |
|----|----|--------------------------------------------------|-----|
|    | b) | Define scattering.                               | [2] |
|    | c) | What is connector return loss.                   | [2] |
|    | d) | Define quantum efficiency.                       | [2] |
|    | e) | What is probability of error.                    | [3] |
|    | f) | What is the need of WDM.                         | [3] |

#### <u>**PART-B**</u> (4x14 = 56 Marks)

| 2. | a)<br>b) | Differentiate between Meridional Rays and Skew Rays. Explain the nature of light. Determine the refractive indices of the core and the cladding material of a fiber if numerical aperture is 0.22 and refractive index difference $\Delta$ =0.012. Find the maximum diameter allowed for a fiber having core refractive index | [7]  |
|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    |          | 0.153 and cladding refractive index 1.50. The fiber is supporting only one mode of a wavelength of 1200 nm.                                                                                                                                                                                                                   | [7]  |
| 3. |          | Discuss the linear scattering losses in optical fibers w.r.t<br>i. Rayleigh Scattering ii. Mie Scattering                                                                                                                                                                                                                     | [14] |
| 4. | a)<br>b) | What do you understand by Inter Symbol Interference (ISI)<br>A multimode graded index fiber exhibits total pulse broadening of 0.1 µs over a<br>distance of 15km. Estimate :                                                                                                                                                  | [4]  |
|    |          | <ul> <li>(i) The maximum possible bandwidth without ISI.</li> <li>(ii) Pulse dispersion per unit length.</li> </ul>                                                                                                                                                                                                           | [10] |
| 5. | a)       | Explain the working of p-i-n photodiode. Also explain the factors that limit the speed of response of photodiode.                                                                                                                                                                                                             | [7]  |
|    | b)       | Discuss the impact ionization in avalanche photodiode. Explain the multiplication factor and photo multiplication factors also.                                                                                                                                                                                               | [7]  |
| 6. | a)       | Briefly discuss the possible source of noise in optical fiber receivers. Describe the quantum noise in detail.                                                                                                                                                                                                                | [7]  |
|    | 0)       | explain its various parts.                                                                                                                                                                                                                                                                                                    | [7]  |
| 7. |          | Explain the optical power loss model for a point to point link and discuss link power budget.                                                                                                                                                                                                                                 | [14] |

Code No: **R1641044** 

## IV B.Tech I Semester Regular/Supplementary Examinations, March - 2021 **OPTICAL COMMUNICATIONS**

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Set No. 2

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B \*\*\*\*\*

#### PART-A (14 Marks)

| 1. | a) | Define mode filed diameter.          | [2] |
|----|----|--------------------------------------|-----|
|    | b) | What is material dispersion.         | [3] |
|    | c) | Compare connectors and splicers      | [2] |
|    | d) | Mention all types of LED structures. | [3] |
|    | e) | Mention different sources of errors. | [3] |
|    | f) | Mention all types of line codings.   | [2] |
|    |    |                                      |     |

#### $\underline{PART} - \underline{B} (4x14 = 56 Marks)$

|    |     | $\underline{\mathbf{PARI-D}}(4x14 = 50 Marks)$                                                                                                                                                                                                                                                                             |       |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2. | a)  | Differentiate single mode fiber and graded index fiber. Explain propagation modes in single mode fibers.                                                                                                                                                                                                                   | [7]   |
|    | b)  | A multimode silca fiber that has a core refractive index $n1 = 1.48$ and cladding                                                                                                                                                                                                                                          |       |
|    |     | index $n2 = 1.48$ . Compute the numerical aperture.                                                                                                                                                                                                                                                                        | [7]   |
| 3. | a)  | Explain the signal distortion in optical waveguide. Discuss group delay and                                                                                                                                                                                                                                                |       |
|    |     | different types of dispersion in optical fiber communication.                                                                                                                                                                                                                                                              | [10]  |
|    | b)  | What is chromatic dispersion?                                                                                                                                                                                                                                                                                              | [4]   |
| 4. |     | Write a short notes on                                                                                                                                                                                                                                                                                                     |       |
|    |     | (i)multimode and single mode fiber joints                                                                                                                                                                                                                                                                                  | 54.43 |
|    |     | (11)connector types                                                                                                                                                                                                                                                                                                        | [14]  |
| 5. | a)  | Explain LED Structure with neat sketch.                                                                                                                                                                                                                                                                                    | [7]   |
|    | b)  | A planar LED is fabricated from GaAs which has a refractive index of 3.6. (i) Calculate the optical power emitted into air as a percentage of the internal optical power for the device when the transmission factor at the crystal-air interface is $0.68$ (ii) When the optical power generated internally is 50% of the |       |
|    |     | electric power supplied, determine the external power efficiency.                                                                                                                                                                                                                                                          | [7]   |
|    |     |                                                                                                                                                                                                                                                                                                                            |       |
| 6. |     | Write in brief about: (i) Quantum limit (ii) Laser diode to fiber coupling.                                                                                                                                                                                                                                                | [14]  |
| 7. | a)  | Discuss in detail the major considerations for optical system design for digital                                                                                                                                                                                                                                           |       |
|    | 1 \ |                                                                                                                                                                                                                                                                                                                            | [7]   |
|    | D)  | Explain link power budget with necessary expressions. Design an optical fiber link for transmitting 15MPDS of data for a distance of $4 \text{ km}$ with a DED of $10^{-9}$                                                                                                                                                | [7]   |
|    |     | This for transmitting 15 wides of tata for a distance of 4 kin with a BER of 10.                                                                                                                                                                                                                                           | [/]   |

1 of 1

Code No: **R1641044** 



### IV B.Tech I Semester Regular/Supplementary Examinations, March - 2021 OPTICAL COMMUNICATIONS (Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B \*\*\*\*\*

## PART-A (14 Marks)

| 1. | a) | Define cut off wave length.      | [2] |
|----|----|----------------------------------|-----|
|    | b) | What is attenuation?             | [2] |
|    | c) | Mention all types of connectors. | [2] |
|    | d) | Draw the structure of APD.       | [3] |
|    | e) | Define quantum limit.            | [2] |
|    | f) | What is eye pattern?             | [3] |

## **<u>PART-B</u>** (4x14 = 56 Marks)

|    |          | $\frac{111111}{100}(14114-301140183)$                                                                                                                                                                            |            |
|----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2. | a)       | Draw a black diagram of a digital optical receiver showing its various components. Explain the function of each component. How is the signal used by the decision circuit related to the incident optical power? | [10]       |
|    | b)       | What are advantages and disadvantages of OFC?                                                                                                                                                                    | [10]       |
| 3. | a)<br>b) | Explain about Glass & Chalcogenide glass fiber materials.<br>A LED operation at 850nm and has a spectral width of 45nm. What is the pulse                                                                        | [10]       |
|    | - /      | spreading in nsec/km due to a material dispersion?                                                                                                                                                               | [4]        |
| 4. |          | Clearly discuss fiber alignment and joint losses.                                                                                                                                                                | [14]       |
| 5. | a)<br>b) | Explain in detail about laser diode modes and threshold conditions.<br>Explain the design and working of an edge emitting LED.                                                                                   | [7]<br>[7] |
| 6. | a)<br>b) | Explain about Equilibrium Numerical Aperture.<br>Classify the error sources and explain any one of the error in detail.                                                                                          | [7]<br>[7] |
| 7. |          | Analyze the Rise time Power Budget of Optical Fibre Communication in terms of analog system design.                                                                                                              | [14]       |

1 of 1

Code No: **R1641044** 



Set No. 4

# IV B.Tech I Semester Regular/Supplementary Examinations, March - 2021 OPTICAL COMMUNICATIONS

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B \*\*\*\*\*

## PART-A (14 Marks)

| 1. | a) | Define step index and Graded index fiber.                     | [3] |
|----|----|---------------------------------------------------------------|-----|
|    | b) | Differentiate inter and intra model dispersion.               | [2] |
|    | c) | Mention different alignment losses with the required figures. | [3] |
|    | d) | Define detector response time.                                | [2] |
|    | e) | Define Lambertian Pattern.                                    | [2] |
|    | f) | What are the advantages of WDM?                               | [2] |
|    |    |                                                               |     |

## **<u>PART-B</u>** (4x14 = 56 Marks)

| 2. | a)<br>b) | What is numerical aperture? Derive an expression for numerical aperture and maximum acceptance angle in case of a step index optical fiber in terms of refractive index core and cladding material. Explain effective refractive index.                                                                                                                                                   | [10]<br>[4] |
|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 3. | a)<br>b) | Compare all fiber materials in all aspects<br>GaAs laser operating at 850nm and has a length of 500 $\mu$ m, with given<br>refractive index n=3.7. Calculate frequency spacing.<br>Write a short notes on pulse broadening effect and its remedial measures                                                                                                                               | [4]<br>[5]  |
|    | 0)       | while a short notes on purse broadening effect and its remediar measures.                                                                                                                                                                                                                                                                                                                 | [J]         |
| 4. |          | Discuss all types of splicing techniques in detail.                                                                                                                                                                                                                                                                                                                                       | [14]        |
| 5. | a)<br>b) | Explain in detail the operation of Avalanche Photo Diode with its structure.<br>A photo diode has a quantum efficiency of 65% when photons of energy of 1.5 x 10-19 J are incident upon it. (i) Find the operating wavelength of the photodiode. (ii) Calculate the incident optical power required to obtain a photo current of 2.5 when the photodiode is operating as described above. | [7]<br>[7]  |
| 6  | a)       | Derive the power launching efficiency with supporting equations                                                                                                                                                                                                                                                                                                                           | [7]         |
| 0. | b)       | What are the two major requirement of a pre-amplifier in optical receiver?<br>Explain how these are achieved in a trans impedance amplifier.                                                                                                                                                                                                                                              | [7]         |
| 7. |          | Discuss the following<br>i) Attenuation measurement<br>ii) Eye pattern                                                                                                                                                                                                                                                                                                                    | [14]        |