R16

Set No. 1

Code No: **R1641044**

IV B.Tech I Semester Regular Examinations, October/November - 2019 OPTICAL COMMUNICATIONS

(Electronics & Communication Engineering)

Time: 3 hours

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B

PART-A (14 Marks)

1.	a)	Define (i) Acceptance angle (ii) Numerical aperture.	[2]
	b)	Explain core and cladding losses in an optical fiber.	[3]
	c)	Write short notes on single mode fiber joints.	[2]
	d)	Write short notes on reliability of LED & ILD.	[3]
	e)	What you meant by power coupling?	[2]
	f)	What are the advantages of the WDM?	[2]
		<u>PART-B</u> $(4x14 = 56 Marks)$	
2.	a)	Draw the electromagnetic spectrum, explain different ranges and their wavelengths. Clearly show the range of wavelengths used for optical fiber	
		communication.	[7]

b) Define an optical fiber. Explain in detail different types of optical fibers with neat sketches. [7]

- Write short note on the following:
 (i) Chromatic dispersion (ii) Polarization mode dispersion
 (iii)Material dispersion
- 4. a) Discuss the different techniques to connect the 2 optical fibers with different lengths and also calculate the Joint losses. [7]
 - b) A single-mode fiber has the following parameters: Normalized frequency (v) = 2.40, Core refractive index (n1) =1.46 Core diameter (2a) =8 μm, Numerical aperture (NA) =0.1 Estimate the total insertion loss of a fiber joint with a lateral misalignment of 1 μm and an angular misalignment of 1⁰. [7]
- 5. a) Explain the working principle of avalanche photodiode with a neat diagram. [7]
 b) In a 100-ns pulse, 6x 10⁶ photons at a wavelength of 1300nm fall on an InGaAs Photo detector on the average 5.4 x 10⁶ electron-hole (e-h) pairs are generated.
- 6. a) Explain output pattern of surface in power launching from source to fiber. [7]
 b) Discuss the digital receiver performance. [7]
- 7. a) Estimate link power budget in optical communication system. [7]
 b) Discuss, how can we represent digital data in RZ code [7]

1 of 1

|"|""||"||

Find the quantum efficiency.

Max. Marks: 70

[14]

. .]

[7]

R16

Set No. 2

Code No: **R1641044**

IV B.Tech I Semester Regular Examinations, October/November - 2019 **OPTICAL COMMUNICATIONS**

(Electronics & Communication Engineering)

Time: 3 hours

Question paper consists of Part-A and Part-B

Max. Marks: 70

Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

1.	 a) b) c) d) e) f) 	Distinguish the step index fibers & graded index fibers. Explain the micro and macro bending. Write short notes on single mode fiber connectors. Discuss about the temperature effect on Avalanche gain. What is equilibrium numerical aperture? Write short notes on Eye patterns.	[2] [3] [2] [2] [3] [2]
		<u>PART-B</u> $(4x14 = 56 Marks)$	
2.	a)	What are the major problems encountered in the early development of optical communication for the practical use? Explain.	[7]
	b)	Discuss the total internal reflection in OFC using Snell's law.	[7]
3.	a) b)	Explain the material dispersion in optical wave guides. Glass fiber exhibits material dispersion given by $\lambda^2(d^2 n1/d \lambda 2)$ of 025. Determine material dispersion parameter at a wavelength of 0.85µm and estimate rms pulse broadening/km for good LED source with an rms spectral width of 20	[7]
		nm at this wavelength.	[7]
4.	a) b)	Discuss about multimode fiber joints. Explain different splicing techniques	[7] [7]
5.	a) b)	Explain briefly about LED structures. The quantum efficiency of an InGaAs PIN diode is 80% in the wave length range between 1300nm and 1600nm. Compute the range of responsivity of the PIN	[7]
		diode in the specified wavelength range.	[7]
6.	a) b)	Derive the equation of power coupled into step indexed optical fiber from the LED as source. Explain the fundamentals of digital signal transmission.	[7] [7]
7	,		
7.	a)	Discuss system considerations in point to point optical link.	[7]

b) Compare the advantages and disadvantages of using WDM in an optical fiber communication system. [7] **R16**

Set No. 3

Code No: **R1641044**

IV B.Tech I Semester Regular Examinations, October/November - 2019 OPTICAL COMMUNICATIONS

(Electronics & Communication Engineering)

Time: 3 hours

Electronics & Communication Engineering

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

[2]
[0]
[2]
[2]
[3]
[3]
[2]

<u>**PART-B**</u> (4x14 = 56 Marks)

2.	a)	Define numerical Aperture. How to calculate numerical aperture of a given fiber? Explain.	[7]
	b)	A silica optical fiber with a core diameter large enough to be considered by ray theory analysis has a core refractive index of 1.50 and a cladding refractive index of 1.47. Determine: (i) the critical angle at the core–cladding interface;	
		(ii) the NA for the fiber; (iii) the acceptance angle in air for the fiber.	[7]
3.		Explain all four types of distortion mechanisms in optical communication.	[14]
4.	a) b)	Write about fiber alignment & joint losses. Explain the need of Expanded Beam Connectors (EBC) and working of EBC.	[7] [7]
5.	a) b)	Derive the laser diode rate equation. Photons of energy 1.53 x 10^{-19} J are incident on a photodiode which has a responsivity of 0.65 A/W. If the optical power level is 10 μ W, Find the	[9]
		Photocurrent generated.	[5]
6.	a) b)	Explain optical receiver and its configuration with a neat sketch. Write note on Probability of error and quantum limit in a optical receiver.	[7] [7]
7.	a) b)	Discuss in detail about the principle of WDM network with suitable diagram. How the attenuation is measured using eye pattern?	[7] [7]

|"|""||"|||

Set No. 4

IV B.Tech I Semester Regular Examinations, October/November - 2019 OPTICAL COMMUNICATIONS

Time: 3 hours

(Electronics & Communication Engineering)

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

1.	a)	Mention any six advantages of OFC.	[2]
	b)	Discuss the intra modal dispersion effect in optical fiber.	[3]
	c)	Mention the different splicing techniques.	[2]
	d)	Define cutoff wavelength of a pin photo detectors.	[2]
	e)	Differentiate between, 'Quantum limit' and 'Dark current'.	[3]
	f)	Discuss various line codes which are used in optical links.	[2]

<u>**PART-B**</u> (4x14 = 56 Marks)

2.	a)	With a neat diagram, explain the working principle of analog and digital optical communication systems.	[7]
	b)	Write about mode coupling and V number.	[7]
3.	a) b)	Explain Signal distortion in optical fibers due to attenuation and absorption. Derive an expression for pulse spreading due to material dispersion which is a	[7]
	- /	function of wavelength and time delay.	[7]
4.	a) b)	Explain the fusion splicing technique in optical fiber with suitable diagrams.	[7]
	b)	Discuss about connector return loss.	[7]
5.	a)	Compare different photo detectors.	[7]
	b)	A PIN diode is characterized by a quantum efficiency of 72% at a wavelength of 900 nm. Calculate: (i) Responsivity of the PIN diode at 900nm. (ii) Received optical power if the mean photo current is 10 mA at 900nm. (iii) Number of	
		received photons for 1 mA mean photo generated current.	[7]
6.	a)	Derive the relation between power launching and wave length.	[7]
	b)	Explain the working principle of analog receivers.	[7]
7.	a)	Discuss about the point to point fiber optic link and its characteristics with an example.	[7]
	b)	Explain about the frequency chirping and its effects.	[7]