Code No: **R1641041**

Set No. 1

IV B.Tech I Semester Regular Examinations, October/November - 2019 RADAR SYSTEMS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

		PART-A (14 Marks)	
1.	a)	Define the Probability of detection.	[2]
	b)	What is the first blind speed of an I hand Roder energing at 1.25 CHZ, when the	[2]
	c)d)	What is the first blind speed of an l-band Radar operating at 1.25 GHZ, when the PRF has a maximum unambiguous range of 380 km? What are the drawbacks in sequential-lobing tracking?	[3] [2]
	e)	Define noise temperature and describe the relation between noise figure and	[-]
	,	noise temperature.	[3]
	f)	Write the various functions of a duplexer.	[2]
		$\mathbf{PART} - \mathbf{B} (4x14 = 56 Marks)$	
2.	a)	With the help of a neat block diagram, explain the principle of operation of	
		Radar.	[7]
	b)	A Pulse Radar transmits a peak power of 1 MW. It has a PRT equal to 1000 micro	
		sec. and the transmitted pulse width is 1 micro sec. Calculate (i) Maximum unambiguous range (ii) Average Power (iii)Duty Cycle (iv) Energy transmitted.	[7]
3.	a)	How the Doppler shift and Radar range can be measured with FM-CW Radar?	
	• `	Explain.	[7]
	b)	Explain the operation of the multiple frequency CW Radar.	[7]
4.	a)	Explain the operation of an MTI Radar with power oscillator transmitter.	[7]
	b)	Explain the frequency response characteristics of a MTI Radar using Range	
		gated Doppler filters.	[7]
5.	a)	Draw the block diagram and explain the operation of a Conical scan tracking	
		Radar.	[7]
	b)	What is automatic detection and tracking? Explain its limitations.	[7]
6.	a)	Explain the principle and characteristics of a Matched filter.	[7]
	b)	Derive the expression for matched filter's frequency response function.	[7]
7	`		
7.	a)	Draw and explain the structures of balanced duplexer during transmission and reception modes.	[7]
	b)	Briefly explain the concept of beam steering of Phased array antennas.	[7]

Code No: **R1641041**

Set No. 2

IV B.Tech I Semester Regular Examinations, October/November - 2019 RADAR SYSTEMS

(Electronics and Communication Engineering)

Tiı	3 hours Max. Marks:	x. Marks: 70	
		Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****	
1.	a)b)c)d)e)f)	PART-A (14 Marks) Describe the functions performed by the Radar. Define the Doppler effect. What are the limitations of MTI Radar? Define the elevation angle with respect to Radar. Define the efficiency of a Matched filter. Write advantages of phased array antennas.	[3] [2] [2] [2] [2] [3]
2.	a) b)	PART–B ($4x14 = 56$ Marks) What are the various Radar system losses? Explain in detail. A monostatic radar uses the same circular aperture antenna for transmission and reception at 8 GHz; its diameter is 2.6 m, aperture efficiency of 60%; and radiation loss of 1.04; the transmit path loss is 1.4. The radar is to produce a minimum detectable signal of $4x10^{-14}$ w, when the targets radar cross section is 1 m ² at a maximum range of 92 km. If the channel has a one way loss of 1.6, what transmitter peak power is required if the antenna points directly to the target?	[7]
3.	a) b)	Explain the principle of operation of Frequency Modulated Continuous Wave Radar with a neat block diagram. Calculate the Doppler frequency seen by a Stationary Continuous Wave Radar with a transmit frequency of 5 GHz when the target radial velocity is 100 km/h.	[7] [7]
4.	a) b)	What is the importance of staggered pulse repetition frequencies in the design of an MTI Radar? Explain. Explain the function of a single delay line canceller and derive an expression for the frequency response function.	[7] [7]
5.	a) b)	Explain amplitude comparison Monopulse tracking radar with the help of a neat block diagram. Write a brief note on acquisition and scanning patterns.	[7] [7]
6.	a) b)	Derive the expression for the frequency response of a Matched filter receiver with non white noise input. Derive an expression for the effective Noise figure of two cascaded networks.	[7] [7]
7.	a) b)	Explain the functioning and characteristics of PPI display and A-Scope display. What are Radomes? Explain its characteristics.	[7] [7]

Code No: **R1641041**

Set No. 3

IV B.Tech I Semester Regular Examinations, October/November - 2019 RADAR SYSTEMS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

		TAKI-A (14 Marks)	
1.	a)	Write the applications of Radar.	[2]
	b)	What are the limitations of CW Radar?	[2]
	c)	Define Blind Speed and write the expression for it.	[3]
	d)	What are the functions of AGC in tracking Radar?	[2]
	e)	Define noise figure and describe the relation between noise figure and noise temperature.	[3]
	f)	Define beam width of an antenna and write the expression for it.	[2]
		$\underline{\mathbf{PART-B}} \ (4x14 = 56 \ Marks)$	
2.	a)	What is probability of false alarm? Derive the expression for it.	[7]
	b)	In a Radar receiver the mean noise voltage is 80 mV and the IF bandwidth is	
		1 MHz. If the tolerable false alarm time is 25 minutes, calculate the threshold	
		voltage level and the probability of false alarm.	[7]
2	- \	Emploid the principle of continuous West Delevation on IF	
3.	a)	Explain the principle of operation of Continuous Wave Radar with non-zero IF	[7]
	b)	receiver.	[7]
	b)	List down and explain the applications of CW and FM-CW Radar.	[7]
4.	a)	Explain the operation of an MTI Radar with power amplifier transmitter.	[7]
т.	b)	A S-band air surveillance Radar operating at 3.1 GHz utilizes a staggered	[/]
	0)	waveform with four different PRFs, which are 1222, 1031, 1138 and 1000 Hz.	
		(i) What is the 1 st blind speed if a constant PRF is used which has a PRT is equal	
		to average of four periods of the staggered waveform?	
		(ii) What is the first blind speed of the staggered PRF waveform? (Note that n_i	
		for these four frequencies are 27, 32, 29 and 33 respectively).	[7]
		1 · · · · · · · · · · · · · · · · · · ·	[·]
5.	a)	Explain the basic principle of a sequential lobing tracking Radar with neat	
	ŕ	diagrams.	[7]
	b)	What are the factors need to be considered for optimum squint angle? Explain.	[7]
6.	a)	Derive the frequency response function of the matched filter.	[7]
	b)	Explain about the efficiency of non-matched filters.	[7]
7.	a)	What is a Duplexer and explain the principle of operation of typical Duplexer	
		with a schematic diagram.	[7]
	b)	How the beam width of a Phased array antenna varies with the steering angle?	
		Explain.	[7]

Code No: **R1641041**

Set No. 4

IV B.Tech I Semester Regular Examinations, October/November - 2019 RADAR SYSTEMS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70 Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B PART-A (14 Marks) 1. a) Describe the classification of Radars. [2] b) List out the advantages of FM-CW Radar. [2] Compare the MTI and Pulse Doppler Radar. [3] Define the azimuth angle with respect to Radar. [2] Write the properties of Matched filter. [3] Write the limitations of phased array antennas. f) [2] $\underline{\mathbf{PART-B}} \ (4x14 = 56 \ Marks)$ Derive the expression for Radar range equation in terms of Signal-to-noise ratio. [7] 2. a) b) A Radar uses one antenna with a gain of $3x10^4$ and operates with a peak transmitter power of 50 kW, wavelength of 7.5 cm and a total loss of 1.6. For a target range of 97.2 nmi, what target radar cross section is needed to produce an available received power of $2x10^{-12}$ W, if antenna points directly to the target? [7] Explain the principle of operation of FM-CW altimeter with a near diagram. [7] 3. a) b) What are the factors that limit the amount of isolation between Transmitter and Receiver of CW Radar? Explain. [7] What are the limitations of MTI Radar? Explain. 4. a) [7] MTI radar is operating at a frequency of 9 GHz with a PRF of 3000 Hz. Calculate the first two lowest blind speeds for this radar. Derive the formula used. [7] Explain the Monopulse tracking in two angel coordinates. [7] Compare the various tracking techniques. [7] What is meant by correlation? Explain cross correlation with the help of a neat 6. a) block diagram. [7] b) Define noise figure and noise temperature. Obtain the relation between them. [7] 7. a) Explain characteristics of different radar displays. [7] b) Draw and explain the radiation pattern of phased array antennas. [7]