||"|"||"|"|||

Code No: **R164104C**

Time: 3 hours

IV B.Tech I Semester Regular Examinations, October/November - 2019 SYSTEM DESIGN THROUGH VERILOG (Electronics and Communication Engineering)

Question paper consists of Part-A and Part-B
Answer ALL sub questions from Part-A
Answer any FOUR questions from Part-B

pg and VIID

1.	a)	Compare Verilog and VHDL.	[3]
	b)	What is inertial delay?	[2]
	c)	Write the syntax for while loop.	[3]
	d)	How strength and delays are instantiated?	[2]
	e)	Differentiate synthesis and simulation.	[2]
	f)	Compare SRAM with DRAM.	[2]
		PART-B $(4x14 = 56 Marks)$	
2.	a)	Explain about operators used in Verilog.	[4]
	b)	Define the following terms relevant to Verilog HDL:	
	í	(i) Parameters (ii) Strengths	
		(iii) Exercises (iv) Concurrency	[10]
3.	a)	Design module and a test bench for conversion of an 8-bit number into its	
		respective BCDs.	[7]
	b)	Write relevant syntax, logic diagrams and verilog code for Tristate gate.	[7]
4.	a)	How are blocking assignments different from non blocking assignments?	[7]
ч.	b)	Use the disable construct and prepare modules for AND, NAND and NOR	[']
	0)	functions.	[7]
5.	a)	Write verilog code for CMOS switch and its test bench.	[7]
	b)	Implement the verilog HDL source code and logic diagram for 1-bit full adder using dataflow style.	
			[7]
6.	a)	Write a verilog code for traffic light controller.	[10]
0.	b)	Write a verilog code for a latch.	[4]
	- /		ĽJ
7.	a)	Discuss about read cycle timing of SRAM.	[7]
	b)	Design HDL model ALU operations for register memory instructions.	[7]

www.manaresults.co.in

Set No. 1

Max. Marks: 70

Code No: **R164104C**

Set No. 2

IV B.Tech I Semester Regular Examinations, October/November - 2019 SYSTEM DESIGN THROUGH VERILOG (Electronics and Communication Engineering)

Time: 3 hours	х с с,	Max. Marks: 70
	Question paper consists of Part-A and Part-B	
	Answer ALL sub questions from Part-A	
	Answer any FOUR questions from Part-B	

PART-A (14 Marks)

1.	a)	List out the different levels of design descriptions in verilog.	[2]
	b)	Mention all types of delays.	[3]
	c)	Write the syntax for Forever loop.	[3]
	d)	What is switch primitives?	[2]
	e)	What is net list?	[2]
	f)	What is UART?	[2]

<u>PART-B</u> (4x14 = 56 Marks)

2.	Define the following terms relevant to Verilog HDL		
	(i) Test bench	(ii) Simulation tools	
	(ii) System tasks	(iii) Level of design Description	[14

3.	a) b)	Draw the Half adder circuit in terms of Ex-OR gates and AND gates. Prepare a Half adder module in terms of Ex-OR gate and AND gate primitive. Explain in brief built-in primitive gates that are available in Verilog HDL.	[7] [7]
4.	a)	Write verilog code of an 8 bit counter.	[7]
	b)	Use the repeat construct along with the disable construct to realize an AND gate. Synthesize the module and compare the synthesized circuits.	[7]
5.	a)	Explain Bi-directional gates with suitable logic diagrams and give their verilog code using switch level modeling.	[7]
	b)	Realize the skeletal edge-triggered flip flop through continuous assignments for the gates. Write its test bench.	[7]
6.	a)	Discuss Moore machine using verilog.	[10]
	b)	Write a verilog code for 8×1 MUX.	[4]
7.		Explain the modeling approach for static RAM memory using verilog HDL. Modeling approach consists of design and implementation.	[14]

1 of 1

www.manaresults.co.in

R16

11"1"1"1"11111

Time: 3 hours Max. Marks: 70 Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B ***** PART-A (14 Marks) 1. a) What are the system tasks available in verilog for monitoring? [3] b) Classify delays. [2] c) Write the syntax for repeat construct. [2] Write verilog code for 2×1 MUX using CMOS [3] d) What is latch? e) [2] f) What is baud rate? [2] **PART–B** (4x14 = 56 Marks)2. a) Explain top-down design methodology with examples? [7] b) Define the following terms relevant to Verilog HDL: (i) Keywords (ii) Identifiers (iii) Strings (iv) Data types [7] Explain NAND gate primitive with verilog module. [7] 3. a) b) Implement verilog HDL source code and draw the logic diagram of a 2 to 4 decoder circuit. Give the gate level description. [7] 4. a) Describe the behavior of a JK flip flop using an **always** statement. [7] b) Prepare design modules and a test bench for the following operations: (i) Add two BCD nibbles. (ii) Add two pairs of BCD nibbles – 2 decimal numbers each of two digits. [7] 5. Implement NAND, AND, OR gates using MOS switches. Write verilog code and Test it with a suitable test bench. [14] 6. a) Explain the synthesis of sequential logic with flip flops. [7] b) What is continuous assignment statement? Explain with example. [7] 7. a) Explain the modeling approach for UART using verilog HDL. Modeling

IV B.Tech I Semester Regular Examinations, October/November - 2019 SYSTEM DESIGN THROUGH VERILOG

(Electronics and Communication Engineering)

R16

[14]

approach consists of design and implementation.

1 of 1

www.manaresults.co.in

Code No: **R164104C**

||"|"||"|"|||

Code No: R164104C

Time: 3 hours

1.

IV B.Tech I Semester Regular Examinations, October/November - 2019 SYSTEM DESIGN THROUGH VERILOG

(Electronics and Communication Engineering)

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

a)	What are the different data types in verilog?	[3]
b)	List out built-in primitive gates in verilog HDL.	[2]
c)	Write the syntax for case statement.	[3]
d)	Draw the CMOS switch.	[2]
e)	Write a verilog code for a D-flip flop.	[2]
f)	What are the different ALU operations?	[2]

<u>**PART-B**</u> (4x14 = 56 Marks)

2.	a)	Define the following terms relevant to Verilog HDL:	
		(i) Verilog as HDL(ii) Functional verification(iii) Module(iv) PLI	[14]
3.	a) b)	Write a verilog code of a master slave flip-flop with gate primitives. Give verilog syntax on gate delays with necessary instantiations.	[7] [7]
	a)	Write the difference between begin-end and fork-join blocks with an example.	[7]
	b)	Design verilog code of OR gate using for and disable . Write simulation results with explanation.	
5.	a)	Explain continuous assignment structures relevant to dataflow modeling with suitable examples.	[7]
	b)	Implement the verilog HDL module for a 4 to1 vector multiplexer circuit using	[7]
		dataflow level.	[7]
6.	a)	Explain the synthesis process of explicit state machines.	[7]
	b)	Give the differences between accidental synthesis of latches and intentional synthesis of latches.	[7]
7.		Design HDL module for Baud rate generator.	[14]

www.manaresults.co.in

Max. Marks: 70

R16

