

[7M]

[7M]

II B. Tech I Semester Regular Examinations, March - 2021 **RANDOM VARIABLES AND STOCHASTIC PROCESSES**

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 75

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

1 [8M] a) Define conditional probability distribution function and write he properties

b) A random variable X is defined by

 $X(i) = \begin{cases} -2 & i \le -2 \\ i & -2 < i \le 1 \\ 1 & 1 < i \le 4 \\ z & i \end{cases}$

Show, by a sketch, the value x into which the values of i are mapped by x. What type of random variable is X?

Or

- a) Given that a random variable X has the following possible values, state if X is 2 [8M] discrete, continuous or mixed
 - $\{-20 < x < -5\}$ i.
 - $\{10, 12 < x < = 14, 15, 17\}$ ii.
 - iii. $\{-10 \text{ for } s > 2 \text{ and } 5 \text{ for } s <= 2, \text{ where } 1 < s <= 6\}$
 - iv. $\{4,3,1,1,-2\}$

b) Suppose height to the bottom of clouds is a Gaussian random variable for which [7M] ax=4000m and σ x=1000m. A person bets that cloud height tomorrow will fall in the set $A=\{1000m < X \le 3000m\}$ while a second person bets that height will be satisfied by $B=\{2000m < X \le 4200m\}$. A third person bets they are both correct. Find the probability that each person will win the bet.

- a) The random variable X has characteristics function $\phi_X(w) = [a/a-jw]^N$ for a>0 3 [8M] and N=1,2,3..... Show that \overline{X} =N/a, \overline{X}^2 N(N+1)/a², and σ_x^2 =N/a².
 - b) Find mean and variance of Gaussian random variable?
- a) A random variable X is uniformly distributed on the interval (-5,15). Another 4 [8M] random variable $Y = e^{\left(-\frac{X}{5}\right)}$ is formed. Find E[Y].

Or

- b) A Gaussian voltage random variable X has a mean value ax=0 and σ^2 x=9. The [7M] voltage X is applied to a square-law, full wave diode detector with a transfer characteristics $Y=5X^2$. Find the mean value of the output voltage Y.
- 5 a) Random variable X and Y have the joint density

[8M] 1/24 0<x<6 and 0<y<4 $F_{X,Y}(x,y) = \{$

0 elsewhere.

What is the expected value of the function $g(X,Y)=(XY)^2$?

b) Two statistically independent random variable X and Y have mean values [7M] $\overline{X} = E[X] = 2$ and E[Y] = 4. They have second moments $\overline{X}^2 = E[X^2] = 8$ and $E[Y^2]=25$. Find i) the mean value ii) the second moment iii) the variance of the random variable W=3X-Y.

||"|"||"||"||

6	a)	For the two random variable X and Y:	[8M]
		$F_{X,Y}(x,y) = 0.15\delta(x+1)\delta(y) + 0.1\delta(x)\delta(y) + 0.1\delta(x)\delta(y-2) + 0.4\delta(x-1)\delta(y+2) + 0.2\delta(x-1)\delta(y-2) + 0.2\delta(x-1)\delta(x-1$	
		Find: i) the correlation, ii) the covariance, iii) the correlation coefficient of X	
		and Y and iv) are X and Y either uncorrelated or orthogonal?	
	b)	Gaussian random variable X ₁ and X ₂ for which $X_1=2,\sigma_{X_1}^2=9,X_2=-1,\sigma_X^2=4$ and $C_{X_1}=2,\sigma_{X_2}^2=0,X_2=-1,\sigma_X^2=4$	[7M]
		C_{X1X2} =-5 are transformed to new random variable T_1 and T_2 according to T_1 =- X_1+X_2, Y_2 =-2 X_1 -3 X_2 . Find	
		i) σ_{Y1}^2 ii) σ_{Y2}^2 iii) C_{Y1Y2} .	
7	a)	Let $X(t)$ be a stationary continuous random process that is differentiable. Denote	[8M]
		its time derivative by $\overset{\bullet}{X}(t)$. Show that $E\left(\overset{\bullet}{X}(t)\right] = 0$.	
	b)	Given the random process by $X(t)=A \cos(w_0 t) + B \sin(w_0 t)$ Where w_0 is a constant, and A and B are uncorrelated zero mean random variables having different density functions but the same variance ,show that $X(t)$ is wide sense stationary but not strictly stationary.	[7M]
		Or	
8	a)	A random process is defined by $X(t) = A$, where A is a continuous random variable uniformly distributed on (0, 1). Determine the form of the sample functions, classify the process	[8M]
	b)	Define ergodic random proven? Explain with example.	[7M]
9	a)	Drive the Wiener-Khintchine relation.	[10M]
	b)	What is Mean value of System Response for Random Signal Response of Linear	[5M]
		Or	

10 A Random signal X(t) of PSD of $\frac{N_0}{2}$ is applied on an LTI system having impulse [15M] response h(t). If Y(t) is output, find (i) $E[Y^2(t)]$ (ii) $R_{XY}(\tau)$ (iii) $R_{YX}(\tau)$ (iv) $R_{YY}(\tau)$.

II B. Tech I Semester Regular Examinations, March - 2021 RANDOM VARIABLES AND STOCHASTIC PROCESSES

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks:			75	
	Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks			
1	a)	Define Random variable? List out the properties of Distribution Function	[8M]	
	b)	A random variable X is known to be Poisson with b=0 Plot the density and distribution functions for this random variable. What is the probability of event $\{0 \le X \le 5\}$	[7M]	
		Or		
2	a)	Explain Gaussian random variable with neat sketches?	[8M]	
	b)	For the gaussian density function of ax=0 and $\sigma x=1$, show that $\int_{-\infty}^{\infty} x f x(x) dx = ax$	[7M]	
3	a)	A random variable X is uniformly distributed on the interval $(-\pi/2, \pi/2)$. X is transformed to the new random variable Y = T (X) = $a \tan(X)$, where $a > 0$. Find the probability density function of Y.	[8M]	
	b)	Show that characteristics function of a random variable having the binomial density function is $\Phi(w)=[1-p+pe^{jw}]^N$.	[7M]	
		Or		
4	a)	A random variable X has \bar{X} =-3, \bar{X}^2 =11 and σ_X^2 =2. For a new random variable Y=2X-3, Find: i) \bar{Y} ii) \bar{Y}^2 iii) σ_X^2	[8M]	
	b)	For the poisson random variable show that mean and variance is same	[7M]	
5	a)	Two gaussian random variables X and Y have variances $\sigma_X^2 = 9$ and $\sigma_Y^2 = 4$ respectively and correlation coefficient ρ . It is known that a coordinate rotation by angle $-\pi/8$ results in new random variable Y ₁ and Y ₂ that are uncorrelated.	[8M]	
	b)	What is ρ ? Two random variables X and Y are defined by $\bar{X}=0,\bar{Y}=-1, \bar{X}^2=2,\bar{Y}^2=4$ and $R_{XY}=-2$. Two random variable W and U are: W=2X+Y, U=-X-3Y. Find $\bar{W},\bar{U},\bar{W}^2,\bar{U}^2,R_{WU},\sigma_X^2,\sigma_Y^2$.	[7M]	
		Or		
6	a)	Random variable X and Y have the joint density function $F_{X,Y}(x,y)=\{(x+y)^2/40 -1 < x < 1 \text{ and } -3 < y < 3$ 0 elsewhere. i)find all the second order moments of X and Y	[8M]	
		ii) what are variances of X and Y.		
	b)	Two gaussian random variables X and Y are variances $\sigma_X^2 = 4$ and $\sigma_Y^2 = 9$ respectively and correlation coefficient ρ . It is known that a coordinate rotation by angle $-\pi/4$ results in new random variable Y ₁ and Y ₂ that are uncorrelated. What is ρ ?	[7M]	
		What is ρ ? 1 of 2		

SET - 2

- 7 a) Write the properties of Autocorrelation Function of Random Process [6M]
 - b) A Gaussian random process is known to be a WSS process with mean $\overline{X} = 4$ [9M] and $R_{XX}(\tau)=25e^{-3^{|\tau|}}$ where $\tau = \frac{|t_k - t_i|}{2}$ and i,k=1,2. Find joint Gaussian density function?

Or

- 8 a) What is wide-sense stationary random process and explain with example [8M]
 - b) Define Random Process and classify it. [7M]
- 9 a) A random process had the power density spectrum [8M]

$$S(\omega) = \frac{6\omega^2}{1+\omega^4}$$

Find the average power in the process

b) Assume X(t) is a wide sense stationary process with non zero mean value. show [7M] that

$$s_{xx}(\omega) = 2\pi \bar{X}^2 \delta(\omega) + \int_{-\infty}^{\infty} C_{xx}(\tau) e^{-j\omega\tau} d\tau$$

where $C_{xx}(\tau)$ is the auto covariance function of X(t).

Or

- 10 a) Derive the relationship between Cross-Power Density Spectrum and Cross-Correlation Function. [8M]
 - b) Explain Band pass Processes with Properties. [7M]

||"|"||"||"""

II B. Tech I Semester Regular Examinations, March - 2021 RANDOM VARIABLES AND STOCHASTIC PROCESSES

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 75			i
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	_
1	a)	Define Density Function? List out the properties of Density Function	[8M]
	b)	Gaussian random voltages X for which $a_x = 0$ and $\sigma_x = 4.2V$ appears across a 100- Ω resistor with power rating of 0.25W. What is the probability that the voltage will cause an instantaneous power that exceeds the resistor's rating?	[7M]
		Or	
2	a) h)	Define Poisson Random variable? What type of applications it will suitable and give the relationship between Poisson and Binomial Random variable.	[8M]
	0)	For the Gaussian density function of $ax=0$ and $6x=1$, show that $\int_{-\infty}^{\infty}$	[/1 v1]
		$\int_{-\infty} (x - \mathrm{ax})^2 f x(x) dx = \sigma x^2$	
3	a)	Explain about Transformation of random variable	[8M]
	b)	For the binomial density function, show that $E[X] = Np$ and variance = $Np(1-p)$	[7M]
		Or	
4	a)	Find the mean, variance from moment generation function of uniform distribution?	[8M]
	b)	A random variable X can have values -4, -1,2,3,4 each with probability 1/5.Find: i) the density function ii) the mean iii) the variance of the random variable $Y=3X^2$.	[7M]
5	a)	Define Marginal density function? Find the Marginal density functions of below joint density function.	[8M]
		$f_{XY} = \frac{1}{12}u(x)u(y)e^{-x/3}e^{-y/4}$	
	b)	Two random variables having joint characteristic function	[7M]
		$\phi_{XY}(\omega_1, \omega_2) = \exp(-2\omega_1^2 - 8\omega_2^2)$. Find moment's m ₁₀ , mo ₁ , m ₁₁ ?	
		Or	
6	a)	Find the density function of W=X+Y, where the densities of X and Y are assumed to be: $f_x(x)=4u(x)e^{-4x}$; $f_y(y)=5u(y)e^{-5y}$.	[10M]
	b)	Joint Sample Space has three elements (1, 1), (2, 2), and (3, 3) with probabilities	[5M]
7		0.4, 0.3, 0.3 respectively then draw the Joint Distribution Function diagram	[0] /]
/	a)	Let two random processes $X(t)$ and $Y(t)$ be defined by $X(t) = A \cos \omega_0 t + B \sin \omega_0 t$ $Y(t) = B \cos \omega_0 t - A \sin \omega_0 t$	[01/1]
		where A and B are random variables and ω_0 is a constant. Assume A and B are uncorrelated, zero mean random variables with same variance. Find the cross correlation function $\mathbf{P}_{\text{end}}(t \pm t \pi)$	
	b)	Write the properties of Cross correlation Eulerian of Pandom Processon	[7M]
		whice the properties of Cross conclation Function of Kandolin Flocesses.	с J

R19

SET - 3

8	a)	What is strict-sense stationary random process and explain with example.	[8M]
	b)	What is Cross- Correlation Function and explain its Properties .	[7M]
9	a)	Write the properties of power density spectrum.	
	b)	If X(t) is a stationary process, find the power spectrum of $Y(t) = A_0 + B_0 X(t)$ in	[8M]
		term of the power spectrum of $X(t)$ if A_0 and B_0 are real constants.	
		Or	[7M]
10	a)	Explain Band-Limited Processes with Properties.	[7M]
	b)	If X(t) is band limited process such that $S_{xx}(\omega) = 0$, when $ \omega > \sigma$, prove that $2[R_{xx}(0) - R_{xx}(\tau)] \le \sigma^2 \tau^2 R_{xx}(0)$.	[8M]

II B. Tech I Semester Regular Examinations, March - 2021 RANDOM VARIABLES AND STOCHASTIC PROCESSES

(Electronics and Communication Engineering) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks 1 Define Random variable? Write the conditions for a function to be random [6M] a) variable b) A random voltage can have any value defined by the set 'S' = { $a \le s \le b$ }. A [9M] quantizer, divides S into 6 equal-sized contiguous subsets and generates random variable X having values {-4, -2, 0, 2, 4, 6}. Each value of X is earned to the midpoint of the subset of 'S' from which it is mapped i) Sketch the sample space and the mapping to the line that defines the values of X ii) Find a and b? Or 2 [8M] a) Explain about Gaussian random variable A Gaussian random variable X has $a_x = 2$, and $\sigma_x = 2$ [7M] b) Find $P\{X > 1.0\}$ i. ii. Find $P\{X \leq -1.0\}$ a) A random variable X has a probability density 3 [8M] $f_{\times}(x) = \begin{cases} (1/2)\cos(x) & -\pi/2 < x < \pi/2 \\ 0 & \text{elsewhere in } x \end{cases}$ elsewhere in x. Find the mean value of the function on $g(X)=4X^2$ [7M] b) Let X be a Poisson random variable then find out its mean and variance Or 4 a) Find the expected value of the function $g(X) = X^3$ where X is a random [8M] variable defined by the density $f_{X}(x) = \left(\frac{1}{2}\right) u(x) \exp(-x/2).$ b) [7M] State and prove Chebchev's inequality? a) For two random variables X and Y 5 [8M] $f_{X,Y}(x, y) = 0.15 \,\delta(x+1) \delta(y) + 0.1 \,\delta(x) \delta(y) + 0.1 \,\delta(x)$

$$\delta(y-2) + 0.4 \,\delta(x-1)\delta(y+2) + \\0.2 \,\delta(x-1)\delta(y-1) + 0.5 \,\delta(x-1)\delta(y-3)$$

Find the correlation coefficients of X and Y

- b) Gaussian random variables X and Y have first and second order moments m_{10} =- [7M] 1.1, m_{20} =1.16, m_{01} =1.5, m_{02} =2.89, R_{XY} =-1.724 find C_{XY} and ρ ?
 - Or

||"|"||"||"""|

Code No: R1921044 **R19**
6 a) Define random variables V and W by

$$V=X+aY$$

 $W=X-aY$
Where a is real number and X and Y random variables, Determine a in terms of
X and Y such V and W are orthogonal?
b) Gaussian random variable X₁ and X₂ for which $\bar{X}_1=2,\sigma_{X_1}^2=9,\bar{X}_2=-1,\sigma_X^2=4$ and
 $C_{X1X2}=-3$ are transformed to new random variable Y₁ and Y₂ according to Y₁=-
 $X_1+X_2, Y_2=-2X_1-3X_2$. Find
 $i)\bar{X}^2$ iii) \bar{X}^2 iii) ρ_{X1X2} iv) σ_{Y1}^2
7 a) Given that the autocorrelation function for a stationary Ergodic process with no
period components is
 $R_{XX}(\tau) = 25 + \frac{4}{1+6\tau^2}$
Find the mean and variance of process X(t)?
b) Give the random process by
 $X(t)=A\cos(w_0t) + B\sin(w_0t)$
Where w₀is a constant, and A and B are uncorrelated zero mean random
variables having different density functions but the same variance ,show that
X(t) is wide sense stationary but not strictly stationary
Or
8 A random process X(t) has periodic sample functions as show in figure ; where
B, T and $4t_0 \le T$ are constants but \in is a random variable uniformly distributed
on the interval (0, T). Find first order density function and distribution function
of X(t).
 $w_{11} = \frac{X(t)}{t}$

9 a) Derive the relationship between power spectrum and autocorrelation [8M]

b) The autocorrelation function of a random process X(t) [7M]

$$R_{xx}(\tau) = 3 + 2\exp(-4\tau^2)$$

i.

ii. What is the average power in X(t)?

Or

 10 a) Explain Power Density Spectrum of Response Characteristics of LTI System [8M] Response
 b) Explain Narrowband Processes with Properties. [7M]

