II B. Tech I Semester Regular Examinations, March - 2021

RANDOM VARIABLES AND STOCHASTIC PROCESSES
(Electronics and Communication Engineering)
Time: 3 hours Max. Marks: 75
Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

1 a) Define conditional probability distribution function and write he properties
b) A random variable X is defined by

$$
X(i)= \begin{cases}-2 & \multicolumn{1}{c}{i \leq-2} \\ i & -2<i \leq 1 \\ 1 & 1<i \leq 4 \\ 6 & 4<i\end{cases}
$$

Show, by a sketch, the value x into which the values of i are mapped by x . What type of random variable is X ?

Or
2 a) Given that a random variable X has the following possible values, state if X is discrete, continuous or mixed
i. $\{-20<x<-5\}$
ii. $\quad\{10,12<x<=14,15,17)$
iii. $\quad\{-10$ for $s>2$ and 5 for $s<=2$, where $1<s<=6\}$
iv. $\{4,3.1,1,-2\}$
b) Suppose height to the bottom of clouds is a Gaussian random variable for which $\mathrm{ax}=4000 \mathrm{~m}$ and $\sigma \mathrm{x}=1000 \mathrm{~m}$. A person bets that cloud height tomorrow will fall in the set $A=\{1000 \mathrm{~m}<X \leq 3000 \mathrm{~m}\}$ while a second person bets that height will be satisfied by $B=\{2000 \mathrm{~m}<X \leq 4200 \mathrm{~m}\}$.A third person bets they are both correct. Find the probability that each person will win the bet.
3 a) The random variable X has characteristics function $\phi_{X}(w)=[a / a-j w]^{N}$ for $a>0$ and $\mathrm{N}=1,2,3 \ldots \ldots$. Show that $\bar{X}=\mathrm{N} / \mathrm{a}, \bar{X}^{2} \mathrm{~N}(\mathrm{~N}+1) / \mathrm{a}^{2}$, and $\sigma_{x}^{2}=\mathrm{N} / \mathrm{a}^{2}$.
b) Find mean and variance of Gaussian random variable?

Or
4 a) A random variable X is uniformly distributed on the interval ($-5,15$). Another random variable $\mathrm{Y}=e^{\left(-\frac{X}{5}\right)}$ is formed. Find $\mathrm{E}[\mathrm{Y}]$.
b) A Gaussian voltage random variable X has a mean value $\mathrm{ax}=0$ and $\sigma^{2} \mathrm{x}=9$. The voltage X is applied to a square-law, full wave diode detector with a transfer characteristics $\mathrm{Y}=5 \mathrm{X}^{2}$. Find the mean value of the output voltage Y .
5 a) Random variable X and Y have the joint density

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \mathrm{y})=\{\quad 1 / 24 \quad 0<\mathrm{x}<6 \text { and } 0<\mathrm{y}<4 \\
& 0 \text { elsewhere. }
\end{aligned}
$$

What is the expected value of the function $\mathrm{g}(\mathrm{X}, \mathrm{Y})=(\mathrm{XY})^{2}$?
b) Two statistically independent random variable X and Y have mean values $\bar{X}=\mathrm{E}[\mathrm{X}]=2$ and $\mathrm{E}[\mathrm{Y}]=4$. They have second moments $\bar{X}^{2}=\mathrm{E}\left[\mathrm{X}^{2}\right]=8$ and $\mathrm{E}\left[\mathrm{Y}^{2}\right]=25$. Find i) the mean value ii) the second moment iii) the variance of the random variable $\mathrm{W}=3 \mathrm{X}-\mathrm{Y}$.

6 a) For the two random variable X and Y :

$$
\begin{aligned}
\mathrm{F}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \mathrm{y})=0.15 \delta(\mathrm{x}+1) \delta(\mathrm{y})+0.1 \delta(\mathrm{x}) \delta(\mathrm{y}) & +0.1 \delta(\mathrm{x}) \delta(\mathrm{y}-2)+0.4 \delta(\mathrm{x}-1) \delta(\mathrm{y}+2) \\
& +0.2 \delta(\mathrm{x}-1) \delta(\mathrm{y}-1)+0.5 \delta(\mathrm{x}-1) \delta(\mathrm{y}-3)
\end{aligned}
$$

Find: i) the correlation, ii) the covariance, iii) the correlation coefficient of X and Y and iv) are X and Y either uncorrelated or orthogonal?
b) Gaussian random variable X_{1} and X_{2} for which $\bar{X}_{1}=2, \sigma_{X 1}^{2}=9, \bar{X}_{2}=-1, \sigma_{X}^{2}=4$ and
$\mathrm{C}_{\mathrm{X} 1 X_{2}}=-3$ are transformed to new random variable Y_{1} and Y_{2} according to $\mathrm{Y}_{1}=-$ $\mathrm{X}_{1}+\mathrm{X}_{2}, \mathrm{Y}_{2}=-2 \mathrm{X}_{1}-3 \mathrm{X}_{2}$. Find i) $\sigma_{Y 1}^{2}$ ii) $\sigma_{Y 2}^{2}$ iii) $\mathrm{C}_{Y 1 Y 2}$.

7 a) Let $\mathrm{X}(t)$ be a stationary continuous random process that is differentiable. Denote its time derivative by $\dot{X}(t)$. Show that $E(\dot{X}(t)]=0$.
b) Given the random process by $\mathrm{X}(\mathrm{t})=\mathrm{A} \cos \left(\mathrm{w}_{0} \mathrm{t}\right)+\mathrm{B} \sin \left(\mathrm{w}_{0} \mathrm{t}\right)$

Where w_{0} is a constant, and A and B are uncorrelated zero mean random variables having different density functions but the same variance, show that $\mathrm{X}(\mathrm{t})$ is wide sense stationary but not strictly stationary.

Or

8 a) A random process is defined by $\mathrm{X}(t)=\mathrm{A}$, where A is a continuous random variable uniformly distributed on $(0,1)$. Determine the form of the sample functions, classify the process
b) Define ergodic random proven? Explain with example.

9 a) Drive the Wiener-Khintchine relation.
b) What is Mean value of System Response for Random Signal Response of Linear Systems.

Or
10 A Random signal $\mathrm{X}(\mathrm{t})$ of PSD of $\frac{N_{0}}{2}$ is applied on an LTI system having impulse response $h(t)$. If $Y(t)$ is output, find (i) $E\left[Y^{2}(t)\right]$ (ii) $R_{X Y}(\tau)$ (iii) $R_{Y X}(\tau)$ (iv) $R_{Y Y}(\tau)$.

II B. Tech I Semester Regular Examinations, March - 2021 RANDOM VARIABLES AND STOCHASTIC PROCESSES

(Electronics and Communication Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

1 a) Define Random variable? List out the properties of Distribution Function
b) A random variable X is known to be Poisson with $b=0$

Plot the density and distribution functions for this random variable.
What is the probability of event $\{0 \leq X \leq 5\}$
Or
2 a) Explain Gaussian random variable with neat sketches?
b) For the gaussian density function of $\mathrm{ax}=0$ and $\sigma \mathrm{x}=1$, show that
$\int_{-\infty}^{\infty} x f x(x) d x=a x$
3 a) A random variable X is uniformly distributed on the interval $(-\pi / 2, \pi / 2)$. X is transformed to the new random variable $\mathrm{Y}=\mathrm{T}(\mathrm{X})=a \tan (\mathrm{X})$, where $a>0$. Find the probability density function of Y .
b) Show that characteristics function of a random variable having the binomial density function is $\quad \Phi(\mathrm{w})=\left[1-\mathrm{p}+\mathrm{p} e^{j w}\right]^{\mathrm{N}}$.

4 a) A random variable X has $\bar{X}=-3, \bar{X}^{2}=11$ and $\sigma_{X}^{2}=2$. For a new random variable $\mathrm{Y}=2 \mathrm{X}-3$,
$\begin{array}{lll}\text { Find: i) } \bar{Y} & \text { ii) } \bar{Y}^{2} & \text { iii) } \sigma_{Y}^{2} .\end{array}$
b) For the poisson random variable show that mean and variance is same

5 a) Two gaussian random variables X and Y have variances $\sigma_{X}^{2}=9$ and $\sigma_{Y}^{2}=4$ respectively and correlation coefficient ρ. It is known that a coordinate rotation by angle $-\pi / 8$ results in new random variable Y_{1} and Y_{2} that are uncorrelated. What is ρ ?
b) Two random variables X and Y are defined by $\bar{X}=0, \bar{Y}=-1, \bar{X}^{2}=2, \bar{Y}^{2}=4$ and $\mathrm{R}_{\mathrm{XY}}=-$ 2. Two random variable W and U are: $\mathrm{W}=2 \mathrm{X}+\mathrm{Y}, \mathrm{U}=-\mathrm{X}-3 \mathrm{Y}$. Find $\bar{W}, \bar{U}, \bar{W}^{2}, \bar{U}^{2}, \mathrm{R}_{\mathrm{WU}}, \sigma_{X}^{2}, \sigma_{Y}^{2}$.

> Or

6 a) Random variable X and Y have the joint density function

$$
\begin{array}{cl}
\mathrm{F}_{\mathrm{X}, \mathrm{Y}}(\mathrm{x}, \mathrm{y})=\{ & (\mathrm{x}+\mathrm{y})^{2} / 40 \\
0 & -1<\mathrm{x}<1 \text { and }-3<\mathrm{y}<3 \\
\text { elsewhere } .
\end{array}
$$

i)find all the second order moments of X and Y
ii) what are variances of X and Y .
iii) What is the correlation coefficient?
b) Two gaussian random variables X and Y are variances $\sigma_{X}^{2}=4$ and $\sigma_{Y}^{2}=9$ respectively and correlation coefficient ρ. It is known that a coordinate rotation by angle $-\pi / 4$ results in new random variable Y_{1} and Y_{2} that are uncorrelated. What is ρ ?

7 a) Write the properties of Autocorrelation Function of Random Process
b) A Gaussian random process is known to be a WSS process with mean $\bar{X}=4$ and $\quad R_{X X}(\tau)=25 e^{-3^{|\tau|}}$ where $\tau=\frac{\left|t_{k}-t_{i}\right|}{2}$ and $\mathrm{i}, \mathrm{k}=1,2$. Find joint Gaussian density function?

Or
8 a) What is wide-sense stationary random process and explain with example
b) Define Random Process and classify it.

9 a) A random process had the power density spectrum

$$
S(\omega)=\frac{6 \omega^{2}}{1+\omega^{4}}
$$

Find the average power in the process
b) Assume $\mathrm{X}(\mathrm{t})$ is a wide sense stationary process with non zero mean value. show that

$$
s_{x x}(\omega)=2 \pi \bar{X}^{2} \delta(\omega)+\int_{-\infty}^{\infty} C_{x x}(\tau) e^{-j \omega \tau} d \tau
$$

where $C_{x x}(\tau)$ is the auto covariance function of $\mathrm{X}(\mathrm{t})$.
Or
10 a) Derive the relationship between Cross-Power Density Spectrum and CrossCorrelation Function.
b) Explain Band pass Processes with Properties.

II B. Tech I Semester Regular Examinations, March - 2021

RANDOM VARIABLES AND STOCHASTIC PROCESSES
(Electronics and Communication Engineering)
Time: 3 hours Max. Marks: 75

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

1 a) Define Density Function? List out the properties of Density Function
b) Gaussian random voltages X for which $a_{X}=0$ and $\sigma_{X}=4.2 \mathrm{~V}$ appears across a $100-\Omega$ resistor with power rating of 0.25 W . What is the probability that the voltage will cause an instantaneous power that exceeds the resistor's rating?

Or
2 a) Define Poisson Random variable? What type of applications it will suitable and give the relationship between Poisson and Binomial Random variable.
b) For the Gaussian density function of $\mathrm{ax}=0$ and $\sigma \mathrm{x}=1$, show that

$$
\int_{-\infty}^{\infty}(x-\mathrm{ax})^{2} f x(x) d x=\sigma x^{2}
$$

3 a) Explain about Transformation of random variable
b) For the binomial density function, show that $E[X]=N p$ and variance $=N p(1-p)$

Or

4 a) Find the mean, variance from moment generation function of uniform distribution?
b) A random variable X can have values $-4,-1,2,3,4$ each with probability $1 / 5$.Find:
i) the density function ii) the mean iii) the variance of the random variable $\mathrm{Y}=3 \mathrm{X}^{2}$.

5 a) Define Marginal density function? Find the Marginal density functions of below joint density function.

$$
\begin{equation*}
f_{X Y}=\frac{1}{12} u(x) u(y) e^{-x / 3} e^{-y / 4} \tag{7M}
\end{equation*}
$$

b) Two random variables having joint characteristic function $\emptyset_{\mathrm{XY}}\left(\omega_{1}, \omega_{2}\right)=\exp \left(-2 \omega^{2}{ }_{1}-8 \omega^{2}\right)$. Find moment's $\mathrm{m}_{10}, \mathrm{mo}_{1}, \mathrm{~m}_{11}$?

Or
6 a) Find the density function of $\mathrm{W}=\mathrm{X}+\mathrm{Y}$, where the densities of X and Y are assumed [10M] to be: $f_{x}(x)=4 u(x) e^{-4 x} ; \quad f_{y}(y)=5 u(y) e^{-5 y}$.
b) Joint Sample Space has three elements (1, 1), (2, 2), and (3,3) with probabilities

7 a) Let two random processes $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ be defined by

$$
\begin{align*}
& \mathrm{X}(\mathrm{t})=\mathrm{A} \cos \omega_{0} \mathrm{t}+\mathrm{B} \sin \omega_{0} \mathrm{t} \tag{8M}\\
& \mathrm{Y}(\mathrm{t})=\mathrm{B} \cos \omega_{0} \mathrm{t}-\mathrm{A} \sin \omega_{0} \mathrm{t}
\end{align*}
$$

where A and B are random variables and ω_{0} is a constant. Assume A and B are uncorrelated, zero mean random variables with same variance. Find the cross correlation function $\mathrm{R}_{\mathrm{XY}}(\mathrm{t}, \mathrm{t}+\tau)$.
b) Write the properties of Cross correlation Function of Random Processes.

8 a) What is strict-sense stationary random process and explain with example.
b) What is Cross- Correlation Function and explain its Properties .

9 a) Write the properties of power density spectrum.
b) If $\mathrm{X}(\mathrm{t})$ is a stationary process, find the power spectrum of $Y(t)=A_{0}+B_{0} X(t)$ in term of the power spectrum of $\mathrm{X}(\mathrm{t})$ if A_{0} and B_{0} are real constants.

Or
10 a) Explain Band-Limited Processes with Properties.
b) If $\mathrm{X}(\mathrm{t})$ is band limited process such that $S_{x x}(\omega)=0$, when $|\omega|>\sigma$, prove that $2\left[R_{x x}(0)-R_{x x}(\tau)\right] \leq \sigma^{2} \tau^{2} R_{x x}(0)$.

II B. Tech I Semester Regular Examinations, March - 2021
 RANDOM VARIABLES AND STOCHASTIC PROCESSES

(Electronics and Communication Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

1 a) Define Random variable? Write the conditions for a function to be random variable
b) A random voltage can have any value defined by the set ' S ' $=\{\mathrm{a} \leq \mathrm{s} \leq \mathrm{b}\}$. A quantizer, divides S into 6 equal-sized contiguous subsets and generates random variable X having values $\{-4,-2,0,2,4,6\}$. Each value of X is earned to the midpoint of the subset of ' S ' from which it is mapped
i) Sketch the sample space and the mapping to the line that defines the values of X
ii) Find a and b?

Or
2 a) Explain about Gaussian random variable
b) A Gaussian random variable X has $a_{X}=2$, and $\sigma_{X}=2$
i. Find $P\{X>1.0\}$
ii. Find $P\{X \leq-1.0\}$

3 a) A random variable X has a probability density

$$
f_{\times}(x)=\left\{\begin{array}{lc}
(1 / 2) \cos (x) & -\pi / 2<x<\pi / 2 \\
0 & \text { elsewhere in } x .
\end{array}\right.
$$

Find the mean value of the function on $g(X)=4 X^{2}$
b) Let X be a Poisson random variable then find out its mean and variance

Or
4 a) Find the expected value of the function $g(X)=X^{3}$ where X is a random variable defined by the density

$$
f_{X}(x)=\left(\frac{1}{2}\right) u(x) \exp (-x / 2) .
$$

b) State and prove Chebchev's inequality?

5 a) For two random variables X and Y

$$
\begin{align*}
& f_{X, Y}(x, y)=0.15 \delta(x+1) \delta(y)+0.1 \delta(x) \delta(y)+0.1 \delta(x) \\
& \delta(y-2)+0.4 \delta(x-1) \delta(y+2)+ \\
& 0.2 \delta(x-1) \delta(y-1)+0.5 \delta(x-1) \delta(y-3) . \tag{7M}
\end{align*}
$$

Find the correlation coefficients of X and Y
b) Gaussian random variables X and Y have first and second order moments $m_{10}=-$
1.1, $\mathrm{m}_{20}=1.16, \mathrm{~m}_{01}=1.5, \mathrm{~m}_{02}=2.89, \mathrm{R}_{\mathrm{XY}}=-1.724$ find C_{XY} and ρ ?

Or

SET - 4

6 a) Define random variables V and W by

$$
\begin{aligned}
& V=X+a Y \\
& W=X-a Y
\end{aligned}
$$

Where a is real number and X and Y random variables, Determine a in terms of X and Y such V and W are orthogonal?
b) Gaussian random variable X_{1} and X_{2} for which $\bar{X}_{1}=2, \sigma_{X 1}^{2}=9, \bar{X}_{2}=-1, \sigma_{X}^{2}=4$ and
$\mathrm{C}_{\mathrm{X}_{1 \times 2}=-3}$ are transformed to new random variable Y_{1} and Y_{2} according to $\mathrm{Y}_{1}=-$ $\mathrm{X}_{1}+\mathrm{X}_{2}, \mathrm{Y}_{2}=-2 \mathrm{X}_{1}-3 \mathrm{X}_{2}$. Find
i) \bar{X}^{2} ii) \bar{X}^{2} iii) $\rho_{\mathrm{X} 1 \mathrm{X} 2}$ iv) $\sigma_{Y 1}^{2}$

7 a) Given that the autocorrelation function for a stationary Ergodic process with no period components is

$$
R_{x x}(\tau)=25+\frac{4}{1+6 \tau^{2}}
$$

Find the mean and variance of process $\mathrm{X}(\mathrm{t})$?
b) Give the random process by

Where w_{0} is a constant, and A and B are uncorrelated zero mean random variables having different density functions but the same variance ,show that $\mathrm{X}(\mathrm{t})$ is wide sense stationary but not strictly stationary

Or
8 A random process $X(t)$ has periodic sample functions as show in figure; where B, T and $4 t_{0} \leq T$ are constants but \in is a random variable uniformly distributed on the interval $(0, T)$. Find first order density function and distribution function of $X(t)$.

9 a) Derive the relationship between power spectrum and autocorrelation
b) The autocorrelation function of a random process $\mathrm{X}(\mathrm{t})$

$$
R_{x x}(\tau)=3+2 \exp \left(-4 \tau^{2}\right)
$$

i. Find the power spectrum of $\mathrm{X}(\mathrm{t})$
ii. What is the average power in $\mathrm{X}(\mathrm{t})$?

Or

10 a) Explain Power Density Spectrum of Response Characteristics of LTI System Response
b) Explain Narrowband Processes with Properties.

