II B. Tech I Semester Regular Examinations, March - 2021
 SIGNALAS AND SYSTEMS

(Electronic Communication Engineering)
Time: 3 hours Max. Marks: 75

Answer any FIVE Questions each Question from each unit

All Questions carry Equal Marks

1 a) Give expressions for determining the total energy $\left(E_{\infty}\right)$ of a continuous time signal and a discrete time signal. Find the total energy in, $x(t)=e^{a t} u(t)$ (ii) $x[n]=0.5^{n} u[n]$, n- integer.
b) Consider the discrete -time signal $x[n]=1-\sum_{k=3}^{\infty} \delta[n-1-k]$. Analyze the signal to determine the values of the integers M and n_{0} so that $x[n]$ may be expressed as

$$
x[n]=u\left[M n-n_{0}\right] .
$$

Or
2 a) Check whether the following signals are Energy or power Signals. Justify your answer. a) $x(t)=e^{-2 t} u(t) \quad$ b) $x[n]=(0.5)^{n} u[n]$
b) Describe different types of continuous-time and discrete-time Test signals.

Or
3 a) Find the Fourier transform of the aperiodic signals
(i) $x(t)=e^{-a|t|}, a>0$ and (ii) $y(t)=\left\{\begin{array}{ll}1 & ,|t|<T_{1} \\ 0 & ,|t|>T_{1}\end{array}\right\}$
b) State and prove the Time shifting and Time scaling property of the Fourier transform.

Or

4 a) State and prove duality property and find the F.T $\left\{\frac{1}{\pi t}\right\}$
b) The frequency response of an LTI system is given by $H(w)=\frac{2+j w}{12+7 j w-w^{2}}$

Find i) Impulse response of the system?
ii) Output of the system when input $x(t)=e^{-2 t} \mathbf{u}(\mathrm{t})$

Or
5 a) A discrete LTI system describe by difference equation is given by

$$
\begin{aligned}
& y[n]+3 y[n-1]+2 y[n-2]=2 x[n]-x[n-1] \text { and given } y(-1)=0 \& y(-2)=1, \\
& x(n)=u(n)
\end{aligned}
$$

Find i) Zero input Response ii) Zero State Response iii) Total Response
b) Illustrate the ideal LPF, HPF and BPF characteristics

Or
6 a) Discuss on Causality and Poly-Wiener criterion for physical realization
b) Perform the convolution of $h(t)=e^{-a t} u(t)$ and $x(t)=u(t)-u(t-b)$

Or

7 a) Explain Natural sampling and Flat top sampling?
b) Consider the signal $x(t)=6 \cos 5 \pi t+3 \cos 10 \pi t$. Find the minimum sampling rate if . i) $x(t)$ is band limited ii) $x(t)$ is band pass signal .

> Or

8 a) Derive the relation between Convolution and correlation.
b) Discuss about the process of extraction of signal from noise by filtering.

Or
9 a) Find the bilateral Laplace transform of the following signals and specify the ROC.
(i) $x(t)=e^{2 t} u(-t)+e^{-3 t} u(t)$,
(ii) $y(t)=e^{-a t} \cos \left(\omega_{0} t\right) u(t)$
b) Find the inverse Laplace transform of

$$
X(s)=\frac{3+4 s}{s^{2}+6 s+8} ; \operatorname{ROC}: \operatorname{Re}\{s\}>-2
$$

10 a) Find the inverse Z-Transform of $X(z)=\frac{3 z^{2}-5 z}{z^{2}-3 z+2} ; R O C:|z|<1$.
b) Find the Z- Transform of the signals with the corresponding ROCs
(i) $x[n]=-a^{n} u[-n-1]$ (ii) $x[n]=\cos \left(\omega_{0} n\right) \mathrm{u}[\mathrm{n}]$.

II B. Tech I Semester Regular Examinations, March - 2021
 SIGNALAS AND SYSTEMS

(Electronic Communication Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks

1 a) A continuous time signal $x(t)$ is shown in Fig. Apply transformations on the independent variables and sketch, label carefully each of the following signals.
i) $x(t-1)$ ii) $x(2 t+1)$
iii) $x(t)\left[\delta\left(t+\frac{3}{2}\right)-\delta\left(t-\frac{3}{2}\right)\right]$

b) Comment on the $\left(E_{\infty}\right)$ of the signal $x[n]=u[n]$. Justify your answer using the relationship between $\left(P_{\infty}\right)$ and $\left(E_{\infty}\right)$.

Or

2 a) Analyze the following signals and find the periodicity of the signals and its fundamental period.
a) $x(t)=\sin 10 \pi t+\cos 15 \pi t+20 \cos (20 \pi t+\pi / 4)$
b) $x[n]=\sin (3 \pi / 5) n$.
b) Illustrate Energy and power signals.

Or

3 a) Describe the following
a) Properties of Fourier series
b) Dirichlet's conditions
b) Find the complex exponential Fourier series coefficients c_{k} for the continuous
time periodic signal $x(t)=2+\cos \left(\frac{2 \pi}{3} t\right)+4 \sin \left(\frac{5 \pi}{3} t\right)$
a) Describe a) Fourier transform of arbitrary signal, b) Fourier transform of standard signals, c) Fourier transform of periodic signals.
b) Derive the Fourier transform from Fourier series.

Or
5 a) Describe about a) Linear time invariant (LTI) system, b) Linear time variant (LTV) system.
b) What is the purpose of Convolution? Represent the sequence $x[n]=$ $\{1,2,-3,-1,2\}$ as a sum of weighted impulse sequences.

Or

6 a) Perform the convolution of the two sequences $x[n]=\{3,2,1,2\}$ and $h[n]=\{1,2,1,2\}$.
b) Discuss about distortion less transmission through a system.

Or
7 a) Derive the expression for the reconstructed signal from samples taken with a sampling interval of Ts when interpolation is done using Sinc function.
b) State and explain Parseval's theorem.

Or
8 a) Explain the process of detection of periodic signals in the presence of noise by correlation.
b) What are the properties of correlation function?

Or
9 a) L.T $\{\mathrm{h}(\mathrm{t})\}=\frac{1}{s^{2}-s-42}$, Find Inverse laplace Transform such that system is
i) Causal ii)Stable iii) Anti-causal
b) State and prove initial and final value theorem of Laplace Transform.

Or
10 a) Distinguish among Laplace, Fourier and Z transforms.
b) Write down any six properties of ROC of Z-Transform.

II B. Tech I Semester Regular Examinations, March - 2021 SIGNALAS AND SYSTEMS

(Electronic Communication Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions each Question from each unit
 All Questions carry Equal Marks

1 a) Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period.
(i) $x(t)=\cos \frac{\pi}{4} t+\sin \frac{\pi}{3} t \quad$ (ii) $x(t)=\cos t+\sin \sqrt{2} t$
b) Explain how a function can be approximated by a set of orthogonal functions

Or
2 a) Consider the system shown in Fig. Determine whether it is (a) memoryless, (b) causal, (c) linear, (d) time-invariant, or (e) stable.

b) Obtain the condition under which two signals $f_{1}(t)$ and $f_{2}(t)$ are said to be orthogonal to each other. Hence prove that $\cos n \omega_{0} t$ and $\cos m \omega_{0} t$ are orthogonal over any interval ($\mathrm{t}_{0}, \mathrm{t}_{0}+2 \pi / \omega_{0}$) for integer values of n and m .
3 a) Consider the periodic square wave $\boldsymbol{x}(\boldsymbol{t})$ shown in Fig. Determine the complex exponential Fourier series of $x(t)$.

b) Obtain the Fourier Transform of the following functions
(a) DC signal
(b) Unit step function

Or
4 a) Find the Fourier transform of the signal $x(t)=e^{-a|t|}, a>0$ and plot its magnitude spectrum.
b) Discuss the concepts of Trigonometric Fourier series and derive the expression for coefficients.
5 a) The input $\boldsymbol{x}(\boldsymbol{t})$ and the impulse response $\boldsymbol{h}(\boldsymbol{t})$ of a continuous time LTI system are given by $x(t)=u(t), h(t)=e^{-\alpha t} u(t), \alpha>0$. Compute the output $\mathrm{y}(\mathrm{t})$
b) Consider the system described by differential equation $y^{\prime}(t)+2 y(t)=x(t)+$ $x^{\prime}(t)$. Find the impulse response of the system

Or

6 a) The input signal $x(t)$ and impulse response $h(t)$ of an LTI system is given by $\mathrm{x}(\mathrm{t})=2 \mathrm{u}(\mathrm{t}), h(\mathrm{t})=2 e^{-t} u(\mathrm{t})$.
Determine the output $\mathrm{y}(\mathrm{t})$ of the system.
b) Test the stability and causality of the following LTI system whose impulse response is

$$
h(t)=e^{-2 t} u(t)
$$

7 a) Explain briefly detection of periodic signals in the presence of noise by correlation.
b) Determine the Nyquist sampling rate and Nyquist sampling interval for the below signals.
i) $x(t)=3 \cos 4 \pi 500 t \cos 2 \pi 1000 t$.
ii) $x(t)=3 \sin \pi 50 t+9 \cos 2 \pi 10 t+3 \sin 8 \pi 50 t$.

Or

8 a) Determine the autocorrelation function and energy spectral density function of $X(t)=e^{-a t} u(t)$
b) What is aliasing and explain different methods to avoid aliasing effect?

9 a) Determine the Laplace Transform for the below signals and plot it's region of convergence.
i) $\mathrm{x}(\mathrm{t})=e^{-4 t} \mathrm{u}(\mathrm{t})+e^{-2 t} \mathrm{u}(-\mathrm{t}) \quad$ (ii) $\mathrm{x}(\mathrm{t})=t e^{-a t} \mathrm{u}(\mathrm{t})$
b) Consider the transfer function $H(Z)=3 /\left(\left(1-1 / 3 z^{-1}\right)\left(1+1 / 4 z^{-1}\right)\right)$, determine it's inverse Z- Transform.

Or
10 a) Determine the inverse Laplace transform of

$$
X(s)=\frac{2 s+4}{s^{2}+4 s+3}, \operatorname{Re}(s)>-1
$$

b) Determine the Z- Transform for the below signals and plot it's region of convergence.
i) $\mathrm{x}[\mathrm{n}]=(1 / 4)^{\mathrm{n}} \mathrm{u}[-\mathrm{n}-1]+(2)^{\mathrm{n}} \mathrm{u}[-\mathrm{n}-1]$
(ii) $x[n]=n u[n]$

II B. Tech I Semester Regular Examinations, March - 2021
 SIGNALAS AND SYSTEMS
 (Electronic Communication Engineering)

Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions each Question from each unit
 All Questions carry Equal Marks

1 a) Determine whether the following signals are energy signals, power signals, or neither.
(i) $x(t)=e^{-a t} u(t), a>0$
(ii) $x(t)=t u(t)$
b) Obtain the condition under which two signals f 1 (t) and $\mathrm{f} 2(\mathrm{t})$ are said to be orthogonal to each other. Hence prove that $\cos n \omega_{0} t$ and $\cos m \omega_{0} t$ are orthogonal over any interval ($\mathrm{t}_{0}, \mathrm{t}_{0}+2 \pi / \omega_{0}$) for integer values of n and m .

Or
2 a) A continuous-time signal $x(t)$ is shown in Fig. 1-27. Sketch and label each of the following signals.(i) $x(t) u(1-t)$ (ii) $x(t) \delta\left(t-\frac{3}{2}\right)$

b) Define orthogonal functions. Give some examples of orthogonal functions

3 a) Consider the periodic wave $\boldsymbol{x}(\boldsymbol{t})$ shown in Fig. Determine the complex exponential Fourier series of $x(t)$.

b) Obtain the Fourier Transform of the following functions
(a) Impulse
(b) Unit step function

Or
4 a) Find the Fourier transform of the signal $x(t)=\frac{1}{a^{2}+t^{2}}$ and plot its magnitude spectrum.
b) Define Fourier series and derive the relationship between Trigonometric Fourier series as Exponential Fourier series.
5 a) Compute the output $y(t)$ for a continuous-time LTI system whose impulse response $h(t)$ and the input $x(t)$ are given by

$$
h(t)=e^{-a t} u(t), x(t)=e^{a t} u(-t)
$$

b) The step response $\boldsymbol{s}(\boldsymbol{t})$ of a continuous-time LTI system is given by $s(t)=$ $\left[\cos _{0} t\right] u(t)$. Find the impulse response of the system

6 a) Determine convolution of the following continuous time signals

b) The following are the impulse responses of the LTI systems in continuous time.

Determine whether each system is stable and/or causal. Justify your answer.

$$
\text { (i) } h(t)=e^{-3 t} u(t) \text {, (ii)h(t) }=\log (t)
$$

7 a) Prove that autocorrelation function and energy spectral density function forms a
b) Determine the Nyquist sampling rate and Nyquist sampling interval for the below signals. i) $x(t)=3 \cos 4 \pi 500 t \cos 2 \pi 300 t$.
ii) $\mathrm{x}(\mathrm{t})=3 \sin \pi 500 \mathrm{t}+9 \cos 2 \pi 100 \mathrm{t}+3 \operatorname{Sin} 8 \pi 500 \mathrm{t}$.

Or
8 a) Find the Cross correlation between triangular and gate function as shown in below figure.

b) State and Prove sampling theorem for band limited signals.

9 a) A system described by a differential equation is given by $\frac{d^{2} y(t)}{d t^{2}}-\frac{d y(t)}{d t}+$ $12 y(t)=x(t)$ and system is initially at rest. Determine it's output when input $\mathrm{x}(\mathrm{t})=4 \mathrm{u}(\mathrm{t})$?
b) Determine the Z- Transform for the below signals and plot it's region of convergence.
i) $\mathrm{x}[\mathrm{n}]=(1 / 4)^{\mathrm{n}} \mathrm{u}[-\mathrm{n}-1]+(2)^{\mathrm{n}} \mathrm{u}[-\mathrm{n}-1]$
(ii) $x[n]=n(5)^{n} u[n]$
Or

10 a) Calculate the Laplace transform of the signal $x(t)=e^{-a|t|}$
b) A discrete LTI system describe by difference equation $\mathrm{y}[\mathrm{n}]+3 \mathrm{y}[\mathrm{n}-1]+2 \mathrm{y}[\mathrm{n}-2]=2 \mathrm{x}[\mathrm{n}]$ and given $\mathrm{y}(-1)=0, \mathrm{y}(-2)=1$.
Determine the unit step response of the system.

