SET - 1

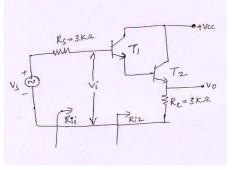
II B. Tech I Semester Supplementary Examinations, September - 2021 ELECTRONIC DEVICES AND CIRCUITS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: '			
		Answer any FIVE Questions each Question from each unit All Questions carry Equal Marks	_
1	a)	Explain about Hall effect and derive an expression for Hall coefficient?	[8M]
	b)	Explain in detail about Fermi level in an extrinsic semiconductor with neat diagrams?	[7M]
		Or	
2	a)	Derive the expression for the fundamental law governing the flow of charge with all the possible conditions	[8M]
	b)	In an N-type semiconductor, the Fermi level lies 0.2eV below the conduction band. Find the new position of Fermi level if the concentration of donor atoms is increased by a factor i)4 and ii)8. Assume the necessary values at room temperature.	[7M]
3	a)	Explain about LED with real time applications	[8M]
	b)	Find the conductivity of silicon atom when the donor impurities of 1 in 10^8 is applied. The intrinsic value of silicon atom is 1.5×10^{10} cm ⁻³ at 300^0 K. The mobility of the electrons and holes are 1300 cm^2 /V-s and 500 cm^2 /V-s respectively. The number of silicon atoms is 5×10^{25} cm ⁻³ .	[7M]
		Or	
4	a)	Explain the breakdown phenomena in zener diode.	[8M]
	b)	Draw the circuit diagram and explain the operation of full wave rectifier using center tap transformer and using bridge rectifier. Compare TUF and PIV for the both cases.	[7M]
5	a)	Explain the current components in transistor with appropriate diagrams	[8M]
	b)	Explain the construction and operation of JFET and draw its characteristics.	[7M]
		Or	
6	a)	Draw the small signal equivalent diagrams for all the three configurations of transistor by using approximate analysis	[8M]
	b)	What is base width modulation? Explain its effect on i/p and o/p characteristic curves of CE and CB configurations and also explain reach through in transistor.	[7M]
7	a)	What is the difference between stabilization and compensation techniques? Explain transistor compensation techniques.	[8M]
	b)	What is the condition for stability and determine stability factor and operating point for CE germanium transistor amplifier which uses self-bias technique where V_{cc} =16 V_{cc} =3 $K\Omega$, R_{E} =2 $K\Omega$, R_{I} =56 $K\Omega$, R_{2} =20 $K\Omega$ and α =0.985.	[7M]
		Or	

SET - 1

8 a) What is the condition for thermal stability?


[8M]

- b) A silicon transistor with β =80 is used in self-biasing arrangement with V_{CC} =15V, R_{C} =4.7 K Ω . The operating point Q is at V_{CE} =8.2V, I_{C} =1.2 mA. Find the values of R_1 , R_2 and R_E .
- 9 a) Using approximate h parameter model for a CE circuit obtain the expression for i) A_I ii) A_I iii) A_V iv) R_o

[8M]

b) For the circuit shown in below fig .calculate $R_i,\,A_v,\,A_i,$ and R_0 for $h_{ie}\text{=}1K\Omega,\,h_{fe}\text{=}50$ and $h_{re}\text{=}2x10^{\text{-}4},\,h_{oe}\text{=}\,20\mu\text{A/V}.$

[7M]

Or

10 a) Draw the small signal model of JFET amplifiers.

[8M]

b) Give the compaction of FET amplifiers.

[7M]